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Preface

CiE 2006: Logical Approaches to Computational Barriers
Swansea, Wales, June 30 - July 5, 2006

Computability in Europe (CiE) is an informal network of European scientists
working on computability theory, including its foundations, technical develop-
ment, and applications. Among the aims of the network is to advance our the-
oretical understanding of what can and cannot be computed, by any means
of computation. Its scientific vision is broad: computations may be performed
with discrete or continuous data by all kinds of algorithms, programs, and ma-
chines. Computations may be made by experimenting with any sort of physical
system obeying the laws of a physical theory such as Newtonian mechanics,
quantum theory or relativity. Computations may be very general, depending
upon the foundations of set theory; or very specific, using the combinatorics of
finite structures. CiE also works on subjects intimately related to computation,
especially theories of data and information, and methods for formal reasoning
about computations. The sources of new ideas and methods include practical
developments in areas such as neural networks, quantum computation, natural
computation, molecular computation, and computational learning. Applications
are everywhere, especially, in algebra, analysis and geometry, or data types and
programming.

This volume, Logical Approaches to Computational Barriers, is the proceed-
ings of the second in a series of conferences of CiE that was held at the Depart-
ment of Computer Science, Swansea University, 30 June - 5 July, 2006.

The first meeting of CiE was at the University of Amsterdam, June 8–12,
2005, and its proceedings, edited by S. Barry Cooper, Benedikt Löwe and Leen
Torenvliet, was published as Springer Lecture Notes in Computer Science, Vol-
ume 3526. We are sure that all of the 200+ mathematicians and computer scien-
tists attending that conference had their view of computability theory enlarged
and transformed: they discovered that its foundations were deeper and more
mysterious, its technical development more vigorous, its applications wider and
more challenging than they had known. We believe the same is certainly true of
the Swansea meeting.



VI Preface

CiE 2005 and CiE 2006 are at the start of a new conference series Com-
putability in Europe. The series is coordinated by the CiE Steering Committee:

S. Barry Cooper (Leeds)
Benedikt Löwe (Amsterdam, Chair)
Elvira Mayordomo (Zaragoza)
Dag Normann (Oslo)
Andrea Sorbi (Siena)
Peter van Emde Boas (Amsterdam).

We will reconvene 2007 in Siena, 2008 in Athens, 2009 in Heidelberg, and 2010
in Lisbon.

Structure and Programme of the Conference

The conference was based on invited tutorials and lectures, and a set of special
sessions on a range of subjects; there were also many contributed papers and
informal presentations. This volume contains 30 of the invited lectures and 39.7%
of the submitted contributed papers, all of which have been refereed. There
will be a number of post-proceedings publications, including special issues of
Theoretical Computer Science, Theory of Computing Systems, and Journal of
Logic and Computation.

Tutorials

Samuel R. Buss (San Diego, CA), Proof Complexity and Computational Hardness
Julia Kempe (Paris), Quantum Algorithms

Invited Plenary Talks

Jan Bergstra (Amsterdam), Elementary Algebraic Specifications of the Rational
Function Field
Luca Cardelli (Cambridge), Biological Systems as Reactive Systems
Martin Davis (New York), The Church-Turing Thesis: Consensus and Opposi-
tion
John W. Dawson (York, PA), Gödel and the Origins of Computer Science
Jan Kraj́ıček (Prague), Forcing with Random Variables and Proof Complexity
Elvira Mayordomo (Zaragoza), Two Open Problems on Effective Dimension
István Németi (Budapest), Can General Relativistic Computers Break the Turing
Barrier?
Helmut Schwichtenberg (Munich), Inverting Monotone Continuous Functions in
Constructive Analysis
Andreas Weiermann (Utrecht), Phase Transition Thresholds for Some Natural
Subclasses of the Computable Functions



Preface VII

Special Sessions

Proofs and Computation, organized by Alessandra Carbone and Thomas
Strahm

Kai Brünnler (Bern), Deep Inference and Its Normal Form of Derivations
Roy Dyckhoff (St. Andrews), LJQ: A Strongly Focused Calculus for Intuitionistic
Logic
Thomas Ehrhard (Marseille), Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms
Georges Gonthier (Cambridge), Using Reflection to Prove the Four-Colour The-
orem

Computable Analysis, organized by Peter Hertling and Dirk Pattinson

Margarita Korovina (Aarhus), Upper and Lower Bounds on Sizes of Finite
Bisimulations of Pfaffian Hybrid Systems
Paulo Oliva (London), Understanding and Using Spector’s Bar Recursive Inter-
pretation of Classical Analysis
Matthias Schröder (Edinburgh), Admissible Representations in Computable
Analysis
Xizhong Zheng (Cottbus), A Computability Theory of Real Numbers

Challenges in Complexity, organized by Klaus Meer and Jacobo Torán

Johannes Köbler (Berlin), Complexity of Graph Isomorphism for Restricted
Graph Classes
Sophie Laplante (Paris), Lower Bounds Using Kolmogorov Complexity
Johann A. Makowsky (Haifa), From a Zoo to a Zoology: Descriptive Complexity
for Graph Polynomials
Mihai Prunescu (Freiburg), Fast Quantifier Elimination Means P = NP

Foundations of Programming, organized by Inge Bethke and Mart́ın Escardó

Erika Ábrahám (Freiburg), Heap-Abstraction for an Object-Oriented Calculus
with Thread Classes
Roland Backhouse (Nottingham), Datatype-Generic Reasoning
James Leifer (Le Chesnay), Transactional Atomicity in Programming Languages
Alban Ponse (Amsterdam), An Introduction to Program and Thread Algebra

Mathematical Models of Computers and Hypercomputers, organized
by Joel D. Hamkins and Martin Ziegler

Jean-Charles Delvenne (Louvain-la-Neuve), Turing Universality in Dynamical
Systems
Benedikt Löwe (Amsterdam), Space Bounds for Infinitary Computation
Klaus Meer (Odense), Optimization and Approximation Problems Related to
Polynomial System Solving
Philip Welch (Bristol), Non-Deterministic Halting Times for Hamkins-Kidder
Turing Machines



VIII Preface

Gödel Centenary: Gödel’s Legacy for Computability, organized by Matt-
hias Baaz and John W. Dawson
Arnon Avron (Tel Aviv), From Constructibility and Absoluteness to Computabil-
ity and Domain Independence
Torkel Franzén † (Lule̊a), What Does the Incompleteness Theorem Add to the
Unsolvability of the Halting Problem?
Wilfried Sieg (Pittsburgh, PA), Gödel’s Conflicting Approaches to Effective Cal-
culability
Richard Zach (Calgary, AB), Kurt Gödel and Computability Theory

Organization and Acknowledgements

The CiE 2006 conference was organized by the logicians and theoretical com-
puter scientists at Swansea: Arnold Beckmann, Ulrich Berger, Phil Grant, Oliver
Kullmann, Faron Moller, Monika Seisenberger, Anton Setzer, John V. Tucker;
and with the help of S. Barry Cooper (Leeds) and Benedikt Löwe (Amsterdam).

The Programme Committee was chaired by Arnold Beckmann and John V.
Tucker and consisted of:

Samson Abramsky (Oxford)
Klaus Ambos-Spies (Heidelberg)
Arnold Beckmann (Swansea, Co-chair)
Ulrich Berger (Swansea)
Olivier Bournez (Nancy)
S. Barry Cooper (Leeds)
Laura Crosilla (Firenze)
Costas Dimitracopoulos (Athens)
Abbas Edalat (London)
Fernando Ferreira (Lisbon)
Ricard Gavaldà (Barcelona)
Giuseppe Longo (Paris)

Benedikt Löwe (Amsterdam)
Yuri Matiyasevich (St.Petersburg)
Dag Normann (Oslo)
Giovanni Sambin (Padova)
Uwe Schöning (Ulm)
Andrea Sorbi (Siena)
Ivan N. Soskov (Sofia)
Leen Torenvliet (Amsterdam)
John V. Tucker (Swansea, Co-chair)
Peter van Emde Boas (Amsterdam)
Klaus Weihrauch (Hagen)

We are delighted to acknowledge and thank the following for their essential
financial support: the Department of Computer Science at Swansea, IT Wales,
the Welsh Development Agency, the UK’s Engineering and Physical Sciences Re-
search Council, the British Logic Colloquium, the London Mathematical Society,
and the Kurt Gödel Society of Vienna. Furthermore, we thank our sponsors the
Association for Symbolic Logic, the European Association for Theoretical Com-
puter Science, and the British Computer Society.

The high scientific quality of the conference was possible through the con-
scientious work of the Programme Committee, the special session organizers
and the referees. We are grateful to all members of the Programme Committee
for their efficient evaluations and extensive debates, which established the final
programme. We also thank the following referees:
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X Preface

After completing this volume, we heard the sad news that our invited Special
Session speaker, Torkel Franzén, died on April 19, 2006. Torkel Franzén’s work on
the philosophy of logic and mathematics had gained more and more international
recognition in recent years. His death is a huge loss for the scientific community
and he will be very much missed at CiE 2006. Torkel Franzén did send us an
abstract of his planned contribution to this conference which we have included
in this volume.

The Editors
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Gödel and the Origins of Computer Science
John W. Dawson Jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

The Role of Algebraic Models and Type-2 Theory of Effectivity in
Special Purpose Processor Design

Gregorio de Miguel Casado, Juan Manuel Garćıa Chamizo . . . . . . . . . . 137
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Roy Dyckhoff, Stéphane Lengrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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Heap-Abstraction for an Object-Oriented
Calculus with Thread Classes�

Erika Ábrahám1 Andreas Grüner2 and Martin Steffen2

1 Albert-Ludwigs-University Freiburg, Germany

2 Christian-Albrechts-University Kiel, Germany

Abstract. This paper formalizes an open semantics for a calculus fea-
turing thread classes, where the environment, consisting in particular of
an overapproximation of the heap topology, is abstractly represented.

We extend our prior work not only by adding thread classes, but also in
that thread names may be communicated, which means that the seman-
tics needs to account explicitly for the possible acquaintance of objects
with threads. We show soundness of the abstraction.

Keywords: class-based oo languages, thread-based concurrency, open
systems, formal semantics, heap abstraction, observable behavior

1 Introduction

An open system is a program fragment or component interacting with its envi-
ronment. The behavior of the component can be understood to consist of message
traces at the interface, i.e., of sequences of component-environment interaction.
Even if the environment is absent, it must be assured that the component to-
gether with the (abstracted) environment gives a well-formed program adhering
to the syntactical and the context-sensitive restrictions of the language at hand.
Technically, for an exact representation of the interface behavior, the semantics
of the open program needs to be formulated under assumptions about the en-
vironment, capturing those restrictions. The resulting assumption-commitment
framework gives insight to the semantical nature of the language. Furthermore, a
characterization of the interface behavior with environment and component ab-
stracted can be seen as a trace logic under the most general assumptions, namely
conformance to the inherent restrictions of the language and its semantics.

With these goals in mind, we deal with languages supporting:

– types and classes: the languages are statically typed, and only well-typed
programs are considered. For class-based languages, complications arise as
classes play the role of types and additionally act as generators of objects.

– concurrency: the languages feature concurrency based on threads and thread
classes (as opposed to processes or active objects ).
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– references: each object carries a unique identity. New objects are dynamically
allocated on the heap as instances of classes.

The interface behavior is phrased in an assumption-commitment framework and
is based on three orthogonal abstractions:

– a static abstraction, i.e., the type system;
– an abstraction of the stacks of recursive method invocations, representing the

recursive and reentrant nature of method calls in a multi-threaded setting;
– an abstraction of the heap topology, approximating potential connectivity of

objects and threads. The heap topology is dynamic due to object creation
and tree-structured in that previously separate object groups may merge.

In [1,2] we showed that the need to represent the heap topology is a direct
consequence of considering classes as a language concept. Their foremost role in
object-oriented languages is to act as “generators of state”. With thread classes,
there is also a mechanism for “generating new activity”. This extension makes
cross-border activity generation a possible component-environment interaction,
i.e., the component may create threads in the environment and vice versa.

Thus, the technical contribution of this paper is threefold. We extend the
class-based calculus [1,2] with thread classes and allow to communicate thread
names. This requires to consider cross-border activity generation and to incorpo-
rate the connectivity of objects and threads. Secondly, we characterize the poten-
tial traces of any component in an assumption-commitment framework in a novel
derivation system: The branching nature of the heap abstraction—connected ob-
ject groups may merge by communication—is reflected in the branching structure
of the derivation system. Finally, we show soundness of the abstractions.

Overview The paper is organized as follows. Section 2 defines syntax and se-
mantics of the calculus. Section 3 characterizes the observable behavior of an
open system and presents the soundness results. Related and future work is dis-
cussed in Section 4. See [3] for a full description of semantics and type system.

2 A ulti-threaded alculus with hread lasses

2.1 Syntax

The abstract syntax is given in Table 1. For names, we will generally use o and
its syntactic variants for objects, c for classes (in particular ct for thread classes),
and n when being unspecific. A class c[(O)] with name c defines its methods and
fields. A method ς(self :c).ta provides the method body abstracted over the ς-
bound “self” and the formal parameters. An object o[c, F ] of type c stores the
current field values. We use l for fields, l = f for field declaration, field access is
written as v.l, and field update as v.l := v′. Thread classes ct〈(ta)〉 with name ct

carry their abstract code in ta. A thread n〈t〉 with name n is basically either a
value or a sequence of expressions, notably method calls v.l(�v), object creation
new c, and thread instantiation spawn ct(�v).

.
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C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F ] | n〈t〉 | n〈(ta)〉 program
O ::= F, M object

M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).ta method
f ::= ς(n:T ).λ().v | ς(n:T ).λ().⊥c field
ta ::= λ(x:T, . . . , x:T ).t parameter abstraction
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l) then e else e expression

| v.l(v, . . . , v) | v.l := v

| currentthread | new n | spawn n(v, . . . , v)
v ::= x | n values

Table 1. Abstract syntax

As types we have thread for threads, class names c as object types, T1× . . .×
Tk → T as the type of methods and thread classes (in last case T equals thread),
[l1:U1, . . . , lk:Uk] for unnamed objects, and [(l1:U1, . . . , lk:Uk)] for classes.

2.2 Operational emantics

For lack of space we concentrate on the interface behavior and omit the defini-
tions of the component-internal steps like internal method calls [3].

The external steps define the interaction between component and environ-
ment in an assumption-commitment context. The static part of the context cor-
responds to the static type system [3] and takes care that, e.g., only well-typed
values are received from the environment. The context, however, needs to con-
tain also a dynamic part dealing with the potential connectivity of objects and
thread names, corresponding to an abstraction of the heap topology.

The component-environment interaction is represented by labels a:

γ ::= n〈call o.l(�v)〉 | n〈return(v)〉 | 〈spawn n of c(�v)〉 | ν(n:T ).γ
a ::= γ? | γ!

For call and return, n is the active thread. For spawning, n is the new thread.
There are no labels for object creation: Externally instantiated objects are cre-
ated only when they are accessed for the first time (“lazy instantiation”). For
labels a = ν(Φ).γ? or a = ν(Φ).γ! with Φ a sequence of ν(n:T ) bindings and γ
does not contain any binders, �a� = γ is the core of the label a.

2.2.1 Connectivity ontexts
In the presence of cross-border instantiation, the semantics must contain a
representation of the connectivity, which is formalized by a relation on names
and which can be seen as an abstraction of the program’s heap; see Eq. (2)
and (3) below for the exact definition. The external

S

semantics is formalized as
labeled transitions between judgments of the form

C
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Δ, Σ; EΔ � C : Θ, Σ; EΘ , (1)

where Δ, Σ; EΔ are the assumptions about the environment of C and Θ, Σ; EΘ

the commitments. The assumptions consist of a part Δ, Σ concerning the ex-
istence (plus static typing information) of named entities in the environment.
By convention, the contexts Σ (and their alphabetic variants) contain exactly
all bindings for thread names. The semantics maintains as invariant that for all
judgments Δ, Σ; EΔ � C : Θ, Σ; EΘ that Δ, Σ, and Θ are pairwise disjoint.

The semantics must book-keep which objects of the environment have been
told which identities: It must take into account the relation of objects from the
assumption context Δ amongst each other, and the knowledge of objects from Δ
about thread names and names exported by the component, i.e., those from Θ.
In analogy to the name contexts Δ and Θ, the connectivity context EΔ expresses
assumptions about the environment, and EΘ commitments of the component:

EΔ ⊆ Δ × (Δ + Σ + Θ) and EΘ ⊆ Θ × (Θ + Σ + Δ) . (2)

Since thread names may be communicated, we must include pairs from Δ × Σ
(resp. Θ × Σ) into the connectivity. We write o ↪→ n (“o may know n”) for
pairs from EΔ and EΘ. Without full information about the complete system,
the component must make worst-case assumptions concerning the proliferation
of knowledge, which are represented as the reflexive, transitive, and symmetric
closure of the ↪→-pairs of objects from Δ. We write � for this closure:

� � (↪→↓Δ ∪ ←↩↓Δ)∗ ⊆ Δ × Δ , (3)

where ↪→↓Δ is the projection of ↪→ to Δ. We also need the union � ∪ �; ↪→ ⊆
Δ× (Δ+Σ +Θ), where the semicolon denotes relational composition. We write
�↪→ for that union. As judgment, we use Δ, Σ; EΔ � o1 � o2 : Θ, Σ, resp.
Δ, Σ; EΔ � o �↪→ n : Θ, Σ. For Θ, Σ, EΘ, and Δ, Σ, the definitions are dual.

The relation � partitions the objects from Δ (resp. Θ) into equivalence
classes. We call a set of object names from Δ (or dually from Θ) such that for
all objects o1 and o2 from that set, Δ, Σ; EΔ � o1 � o2 : Θ, Σ, a clique, and if
we speak of the clique of an object we mean the equivalence class.

If a thread is instantiated without connection to any object, like the initial
thread, we need a syntactical representation �n for the clique the thread n starts
in. If the single initial thread starts within the component, the contexts of the
initial configuration Δ0 � C : Θ0 assert Θ0 � �. Otherwise, Δ0 � �.

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: EΘ over-approximates the actual connectivity of the
component and is updated in incoming communications, while the assumption
context EΔ is consulted to exclude impossible incoming values, and is updated
in outgoing communications. Incoming new names update both EΘ and EΔ.

4 E. Ábrahám, A. Grüner, and M. Steffen



2.2.2 Augmentation
We extend the syntax by two auxiliary expressions o1 blocks for o2 and o2
returns to o1 v, denoting a method body in o1 waiting for a return from o2, and
dually for the return of v from o2 to o1. We augment the method definitions
accordingly, such that each method call and spawn action is annotated by the
caller. I.e., we write

ς(self :c).λ(�x:�T ).(. . . self x.l(�y) . . . self spawn ct(�z) . . .) .

instead of ς(self :c).λ(�x:�T ).(. . . x.l(�y) . . . spawn ct(�z) . . .). Thread classes are aug-
mented by � instead of self . If a thread n is instantiated, � is replaced by �n.
For a thread class of the form ct〈(λ(�x:�T ).t)〉, let ct(�v) denote t[�n, �v/�, �x]. The
initial thread n0, which is not instantiated but is given directly (in case it starts
in the component), has �n0

as augmentation. We omit the adaptation of the
internal semantics and the typing rules for the augmentation.

2.2.3 Use and hange of ontexts
Notation 1 We abbreviate the triple of name contexts Δ, Σ, Θ as Φ, the context
Δ, Σ, Θ, EΔ, EΘ combining assumptions and commitments as Ξ, and write Ξ �
C for Δ, Σ; EΔ � C : Θ, Σ; EΘ . We use syntactical variants analogously.

The operational semantics is formulated as transitions between typed judgments
Ξ � C

a
−→ Ξ́ � Ć. The assumption context Δ, Σ; EΔ is an abstraction of the

environment, as it represents the potential behavior of all possible environments.
The check whether the current assumptions are met in an incoming communi-
cation step is given in Definition 1. Note that in case of an incoming call label,
fn(a), the free names in a, includes the receiver or and the thread name.

Definition 1 (Connectivity check). An incoming core label a with sender os

and receiver or is well-connected wrt. Ξ́ (written Ξ́ � os
a
→ or :ok) if

Δ́, Σ́; ÉΔ � os �↪→ fn(a) : Θ́, Σ́.

Besides checking whether the connectivity assumptions are met before a transi-
tion, the contexts are updated by a step, reflecting the change of knowledge.

Definition 2 (Name context update: Φ + a). The update Φ́ = Φ + a of
an assumption-commitment context Φ wrt. an incoming label a = ν(Φ′)�a�? is
defined as follows.

1. Θ́ = Θ + Θ′. For spawning, Θ́ = Θ + (Θ′,�n) with n the spawned thread.
2. Δ́ = Δ+(�Σ′ , Δ′). For spawning of thread n, �Σ′ \n is used instead of �Σ′.

3. Σ́ = Σ + Σ′.

The notation �Σ′ abbreviates �n for all thread identities from Σ′. The update
for outgoing communication is defined dually (�n of a spawn label is added to
Δ instead of Θ, and the �Σ′ resp. �Σ′ \n are added to Θ, instead of Δ).

CC
.
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Definition 3 (Connectivity context update). The update (ÉΔ, ÉΘ) = (EΔ,

EΘ) + os
a
→ or of an assumption-commitment context (EΔ, EΘ) wrt. an incom-

ing label a = ν(Φ′)�a�? with sender os and receiver or is defined as follows.

1. ÉΘ = EΘ + or ↪→ fn(�a�).
2. ÉΔ = EΔ +os ↪→ Φ′,�Σ′ . For spawning of n, �Σ′ \n is used instead of �Σ′.

Combining Definitions 2 and 3, we write Ξ́ = Ξ + os
a
→ or when updating the

name and the connectivity at the same time.
Besides the connectivity check of Definition 1, we must also check the static

assumptions, i.e., whether the transmitted values are of the correct types. In
slight abuse of notation, we write Φ � os

a
→ or : T for that check, where T is

type of the expression in the program that gives rise to the label (see [3] for
the definition). We combine the connectivity check of Definition 1 and the type
check into a single judgment Ξ � os

a
→ or : T .

2.2.4 Operational ules
Three CallI-rules for incoming calls deal with three different situations:
A call reentrant on the level of the component, a call of a thread whose name
is already known by the component, and a call of a thread new to the component.
For all three cases, the contexts are updated to Ξ́ to include the information
concerning new objects, threads, and connectivity transmitted in that step.
Furthermore, it is checked whether the label statically type-checks and that the
step is possible according to the (updated)connectivity assumptions Ξ́.Remember
that the update from Ξ to Ξ́ includes guessing of connectivity.

To deal with component entities (threads and objects) that are being created
during the call, C(Θ′, Σ′) stands for C(Θ′) ‖ C(Σ′), where C(Θ′) are the lazily
instantiated objects mentioned in Θ′. Furthermore, for each thread name n′ in
Σ′, a new component n′〈stop〉 is included, written as C(Σ′).

For reentrant method calls in rule CallI1, the thread is blocked, i.e., it has
left the component previously via an outgoing call. The object os that had been
the target of the call is remembered as part of the augmented block syntax, and
is used now to represent the sender’s clique for the current incoming call.

In CallI2, the thread is not in the component, but the thread’s name is
already known. If Δ � �n and n〈stop〉 is part of the component code, it is
assured that the thread either has never actively entered the component before
(and does so right now) or has left the component to the environment by some
last outgoing return. In either case, the incoming call is possible now, and in
both cases we can use �n as representative of the caller’s identity.

In CallI3 a new thread n enters the component for the first time, as assured
by Σ′ � n : thread . The new thread must be an instance of an environment thread
class created by an environment clique, otherwise the cross-border instantiation
would have been observed and the thread name would not be fresh. Since any
existing environment clique is a candidate, the update to Ξ́ non-deterministically

R
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Ξ́ = Ξ + os
a
→ or Ξ́ � os

�a�
→ or : T

a = ν(Φ′). n〈call or.l(�v)〉? tblocked = let x′:T ′ = o blocks for os in t
CallI1

Ξ � ν(Φ1).(C ‖ n〈tblocked〉)
a
−→

Ξ́ � ν(Φ1).(C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(�v) in or returns to os x; tblocked〉)

a = ν(Φ′). n〈call or.l(�v)〉? Δ � 	n Ξ́ = Ξ + 	n
a
→ or Ξ́ � 	n

�a�
→ or : T

CallI2

Ξ � C ‖ n〈stop〉
a
−→ Ξ́ � C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(�v) in or returns to 	n x; stop〉

a = ν(Φ′). n〈call or.l(�v)〉? Δ � o Σ′ � n Ξ́ = Ξ + o
a
→ or Ξ́ � 	n

�a�
→ or : T

CallI3

Ξ � C
a
−→ Ξ́ � C ‖ C(Θ′, Σ′ \n) ‖ n〈let x:T = or.l(�v) in or returns to 	n x; stop〉

a = ν(Φ′). n〈call or.l(�v)〉! Φ′ = fn(
a�) ∩ Φ1 Φ́1 = Φ1 \Φ′ Δ́ � or Ξ́ = Ξ + os
a
→ or

CallO

Ξ � ν(Φ1).(C ‖ n〈let x:T = os or.l(�v) in t〉) a
−→

Ξ́ � ν(Φ́1).(C ‖ n〈let x:T = os blocks for or in t〉)

Ξ́ = Ξ + os
a
→ 	n Ξ́ � os

�a�
→ 	n : thread

a = ν(Φ′).〈spawn n of ct(�v)〉? Θ́ � 	n Δ � os Θ � ct Σ′ � n
SpawnI

Ξ � C
a
−→ Ξ́ � C ‖ C(Θ′

, Σ
′ \n) ‖ n〈ct(�v)〉

Table 2. External steps

guesses to which environment clique the thread’s origin �n belongs to. Note that
�Σ′ contains �n since Σ′ � n, which means Δ́ � �n after the call.

For incoming thread creation in SpawnI the situation is similar to CallI3,
in that the spawner needs to be guessed. The last rule deals with outgoing call
and is simpler, as the “check-part” is omitted: With the code of the program
present, the checks are guaranteed to be satisfied. In Table 2 we omitted the
rules for outgoing spawning, for returns, and for the initial steps [3].

3 Legal races

Next we present an independent characterization of the possible interface be-
havior. “Half” of the work has been already done by the abstractly represented
environment. For the legal traces, we analogously abstract away from the com-
ponent, making the system completely symmetric.

3.1 A ranching erivation ystem haracterizing egal races

Instead of connectivity contexts, now the tree structure of the derivation repre-
sents the connectivity and its change. There are two variants of the derivation
system, one from the perspective of the component, and one for the environ-
ment. Each derivation corresponds to a forest, with each tree representing a

T
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component resp. environment clique. In judgments Δ, Σ �Θ r � s : trace Θ, Σ,
r represents the history, and s the future interaction. We write �Θ to indicate
that legality is checked from the perspective of the component. From that per-
spective, we maintain as invariant that on the commitment side, the context Θ
represents one single clique. Thus the connectivity among objects of Θ needs no
longer be remembered. What needs to be remembered still are the thread names
known by Θ and the cross-border object connectivity, i.e., the acquaintance of
the clique represented by Θ with objects of the environment. This is kept in
Δ resp. Σ. Note that this corresponds to the environmental objects mentioned
in EΘ ⊆ Θ × (Θ + Δ + Σ), projected onto the component clique under con-
sideration, in the linear system. The connectivity of the environment is ignored
which implies that the system of Table 3 cannot assure that the environment
behaves according to a possible connectivity. On the other hand, dualizing the
rules checks whether the environment adheres to possible connectivity.

Φ =
L

Θ
Φj Φ � r � os

a
→ or Φ́ = Φ0, Φ + a Φ́ � os

�a�
→ or :ok

∀j. aj = a ↓Θj
∧Θj � 
a� a = ν(Φ′). n〈call or .l(�v)〉? r �= ε Φ́ � r a � s : trace

L-CallI

Φ1 � r � a1 s : trace . . . Φk � r � ak s : trace

a = γ? Φ � r � os
a
→ or Θ �� 
a�, or Φ � ra � s : trace r �= ε

L-SkipI

Φ � r � s : trace

Table 3. Legal traces, branching on Θ (incoming call and skip)

In L-CallI of Table 3, the incoming call is possible only when the thread
is input call enabled after the current history. This is checked by the premise
Φ � r � os

a
→ or, which also determines caller and callee. As from the perspective

of the component, the connectivity of the environment is no longer represented
as assumption, there are no premises checking connectivity! Interesting is the
treatment of the commitment context: Incoming communication may update the
component connectivity, in that new cliques may be created or existing cliques
may merge. The merging of component cliques is now represented by a branching
of the proof system. Leaves of the resulting tree (respectively forest) correspond
to freshly created cliques. In L-CallI, the context Θ in the premise corresponds
to the merged clique, the Θi below the line to the still split cliques before the
merge. The Θi’s form a partitioning of the component objects before commu-
nication, Θ is the disjoint combination of the Θi’s plus the lazily instantiated
objects from Θ′. For the cross-border connectivity, i.e., the environmental ob-
jects known by the component cliques, the different component cliques Θi may of
course share acquaintance; thus, the parts Δi and Σi are not merged disjointly,
but by ordinary “set” union. These restrictions are covered by

⊕
Ξi.
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The skip-rules stipulate that an action a which does not belong to the com-
ponent clique under consideration, is omitted from the component’s “future”
(interpreting the rule from bottom to top). We omit the remaining rules (see [3]).

Definition 4 (Legal traces, tree system). We write Δ �Θ t : trace Θ, if
there exists a derivation forest using the rules of Table 3 with roots Δi, Σi �
t � ε : trace Θi, Σi and a leaf justified by one of the initial rules L-CallI0 or
L-CallO0. Using the dual rules, we write �Δ instead of �Θ. We write Δ �Δ∧Θ

t : trace Θ, if there exits a pair of derivations in the �Δ- and the �Θ- system
with a consistent pair of root judgments.

To accommodate for the simpler context structures, we adapt the notational
conventions (cf. Notation 1) appropriately. The way a communication step up-
dates the name context can be defined as simplification of the treatment in the
operational semantics (cf. Definition 2). As before we write Φ+a for the update.

3.2 Soundness of the bstractions

With EΔ and EΘ as part of the judgment, we must still clarify what it “means”,
i.e., when does Δ, Σ; EΔ � C : Θ, Σ; EΘ hold? The relation EΘ asserts about
the component C that the connectivity of the objects from the component is
not larger than the connectivity entailed by EΘ. Given a component C and two
names o from Θ and n from Θ + Δ + Σ, we write C � o ↪→ n, if C ≡ ν(Φ).(C′ ‖
o[. . . , f = n, . . .]) where o and n are not bound by Φ, i.e., o contains in one of
its fields a reference to n. We can thus define:

Definition 5. The judgment Δ, Σ; EΔ � C : Θ, Σ; EΘ holds, if Δ, Σ � C:
Θ, Σ, and if C � n1 ↪→ n2, then Θ, Σ; EΘ � n1 �↪→ n2 : Δ, Σ.

We simply write Δ, Σ; EΔ � C : Θ, Σ; EΘ to assert that the judgment is satis-
fied. Note that references mentioned in threads do not “count” as acquaintance.

Lemma 1 (Subject reduction). Assume Ξ � C
s=⇒ Ξ́ � Ć. Then

1. Δ́, Σ́ � Ć : Θ́, Σ́. A fortiori: If Δ, Σ, Θ � n : T , then Δ́, Σ́, Θ́ � n : T .
2. Ξ́ � Ć.

Definition 6 (Conservative extension). Given 2 pairs (Φ, EΔ) and (Φ́, ÉΔ)
of name context and connectivity context, i.e., EΔ ⊆ Φ×Φ (and analogously for
(Φ́, ÉΔ)), we write (Φ, EΔ) � (Φ́, ÉΔ) if the following two conditions holds:

1. Φ́ � Φ and
2. Φ́ � n1 � n2 implies Φ � n1 � n2, for all n1, n2 with Φ � n1, n2.

Lemma 2 (No surprise). Let Δ, Σ; EΔ � C : Θ, Σ; EΘ
a
−→ Δ́, Σ́; ÉΔ � Ć :

Θ́, Σ́; ÉΘ for some incoming label a. Then Δ, Σ; EΔ � Δ́, Σ́; ÉΔ . For outgoing
steps, the situation is dual.

Lemma 3 (Soundness of legal trace system). If Δ0;� C : Θ0; and Δ0;�
C : Θ0;

t=⇒, then Δ0 � t : trace Θ0.

A
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4 Conclusion

Related work [8] presents a fully abstract model for Object-Z, an object-oriented
extension of the Z specification language. It is based on a refinement of the sim-
ple trace semantics called the complete-readiness model, which is related to the
readiness model of Olderog and Hoare. In [9], full abstraction in an object calcu-
lus with subtyping is investigated. The setting is slightly different from the one
here, as the paper does not compare a contextual semantics with a denotational
one, but a semantics by translation with a direct one. The paper considers nei-
ther concurrency nor aliasing. Recently, Jeffrey and Rathke [7] extended their
work [6] on trace-based semantics from an object-based setting to a core of Java,
called JavaJr, including classes and subtyping. However, their semantics avoids
object connectivity by using a notion of package. [5] tackles full abstraction and
observable component behavior and connectivity in a UML-setting.

Future work We plan to extend the language with further features to make
it more resembling Java or C#. Besides monitor synchronization using object
locks and wait and signal methods, as provided by Java, another interesting
direction concerns subtyping and inheritance. This is challenging especially if
the component may inherit from environment classes and vice versa. Another
direction is to extend the semantics to a compositional one. Finally, we work on
adapting the full abstraction proof of [1] to deal with thread classes. The results
of Section 3.2 are covering the soundness-part of the full-abstraction result.
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semantics for UML components. In Bosangue et al. [4], pages 49–69.
6. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent

objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
7. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java

language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of LNCS,
pages 423–438. Springer-Verlag, 2005.

8. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

9. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

.

.

10 E. Ábrahám, A. Grüner, and M. Steffen
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Abstract. Gödel’s main contribution to set theory is his proof that
GCH is consistent with ZFC (assuming that ZF is consistent). For this
proof he has introduced the important ideas of constructibility of sets,
and of absoluteness of formulas. In this paper we show how these two
ideas of Gödel naturally lead to a simple unified framework for dealing
with computability of functions and relations, domain independence of
queries in relational databases, and predicative set theory.

1 Introduction: Absoluteness and Constructibility

Gödel classical work [6] on the constructible universe L is best known for its ap-
plications in pure set theory, especially consistency and independence proofs. Its
relevance to computability theory was mostly ignored. Still, in this work Gödel
introduced at least two ideas which are quite important from a computational
point of view:

Computations with Sets. The notion of computation is usually connected
with discrete structures, like the natural numbers, or strings of symbols from
some alphabet. In this respect [6] is important, first of all, in being the first
comprehensive research on (essentially) computability within a completely
different framework (technically, the name Gödel used was “constructibility”
rather than “computability”, but the difference is not really significant). No
less important (as we shall see) is the particularly important data structure
for which computability issues were investigated in [6]: sets. Specifically, for
characterizing the “constructible sets” Gödel identified operations on sets
(which we may call “computable”), that may be used for “effectively” con-
structing new sets from given ones (in the process of creating the universe of
“constructible” sets). Thus, binary union and intersection are “effective” in
this sense, while the powerset operation is not. Gödel has even provided a fi-
nite list of basic set operations, from which all other “effective” constructions
can be obtained through compositions.

Absoluteness. A formula in the language of set theory is absolute if its truth
value in a transitive class M , for some assignment v of objects from M to its
free variables, depends only on v, but not on M (i.e. the truth value is the

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 11–20, 2006.
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12 A. Avron

same in all structures M , in which v is legal). Absoluteness is a property of
formulas which was crucial for Gödel consistency proof. However, it is not
a decidable property. The following set Δ0 of absolute formulas is therefore
extensively used as a syntactically defined approximation:
– Every atomic formula is in Δ0.
– If ϕ and ψ are in Δ0, then so are ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ.
– If x and y are two different variables, and ϕ is in Δ0, then so is ∃x ∈ yϕ.

Now there is an obvious analogy between the roles in set theory of absolute for-
mulas and of Δ0 formulas, and the roles in formal arithmetic and computability
theory of decidable formulas and of arithmetical Δ0 formulas (i.e. Smullyan’s
“bounded” formulas). This analogy was noticed and exploited in the research
on set theory. However, the reason for this analogy remains unclear, and beyond
this analogy the importance and relevance of these two ideas of Gödel to other
areas have not been noticed. As a result, strongly related ideas and theory have
been redeveloped from scratch in relational database theory.

2 Domain Independence and Computability in Databases

From a logical point of view, a relational database DB of a scheme {P1, . . . , Pn}
is just a tuple 〈P1, . . . , Pn〉 of finite interpretations (called “tables”) of the pred-
icate symbols P1, . . . , Pn. DB can be turned into a structure S for a first-order
language L with equality, the signature of which includes {P1, . . . , Pn} and con-
stants, by specifying a domain D, and an interpretation of the constants of L
in it (different interpretations for different constants). The domain D should be
at most countable (and usually it is finite), and should of course include the
union of the domains of the tables in DB. A query for DB is simply a formula
ψ of L. If ψ has free variables, then the answer to ψ in S is the set of tuples
which satisfy it in S. If ψ is closed, then the answer to the query is either “yes”
or “no”, depending on whether ψ holds in S or not (The “yes” and “no” can
be interpreted as {∅} and ∅, respectively). Now not every formula ψ of a L can
serve as a query. Acceptable are only those the answer for which is a computable
function of 〈P1, . . . , Pn〉 alone (and does not depend on the identity of the in-
tended domain D. This in particular entails that the answer should be finite).
Such queries are called domain independent ([8, 11, 1]). The exact definition is:

Definition 1. 1Let σ be a signature which includes
−→
P = {P1, . . . , Pn}, and

optionally constants and other predicate symbols (but no function symbols). A
query ϕ(x1. . . . , xn) in σ is called

−→
P −d.i. (

−→
P −domain-independent), if whenever

S1 and S2 are structures for σ, S1 is a substructure of S2, and the interpretations
of {P1, . . . , Pn} in S1 and S2 are identical, then for all a1 ∈ S2, . . . , an ∈ S2:

S2 |= ϕ(a1, . . . , an) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(a1, . . . , an)
1 This is a slight generalization of the definition in [12], which in turn is a generalization

of the usual one ([8, 11]). The latter applies only to free Herbrand structures which
are generated by adding to σ some new set of constants.
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Practical database query languages are designed so that only d.i. queries can
be formulated in them. Unfortunately, it is undecidable which formulas are d.i.
(or “safe” according to any other reasonable notion of safety of queries, like
“finite and computable”). Therefore all commercial query languages (like SQL)
allow to use as queries only formulas from some syntactically defined class of
d.i. formulas. Many explicit proposals of decidable, syntactically defined classes
of safe formulas have been made in the literature. The simplest among them
(and the closer to what has actually been implemented) is perhaps the following
class SS(

−→
P ) (“syntactically safe” formulas for a database scheme

−→
P ) from [11]

(originally designed for languages with no function symbols) 2:

1. Pi(t1, . . . , tni) ∈ SS(
−→
P ) in case Pi (of arity ni) is in

−→
P .

2. x = c and c = x are in SS(
−→
P ) (where x is a variable and c is a constant).

3. ϕ ∨ ψ ∈ SS(
−→
P ) if ϕ ∈ SS(

−→
P ), ψ ∈ SS(

−→
P ), and Fv(ϕ) = Fv(ψ) (where

Fv(ϕ) denotes the set of free variables of ϕ).
4. ∃xϕ ∈ SS(

−→
P ) if ϕ ∈ SS(

−→
P ).

5. If ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk, then ϕ ∈ SS(
−→
P ) if the following conditions are

met:
(a) For each 1 ≤ i ≤ k, either ϕi is atomic, or ϕi is in SS(

−→
P ), or ϕi is a

negation of a formula of either type.
(b) Every free variable x of ϕ is limited in ϕ. This means that there exists

1 ≤ i ≤ k such that x is free in ϕi, and either ϕi ∈ SS(
−→
P ), or there

exists y which is already limited in ϕ, and ϕi ∈ {x = y, y = x}.
It should be noted that there is one clause in this definition which is somewhat

strange: the last one, which treats conjunction. The reason why this clause does
not simply tell us (like in the case of disjunction) when a conjunction of two
formulas is in SS(

−→
P ), is the desire to take into account the fact that once the

value of y (say) is known, the formula x = y becomes domain independent. In
the unified framework described in the next section this problematic clause is
replaced by a more concise one (which at the same time is more general).

A more important fact is that given {P1, . . . , Pn}, the set of relations which
are answers to some query in SS(

−→
P ) is exactly the closure of {P1, . . . , Pn} under

a finite set of basic operations called “the relational algebra” ([1, 11]). This set
is quite similar to set of basic operations used by Gödel in [6] for constructing
the constructible universe.

3 Partial Domain Independence and Absoluteness

There is an obvious similarity between the concepts of d.i. in databases, and
absoluteness in Set Theory. However, the two notions are not identical. Thus, the
formula x = x is not d.i., although it is clearly absolute. To exploit the similarity,
2 What we present below is both a generalization and a simplification of Ullman’s

original definition.
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the formula property of d.i. was turned in [2] into the following relation between
a formula ϕ and finite subsets of Fv(ϕ):

Definition 2. Let σ be like in Definition 1. A formula ϕ(x1, . . . , xn, y1, . . . , yk)
in σ is

−→
P −d.i. with respect to {x1, . . . , xn}, if whenever S1 and S2 are structures

as in Definition 1, then for all a1 ∈ S2, . . . , an ∈ S2 and b1 ∈ S1, . . . , bk ∈ S1:

S2 |= ϕ(−→a ,−→b ) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(−→a ,−→b )

Note that ϕ is d.i. iff it is d.i. with respect to Fv(ϕ). On the other hand the
formula x = y is only partially d.i.: it is d.i. with respect to {x} and {y}, but
not with respect to {x, y}. Note also that a formula ϕ is d.i. with respect to ∅ if
whenever S1 and S2 are structures as in Definition 1 then for all b1, . . . , bk ∈ S1

S2 |= ϕ(
−→
b ) ↔ S1 |= ϕ(

−→
b ). Under not very different conditions concerning S1

and S2, this is precisely Gödel’s idea of absoluteness. We’ll return to this below.
Another important observation is that given a domain S for the database, if

ϕ(x1, . . . , xn, y1, . . . , yk) is
−→
P −d.i. with respect to {x1, . . . , xn} then the function

λy1, . . . , yk.{〈x1, . . . , xn〉 | ϕ} is a computable function from Sk to the set of finite
subsets of Sn, the values of which depend only on the values of the arguments
y1, . . . , yk, but not on the identity of S. In case n = 0 the possible values of this
function are {〈〉} and ∅, which can be taken as “true” and “false”, respectively.
Hence in this particular case what we get is a computable k-ary predicate on S.
From this point of view k-ary predicates on a set S should be viewed as a special
type of functions from Sk to the set of finite sets of S-tuples, rather than as a
special type of functions from Sk to S, with arbitrary chosen two elements from
S serving as the two classical truth values (while like in set theory, functions
from Sk to S should be viewed as a special type of (k+ 1)-ary predicates on S).

Now it is easy to see that partial d.i. has the following properties (where
ϕ � X means that ϕ is

−→
P −d.i. with respect to X):

0. If ϕ � X and Z ⊆ X , then ϕ � Z.
1. ϕ � Fv(ϕ) if ϕ is p(t1, . . . , tn) (where p ∈ −→P ).
2. x �= x � {x}, t = x � {x}, and x = t � {x} if x �∈ Fv(t).
3. ¬ϕ � ∅ if ϕ � ∅.
4. ϕ ∨ ψ � X if ϕ � X and ψ � X .
5. ϕ ∧ ψ � X ∪ Y if ϕ � X , ψ � Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ � X − {y} if y ∈ X and ϕ � X .

These properties can be used for defining a syntactic approximation �P of the
semantic

−→
P -d.i. relation. It can easily be checked that the set {ϕ | ϕ �P Fv(ϕ)}

strictly extends SS(
−→
P ) (but note how the complicated last clause in the defi-

nition of SS(
−→
P ) is replaced here by a concise clause concerning conjunction!).

Note: For convenience, we are taking here ∧,∨,¬ and ∃ as our primitives.
Moreover: we take ¬(ϕ→ ψ) as an abbreviation for ϕ∧¬ψ, and ∀x1, . . . , xkϕ as
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an abbreviation for ¬∃x1, . . . , xk¬ϕ. This entails the following important prop-
erty of “bounded quantification”: If � is a relation satisfying the above prop-
erties, and ϕ � {x1, . . . , xn}, while ψ � ∅, then ∃x1 . . . xn(ϕ ∧ ψ) � ∅ and
∀x1 . . . xn(ϕ→ ψ) � ∅ (recall that ϕ � ∅ is our counterpart of absoluteness).

4 Partial Domain Independence in Set Theory

We return now to set theory, to see how the idea of partial d.i. applies there.
In order to fully exploit it, we use a language with abstraction terms for sets.
However, we allow only terms which are known to be d.i. in a sense we now
explain. For simplicity of presentation, we assume the accumulative universe V
of ZF , and formulate our definitions accordingly.

Definition 3. Let M be a transitive class. Define the relativization to M of
terms and formulas recursively as follows:

– tM = t if t is a variable or a constant.
– {x | ϕ}M = {x | x ∈M∧ ϕM}.
– (t = s)M = (tM = sM) (t ∈ s)M = (tM ∈ sM).
– (¬ϕ)M = ¬ϕM (ϕ ∨ ψ)M = ϕM ∨ ψM. (ϕ ∧ ψ)M = ϕM ∧ ψM.
– (∃xϕ)M = ∃x(x ∈M∧ ϕM).

Definition 4. Let T be a theory such that V |= T .

1. Let t be a term, and let Fv(t) = {y1, . . . , yn}. We say that t is T -d.i., if the
following is true (in V ) for every transitive model M of T :

∀y1 . . .∀yn.y1 ∈ M∧ . . . ∧ yn ∈M→ tM = t

2. Let ϕ be a formula, and let Fv(ϕ) = {y1, . . . , yn, x1, . . . , xk}. We say that ϕ
is T -d.i. for {x1, . . . , xk} if {〈x1, . . . , xk〉 | ϕ} is a set for all values of the
parameters y1, . . . , yn, and the following is true (in V ) for every transitive
model M of T :

∀y1 . . .∀yn.y1 ∈M∧ . . . ∧ yn ∈ M→ [ϕ↔ (x1 ∈ M∧ . . .∧ xk ∈ M∧ ϕM)]

Thus, a term is T -d.i. if it has the same interpretation in all transitive models
of T which contain the values of its parameters, while a formula is T -d.i. for
{x1, . . . , xk} if it has the same extension (which should be a set) in all transitive
models of T which contain the values of its other parameters. In particular: ϕ
is T -d.i. for ∅ iff it is absolute relative to T in the original sense of set theory,
while ϕ is T -d.i. for Fv(ϕ) iff it is domain-independent in the sense of database
theory (see Definition 1) for transitive models of T .

The set-theoretical notion of d.i., we have just introduced, is again a semantic
notion that one cannot characterize in a constructive manner, and so a syntactic
approximation of it should be used in practice. The key observation for this
is that the transitive classes are the structures for which the atomic formula
x ∈ y (where y is different from x) is d.i. with respect to {x}. Accordingly, an
appropriate approximation is most naturally obtained by adapting the definition
of �P above to the present language, taking into account this key observation:
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Definition 5. The relation �RST is inductively defined as follows:
1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x �= x, x = t, t = x, x ∈ t}, and x �∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

Note: It can easily be proved by induction on the complexity of formulas that
the clause 0 in the definition of �P is also satisfied by �RST : if ϕ �RST X and
Z ⊆ X , then ϕ �RST Z.

A first (and perhaps the most important) use of �RST is for defining the set
of legal terms of the corresponding system RST (Rudimentary Set Theory).
Unlike the languages for databases (in which the only terms were variables and
constants), the language of RST used here has a very extensive set of terms. It
is inductively defined as follows:
– Every variable is a term.
– If x is a variable, and ϕ is a formula such that ϕ �RST {x}, then {x | ϕ} is

a term (and Fv({x | ϕ}) = Fv(ϕ)− {x}).
(Actually, the relation �RST , the set of terms of RST , and the set of formulas
of RST are defined together by a simultaneous induction).

A second use of �RST is that the set {ϕ | ϕ �RST ∅} is a natural extension
of the set Δ0 of bounded formulas. Moreover, we have:

Theorem 1. Let RST be the theory consisting of the following axioms:
Extensionality: ∀y(y = {x | x ∈ y})
Comprehension: ∀x(x ∈ {x | ϕ} ↔ ϕ)

Then given an extension T of RST , any valid term t of RST is T -d.i., and if
ϕ �RST X, then ϕ is T -d.i. for X.

The following theorem connects �RST with the class of rudimentary set func-
tions (introduced independently by Gandy ([5]) and Jensen ([7]). See also [4])
— a refined version of Gödel basic set functions:

Theorem 2

1. If F is an n-ary rudimentary function, then there exists a formula ϕ s. t.:
(a) Fv(ϕ) = {y, x1, . . . , xn}
(b) ϕ �RST {y}
(c) F (x1, . . . , xn) = {y | ϕ}.

2. If ϕ is a formula such that:
(a) Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}
(b) ϕ �RST {y1, . . . , yk}
then there exists a rudimentary function F such that:

F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}
Corollary 1. If Fv(ϕ) = {x1, . . . , xn}, and ϕ �RST ∅, then ϕ defines a rudi-
mentary predicate P . Conversely, if P is a rudimentary predicate, then there is
a formula ϕ such that ϕ �RST ∅, and ϕ defines P .
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4.1 On Predicative Set Theory

In his writings Gödel expressed the view that his hierarchy of constructible sets
codified the predicatively acceptable means of set construction, and that the only
impredicative aspect of the constructible universe L is its being based on the full
class On of ordinals. This seems to us to be only partially true. We think that
indeed the predicatively acceptable instances of the comprehension schema are
those which determine the collections they define in an absolute way, indepen-
dently of any “surrounding universe”. Therefore a formula ψ is predicative (with
respect to x) if the collection {x | ψ(x, y1, . . . , yn)} is completely and uniquely
determined by the identity of the parameters y1, . . . , yn, and the identity of
other objects referred to in the formula (all of which should be well-determined
before). In other words: ψ is predicative (with respect to x) iff it is d.i. (with
respect to x). It follows that all the operations used by Gödel are indeed predica-
tively acceptable, and even capture what is intuitively predicatively acceptable
in the language of RST . However, we believe that one should go beyond first-
order languages in order to capture all the predicatively acceptable means of set
construction. In [3] we suggest that an adequate language for this is obtained
by adding to the the language of RST an operation TC for transitive closure
of binary relations, and then replacing �RST by the relation �PZF , which is
defined like �RST , but with the following extra clause: (TCx,yϕ)(x, y) �PZF X
if ϕ �PZF X , and {x, y} ∩X �= ∅. See [3] for more details.

5 Domain Independence: A General Framework

In this section we introduce a general abstract framework for studying domain
independence and absoluteness (originally introduced in [2]).

Definition 6. A d.i.-signature is a pair (σ, F ), where σ is an ordinary first-
order signature, and F is a function which assigns to every n-ary symbol s from
σ (other than equality) a subset of P({1, . . . , n}).
Definition 7. Let (σ, F ) be a d.i.-signature. Let S1 and S2 be two structures for
σ s.t. S1 ⊆ S2. S2 is called a (σ, F )−extension of S1 if the following conditions
are satisfied:

– If p ∈ σ is a predicate symbol of arity n, I ∈ F (p), and a1, . . . , an are
elements of S2 such that ai ∈ S1 in case i �∈ I, then S2 |= p(a1, . . . , an) iff
ai ∈ S1 for all i, and S1 |= p(a1, . . . , an).

– If f ∈ σ is a function symbol of arity n, a1, . . . , an ∈ S1, and b is the
value of f(a1, . . . , an) in S2, then b ∈ S1, and b is the value of f(a1, . . . , an)
in S1. Moreover: if I ∈ F (f), and a1, . . . , an are elements of S2 such that
ai ∈ S1 in case i �∈ I, then S2 |= b = f(a1, . . . , an) iff ai ∈ S1 for all i, and
S1 |= b = f(a1, . . . , an).

Definition 8. Let (σ, F ) be as in Definition 7. A formula ϕ of σ is called
(σ, F )−d.i. w.r.t. X (ϕ �di

(σ,F ) X) if whenever S2 is a (σ, F )−extension of S1,
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and ϕ∗ results from ϕ by substituting values from S1 for the free variables of
ϕ that are not in X, then the sets of tuples which satisfy ϕ∗ in S1 and in S2
are identical. 3 A formula ϕ of σ is called (σ, F )−d.i. if ϕ �di

(σ,F ) Fv(ϕ), and
(σ, F )−absolute if ϕ �di

(σ,F ) ∅.

Note: We assume that we are talking only about first-order languages with
equality, and so we do not include the equality symbol in our first-order sig-
natures. Had it been included then we would have defined F (=) = {{1}, {2}}
(meaning that x1 = x2 is d.i. w.r.t. both {x1} and {x2}, but not w.r.t. {x1, x2}).

Examples

– Let σ be a signature which includes
−→
P = {P1, . . . , Pn}, and optionally con-

stants and other predicate symbols (but no function symbols). Assume that
the arity of Pi is ni, and define F (Pi) = {{1, . . . , ni}}. Then ϕ is (σ, F )−d.i.
w.r.t. X iff it is

−→
P −d.i. w.r.t. X in the sense of Definition 2.

– Let σZF = {∈} and let FZF (∈) = {{1}}. In this case the universe V is a
(σZF , FZF )− extension of the transitive sets and classes. Therefore a formula
is σZF -absolute iff it is absolute in the usual sense of set theory.

Again the relation of (σ, F )−d.i. is a semantic notion that in practice should be
replaced by a syntactic approximation. The following definition generalizes in a
very natural way the relations �P and �RST :

Definition 9. The relation �(σ,F ) is inductively defined as follows:

0. If ϕ �(σ,F ) X and Z ⊆ X, then ϕ �(σ,F ) Z.
1a. If p is an n-ary predicate symbol of σ; x1, . . . , xn are n distinct variables,

and {i1, . . . , ik} is in F (p), then p(x1, . . . , xn) �(σ,F ) {xi1 , . . . , xik}.
1b. If f is an n-ary function symbol of σ; y, x1, . . . , xn are n+1 distinct variables,

and {i1, . . . , ik} ∈ F (f), then y = f(x1, . . . , xn) �(σ,F ) {xi1 , . . . , xik}.
2. ϕ �(σ,F ) {x} if ϕ ∈ {x �= x, x = t, t = x}, and x �∈ Fv(t).
3. ¬ϕ �(σ,F ) ∅ if ϕ �(σ,F ) ∅.
4. ϕ ∨ ψ �(σ,F ) X if ϕ �(σ,F ) X and ψ �(σ,F ) X.
5. ϕ ∧ ψ �(σ,F ) X ∪ Y if ϕ �(σ,F ) X, ψ �(σ,F ) Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �(σ,F ) X − {y} if y ∈ X and ϕ �(σ,F ) X.

Again it is easy to see that if ϕ �(σ,F ) X , then ϕ �di
(σ,F ) X . The converse fails, of

course. However, we suggest the following conjecture (that for reasons to become
clear in the next section, may be viewed as a generalized Church Thesis):

Conjecture. Given a d.i. signature (σ, F ), a formula is upward (σ, F )-absolute
iff it is logically equivalent to a formula of the ∃y1, . . . , ynψ, where ψ �(σ,F ) ∅
(ϕ(x1, . . . , xn) is upward (σ, F )-absolute if whenever S2 is a (σ, F )−extension of
S1, and |=S1

ϕ(a1, . . . , an), then |=S2
ϕ(a1, . . . , an)).

3 ϕ∗ is a formula only in a generalized sense, but the intention should be clear.
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6 Absoluteness and Computability in N

Finally, we turn to the connections between the above ideas and computability
in the Natural numbers.

Definition 10. The d.i. signature (σN , FN ) is defined as follows:

– σN is the first-order signature which includes the constants 0 and 1, the
binary predicate <, and the ternary relations P+ and P×.

– FN (<) = {{1}}, FN (P+) = FN (P×) = {∅}.
Definition 11. The standard structure N for σN has the set of natural numbers
as its domain, with the usual interpretations of 0, 1, and <, and the (graphs
of the) operations + and × on N (viewed as ternary relations on N) as the
interpretations of P+ and P×, respectively.

It is easy now to see that N is a (σN , FN )-extension of a structure S for σN
iff the domain of S is an initial segment of N (where the interpretations of the
relation symbols are the corresponding reductions of the interpretations of those
symbols in N ). Accordingly, if ϕ �(σN ,FN ) ∅, then for any assignment in N it
gets the same truth value in all initial segments of N (including N itself) which
contain the values assigned to its free variables. Now the set of formulas ϕ such
that ϕ �(σN ,FN ) ∅ is a straightforward extension of Smullyan’s set of bounded
formulas ([10]). This set is defined of course using the relation �N=�(σN ,FN ).
From definitions 9 and 10 it easily follows that this relation can be characterized
as follows (compare with Definition 5!):

1. ϕ �N ∅ if ϕ is atomic.
2. ϕ �N {x} if ϕ ∈ {x �= x, x = t, t = x, x < t}, and x �∈ Fv(t).
3. ¬ϕ �N ∅ if ϕ �N ∅.
4. ϕ ∨ ψ �N X if ϕ �N X and ψ �N X .
5. ϕ ∧ ψ �N X ∪ Y if ϕ �N X , ψ �N Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �N X − {y} if y ∈ X and ϕ �N X .

Now the crucial connection between Gödel’s work on absoluteness in set the-
ory, and computability in the natural numbers, is given in the following Theorem:

Theorem 3. The following conditions are equivalent for a relation R on N :

1. R is semi-decidable.
2. R is definable by a formula of the form ∃y1, . . . , ynψ, where ψ �N ∅.
3. R is definable by a formula of the form ∃y1, . . . , ynψ, where the formula ψ

is (σN , FN )-absolute.

Proof. 2. follows from 1. by the Thesis of Church and Smullyan’s characterization
in [10] of the r.e. subsets of N using his set of bounded formulas (recall that if
ψ is bounded, then ψ �N ∅). That 3. follows from 2. is immediate from the
fact that if ψ �N ∅, then ψ is (σN , FN )-absolute. To show that 3. entails 1.,
assume that R is definable by a formula of the form ∃y1, . . . , ynψ, where the



20 A. Avron

formula ψ(x1, . . . , xk, y1, . . . , yn) is (σN , FN )-absolute. Given numbers n1, . . . , nk
we search whether R(n1, . . . , nk) by examining all the finite initial segments of
N that contain n1, . . . , nk, and return “true” if we find in one of them numbers
m1, . . . ,mn such that ψ(n1, . . . , nk,m1, . . . ,mn) is true in it. From the fact that
ψ is (σN , FN )-absolute, it easily follows that this procedure halts with the correct
answer in case R(n1, . . . , nk), and never halt otherwise.

The last theorem shows a very close connection between (semi)-computability
and (upward) absoluteness. However, further research is needed in order to un-
derstand the full connection between these notions. A key problem that one has
to solve in order to provide a general computability theory based on d.i. relations
and absoluteness, is what is so special about the standard interpretations in N
of P+ and P× that makes the last theorem possible. We suspect that in order
to provide a satisfactory answer (and develop the desired theory), one should
go beyond first-order languages (most probably to first-order language with a
transitive closure operation). We leave that for future investigations.
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Abstract. Datatype-generic programs are programs that are parame-
terised by a datatype. Designing datatype-generic programs brings new
challenges and new opportunities. We review the allegorical foundations
of a methodology of designing datatype-generic programs. The effective-
ness of the methodology is demonstrated by an extraordinarily concise
proof of the well-foundedness of a datatype-generic occurs-in relation.
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1 Introduction

The central issue of computing science is the development of practical program-
ming methodologies. Characteristic of a programming methodology is that it
involves a discipline designed to maximise confidence in the reliability of the
end product. The discipline constrains the construction methods to those that
are demonstrably simple and easy to use, whilst still allowing sufficient flexibility
that the creative process of program construction is not impeded. For example,
an insight that played an important role in the development of a methodology
for sequential programs is that it is possible to restrict attention —without loss
of generality— to just the class of while programs. It is neither necessary nor
desirable to consider arbitrary goto programs.

The systematic use of induction on the structure of datatypes is another
such discipline; defining and exploiting application-specific datatypes is sound
practice, as is well-known, particularly among functional programmers. This
has led to the development of a new programming concept, called (datatype-
)generic programming [1, 2, 3, 4]. Datatype-generic programs are programs that
are parameterised by a data structure. For example, the compression of data can
be much more effective if the specific structure of the data is known in advance
— the compression of eg computer programs can exploit the specific syntactic
structure of the programs to achieve a higher compression ratio [3].

The idea of making data structure a parameter opens up new challenges
and new opportunities. A major new insight is to consider the algebraic struc-
ture of data structures — how complex data structures are built from simpler
components. In this paper, we review the theoretical foundations of reasoning
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about datatype-generic programs. We review the notion of “F -reductivity”, in-
troduced by Doornbos [5, 6, 7], and show its application to establishing the well-
foundedness of the occurs-in relation in a dataype-generic unification algorithm
[8, 9].

2 Relation Algebra

2.1 Basic Definitions

Although much recent work on datatype-generic programming has been con-
ducted within the paradigm of functional programming, there are far-reaching
arguments for adopting a relational framework. Two directly relevant to the cur-
rent paper are: specifications are typically nondeterministic (i.e. relations, not
functions) and termination arguments are almost always conducted within the
framework of well-founded relations. So, for us, a program is an input-output
relation. The convention we use when defining relations is that the input is on
the right and the output on the left (as in functional programming). Formally,
a (binary) relation is a triple consisting of a pair of types I and J , say, and a
subset of the cartesian product I×J . We write R :: I←J (read “R has type I
from J”), the left-pointing arrow indicating that we view I as the set of possible
outputs and J as the set of possible inputs. I is called the target and J the
source of the relation R, and I←J is called its type. We use a raised infix dot to
denote relational composition. Thus R ·S denotes the composition of relations
R and S. The converse of relation R is denoted by R∪. Relations of the same
type are ordered by set inclusion denoted in the conventional way by the infix
⊆ operator.

For each set I, there is an identity relation which we denote by idI . Thus
idI :: I←I. Relations of type I←I contained in idI will be called coreflexives .
By convention, we use R, S, T to denote arbitrary relations and A, B and
C to denote coreflexives. Clearly, the coreflexives of type I←I are in one-to-
one correspondence with the subsets of I; we exploit this correspondence by
identifying subsets of I with the coreflexives of type I←I.

Functions are “single-valued” relations; a relation R is single-valued if
R ·R∪ ⊆ idI where I is the target of R. We use an infix dot to denote function
application. Thus f.x denotes application of function f to argument x. Dual to
the notion of single-valued is the notion of injectivity. A relation R with source J
is injective if R∪ ·R ⊆ idJ . Which of the properties R ·R∪ ⊆ idI or R∪ ·R ⊆ idJ
one calls “single-valued” and which “injective” is a matter of interpretation. The
choice here fits in with the convention that input is on the right and output on
the left. More importantly, it fits with the convention of writing f.x rather than
say xf (that is the function to the left of its argument). A sensible consequence
is that type arrows point from right to left.

2.2 Domains and Division Operators

The left domain of a relation R is, informally, the set of output values that
are related by R to at least one input value. Formally, the right domain R> of
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a relation R of type I←J is a coreflexive of type I←I satisfying the property
that

〈∀A : A⊆ idI : A ·R=R ≡ R<⊆A〉 . (1)

Given a coreflexive A, A⊆ idI , the relation A ·R can be viewed as the relation
R restricted to outputs in the set A. Thus, in words, the left domain of R is the
least coreflexive A that maintains R when R is restricted to outputs in the set
A. The right domain R> is defined symetrically by reversing the composition
R ·A. The left/right domain should not be confused with the target/source of
the relation.

In general, for relations R of type I←J and T of type I←K there is a relation
R\T of type J←K satisfying the Galois connection, for all relations S,

R ·S ⊆ T ≡ S ⊆ R\T .

The operator \ is called a division operator (because of the similarity of the above
rule to the rule of division in ordinary arithmetic). The relation R\T is called
a residual or a factor of the relation T . Interpreting relations as specifications,
the above Galois connection defines R\T to be the “weakest” specification of
a program S such that executing R after S satisfies specification T . With this
interpretation, R\T has been called a weakest prespecification [10].

The weakest liberal precondition operator will be denoted here by the symbol
“ \”. Formally, if R is a relation of type I←J and A is a coreflexive of type I←I
then R\A is a coreflexive of type J←J characterised by the property that, for
all coreflexives B of type J←J ,

(R ·B)< ⊆ A ≡ B ⊆ R\A . (2)

Again, we use a division-like notation, rather than “wlp”, to emphasise the
similarity with division in normal arithmetic.

3 Allegories and Relators

We assume that the reader is familiar with the most basic notions of category
theory, namely objects, arrows, functors, natural transformations and (initial)
algebras We use Fun to denote the category with sets as objects and functions
between sets as arrows. We use Rel to denote the category with sets as objects
and binary relations as arrows. We also assume familiarity with the relevance
of these concepts to functional programming: functors correspond to type con-
structors and natural transformations correspond to polymorphic functions.

The categorical notion of functor is too weak to describe type constructors
in the context of a relational theory of datatypes. The notion of an “allegory”
[11] extends the notion of a category in order to better capture the essential
properties of relations, and the notion of a “relator” [12, 13, 14] extends the
notion of a functor in order to better capture the relational properties of datatype
constructors.



24 R. Backhouse

Formally, an allegory is a category such that, for each pair of objects A and
B, the class of arrows of type A←B forms an ordered set. In addition there
is a converse operation on arrows and a meet (intersection) operation on pairs
of arrows of the same type. These are the minimum requirements. For practical
purposes, more is needed. A locally-complete, tabulated, unitary, division allegory
is an allegory such that, for each pair of objects A and B, the partial ordering
on the set of arrows of type A←B is complete (“locally-complete”), the division
operators introduced in section 2.2 are well-defined (“division allegory”), the
allegory has a unit (which is a relational extension of the categorical notion of a
unit — “unitary”) and, finally, the allegory is “tabulated”. “Tabulated” captures
the fact that relations are subsets of the cartesian product of a pair of sets [15].
(Tabularity is vital because it provides the link between categorical properties
and their extensions to relations.)

A suitable extension to the notion of functor is the notion of a “relator” [12]. A
relator is a functor whose source and target are both allegories, and is monotonic
with respect to the subset ordering on relations of the same type, and commutes
with converse. Thus, a relator F is a function to the objects of an allegory C from
the objects of an allegory D together with a mapping to the arrows (relations)
of C from the arrows of D satisfying the following properties:

F.R has type F.I �C
F.J whenever R has type I �D

J . (3)

F.R · F.S = F.(R ·S) for each R and S of composable type, (4)

F.idA = idF.A for each object A, (5)

F.R ⊆ F.S ⇐ R ⊆ S for each R and S of the same type, (6)

(F.R)∪ = F.(R∪) for each R. (7)

For example, List is a unary relator, and product is a binary relator. If R is a
relation of type I←J then List.R relates a list of Is to a list of Js whenever
the two lists have the same length and corresponding elements are related by R.
The relation R×S relates two pairs if the first components are related by R and
the second components are related by S. List is an example of an inductively-
defined datatype; in [16] it was observed that all inductively-defined datatypes
are relators.

A design requirement, that dictates the above definition of a relator, is that
a relator should extend the notion of a functor but in such a way that it co-
incides with the latter notion when restricted to functions. Formally, relation
R of type I←J is total iff idJ ⊆ R∪ ·R. A function is a relation that is both
total and single-valued. It is easy to verify that total relations are closed under
composition, as are single-valued relations. Hence, functions are closed under
composition too. In other words, the functions form a sub-category. For an al-
legory A, we denote the sub-category of functions by Map(A). In particular,
Map(Rel) is the category Fun. Now, the desired property of relators is that
relator F of type A←B is a functor of type Map(A)←Map(B). It is easily
shown that our definition of relator guarantees this property.
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(Bird and De Moor [15] omit (7) and define a relator to be a monotonic
functor. However, their theorem 5.1, which purports to justify the omission, is
false.)

Polymorphic functions play a major role in functional programming. An in-
sight that has helped to increase the understanding of the relevance of category
theory to functional programming is that polymorphic functions, like the flatten
function on lists, are natural transformations [17, 18]. However, caution is needed
when extending the categorical notion of natural transformation to allegories.
In the latter context, the term lax natural transformation is sometimes used.
The collection of lax natural transformations to relator F from G is denoted by
F←↩G and defined by

α :: F←↩G ≡ (F.R · αJ ⊇ αI · G.R for each R :: I←J) . (8)

A relationship between naturality in the allegorical sense and in the categorical
sense is the following [19]. Recall that relators respect functions, i.e. relators are
functors on the sub-category Map. Then, in the case that all elements of the
collection α are functions,

α :: F←↩G in A ≡ α :: F←G in Map(A)

where by “in X” we mean that all quantifications in the definition of the type of
natural transformation range over the objects and arrows of X . This means that
the notion of “lax” natural transformation is the more appropriate allegorical
extension of the categorical notion of natural transformation rather than being
a natural transformation in the underlying category. Thus we shall not use the
qualifier “lax”. For us, a natural transformation is as defined by (8).

4 A Programming Paradigm

4.1 Hylo Programs

Characteristic of a programming methodology is that it involves a discipline de-
signed to maximise confidence in the reliability of the end product. The discipline
constrains the construction methods to those that are demonstrably simple and
easy to use, whilst still allowing sufficient flexibility that the creative process of
program construction is not impeded.

In standard treatments of the discipline of sequential programming, the class
of programs considered is the class of while programs; it has long been accepted
that arbitrary goto programs are undesirable. But, whilst theoretically expres-
sive enough, while programs are inadequate to express many elegant and well-
known recursive programs, like quicksort. On the other hand, arbitrary recursion
is also undesirable. Restriction to a more limited class of recursive programs is
desirable for a sound discipline of datatype-generic programming.

The programs in the class on which our discipline is based are called hy-
lomorphisms. The fact that many recursively defined functional programs are



26 R. Backhouse

hylomorphisms was identified by Fokkinga, Meijer and Paterson [20], the name
having been coined by Meijer [21]. Unlike [20], however, the current paper is not
restricted to functional programs.

Definition 1 (Hylos). Let R and S be relations and F a relator. An equa-
tion in X of the form X = R ·F.X ·S is said to be a hylo equation or hylo
program. �

Space does not allow us to give detailed examples of hylo programs here. Briefly,
the hylo recursion scheme offers substantial freedom in designing programs be-
cause the solution strategy is a parameter of the scheme. The solution strat-
egy is encapsulated in the relator, F . For instance relator 〈X :: I+X〉 encap-
sulates repetition, 〈X :: I+X×X〉 encapsulates a divide and conquer strategy,
and 〈X ::F.(I×X)〉 encapsulates primitive recursion. A first step in the design
of hylo programs is the choice of the relator [5]. Extending hylo programs to
allow relations as components is also a significant advance on the functional
paradigm. Relations on strings, like the prefix, suffix, subsequence and segment
relations are easy to express as hylo equations, as can quite complex problems
like context-free language recognition (even in the most general case) [22].

Crucial to developing a discipline of hylo programming is that the meaning
of a hylo equation is well-understood, both as a specification of a relation, and
operationally as a program that can be executed. The operational meaning de-
mands an understanding of how hylo equations are executed, including when
they are guaranteed to terminate. This is discussed in section 4.2. The specifica-
tional meaning can be understood in several ways. One is to extrapolate from the
now well-understood notion of a catamorphism on an initial F -algebra. This is
captured by theorem 1, below. The definition of a “relational initial F -algebra”
is needed first.

Definition 2. Assume that F is an endorelator. Then (I , in) is a relational
initial F -algebra iff in has type I←F.I (and thus is an F -algebra), and there is
a mapping ([ ]) defined on all F -algebras such that

([R]) :: A← I if R has type A←F.A , (9)

([in]) = idI , and (10)

([R]) · ([S])∪ = 〈μX :: R · F.X · S∪〉 . (11)

That is, ([R]) · ([S])∪ is the smallest solution of the equation in X ,
R · F.X · S∪ ⊆ X . �

Definition 2 makes use of the “banana brackets”, ([ ]), introduced by Malcolm
[23, 24] to denote a functional/relational catamorphism. In categorical terms,
catamorphisms are the unique arrows from the initial object in the category
of F -algebras; in programming terms, catamorphisms are programs defined by
structural induction on a datatype. The definition extends the categorical notion
of an initial F -algebra to allegories in a way that is made precise by the hylo
theorem below. Recall that Map(A) denotes the sub-category of functions in
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the allegory A. For clarity, we distinguish between the endorelator F and the
corresponding endofunctor, F ′, defined on Map(A).

Theorem 1 (Hylo Theorem [25]). Suppose F is an endorelator on a locally-
complete, tabular allegoryA. Let F ′ denote the endofunctor obtained by restrict-
ing F to the objects and arrows of Map(A). Then, in is an initial F ′-algebra
equivales it is a relational initial F -algebra. �

Note that the hylo theorem states an equivalence between two definitions. Con-
sidering first the implication (loosely speaking, an initial F -algebra is a relational
initial F -algebra), property (11) is the property that is most often understood as
the “hylo theorem”. Property (9) is a necessary prerequisite; essentially it states
that catamorphisms are well-defined on relations given that they are well-defined
on functions. Property (10) is the key to proving Lambek’s lemma that an initial
F -algebra is an isomorphism between its source and its target. A consequence
of the opposite implication (a relational initial F -algebra is an initial F -algebra)
is that catamorphisms on functions are the unique solutions of their defining
equations.

4.2 Reductivity

A discipline of programming should always provide the programmer with
straightforward-to-use techniques for guaranteeing termination of programs. For
datatype-generic programs this is provided by the theory of so-called “reductiv-
ity” [5, 7] . The major innovatory aspect of this concept is that it is parame-
terised by a relator, making it possible to explore how properties of termination
are induced by properties of datatypes and (natural) transformations between
datatypes.

A hylo program, X = R ·F.X ·S, is executed by first unfolding the equation
and then computing the argument for the recursive call by executing S. This
procedure is repeated until a base case is reached and no further unfoldings are
necessary. Then the output is computed by executing R as often as the equation
was unfolded. Assuming R and S are both guaranteed to terminate, termination
of the recursion is thus dependent only on S, and not on R. Furthermore, if S
is nondeterministic, a demonic semantics demands termination irrespective of
which output from the unfoldings of S is chosen. This is the familiar execution
scheme applied by the implementations of imperative and functional languages.
Because of this execution scheme, the computed input-output relation is the
least solution of the hylo program.

Suppose that execution begins in a state described by the coreflexive A, and
suppose B describes the “safe set” of the hylo program: the maximal set of states
from which execution is guaranteed to terminate. Then, execution of S must
guarantee that recursive calls begin from a state in B. That is, (S ·A)< ⊆ F.B,
or, equally, A⊆S\F.B. Since, B is the maximal set of such states, A, and
since the semantics defines the input-ouput relation to be the least solution
of the hylo equation, the safe set of program X = R ·F.X ·S is the coreflexive
〈μA :: S\F.A〉. Termination is guaranteed if this is the identity relation on the
domain of S. Hence, the definition of reductivity:
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Definition 3 (F -reductivity). Relation S of type F.I← I is said to be F -
reductive if and only if 〈μA :: S\F.A〉 = idI . �

Let us now check that the notion of F -reductivity is compatible with more
familiar accounts of program termination.

A programmer proves termination by using well-founded relations: they prove
that the argument of every recursive call is “smaller” than the original argument.
For program X = R ·F.X ·S this means that all values stored in an output F -
structure of S have to be smaller than the corresponding input of S. More
formally, with x〈mem〉y standing for “x is a member of F -structure y” (or, x is
a value stored in F -structure y”), we need for all x and z

〈∀y :: x〈mem〉y ∧ y〈S〉z ⇒ x≺ z〉 ,

for some well-founded ordering ≺. That is, a relation S is F -reductive if and
only if there is a well-founded relation ≺ such that whenever an F -structure is
related by S to some y, it is the case that every value stored in the F -structure
is related to y by ≺.

To make this statement precise we need to formalise the concept of “values
stored in an F -structure”. Hoogendijk and De Moor [26, 19] have shown that
this is possible for so-called “container types”. For the relators from this class,
one can define a membership relation, say mem. For example, for the list relator
this relation holds between a point of the universe and a list precisely when the
point is in the list. For product, the relation holds between x and (x,y) and also
between y and (x,y).

A precise characterisation of the membership relation of a relator is the
following:

Definition 4 (Membership). Relation mem :: I←F.I is a membership
relation of relator F if and only if F.A = mem\A for all coreflexives A, A⊆ I. �

Using this definition of membership we get a precise relationship between reduc-
tivity and well-foundedness. Indeed, for coalgebra S with carrier I and coreflexive
A below I, we have:

S \ F.A
= { definition 4 }

S\ (mem\A)

= { factors (2) }
(mem ·S)\A .

Now, well-foundedness of relation R of type I←I is the condition that the least
prefix point of the function 〈A :: R\A〉 is I [27], whereas reductivity of S ::
F.I← I is the condition that the least prefix point of the function 〈A :: S \ F.A〉



Datatype-Generic Reasoning 29

is I. So, for coalgebra S :: F.I← I, the statement that S is F -reductive is
equivalent to the statement that mem ·S is well-founded. Formally,

S is F -reductive ≡ mem ·S is well-founded .

Conversely,
R is well-founded ≡ mem\R is F -reductive .

Summarising, we have:

Theorem 2. Suppose mem is the membership relation for relator F . Then the
functions 〈S ::mem ·S〉 and 〈R ::mem\R〉 form a Galois connection between the
F -reductive relations, S, and the well-founded relations, R. �

Bird and De Moor [15, chapter 6] avoid the introduction of the notion of reduc-
tivity by always requiring that mem ·S is well-founded whenever F -reductivity
of S is required. The main advantage of defining termination in terms of re-
ductivity instead of well-foundedness and membership is that it is possible to
formulate theorems relating reductivity of one type to reductivity of another
type. The rules presented in section 5 are of this nature.

5 A Calculus of Reductive Relations

Theorem 3. The converse of an initial F -algebra is F -reductive.

Proof. Let in :: I←F.I be an initial F -algebra and A an arbitrary coreflexive
of type I←I. We must show that

I ⊆A ⇐ in∪ \ F.A ⊆ A .

We start with the antecedent and derive the consequent:

in∪\ F.A ⊆ A

= { for function f and coreflexive B, f\B = f∪ ·B · f ,

in∪ is a function and F.A is a coreflexive }
in ·F.A · in∪ ⊆ A

⇒ { hylo theorem }
([in]) · ([in])∪ ⊆ A

= { identity rule: (10), in :: I←F.I is an initial F -algebra }
I⊆A . �

Theorem 4. Let Q be G-reductive and S be a natural transformation of type
F←↩ Id, where Id denotes the identity relator. Then F.Q ·S is (F ◦G)-reductive.

Proof. We prove the stronger:

〈μA :: Q\ G.A〉 ⊆ 〈μA :: (F.Q ·S)\ F.(G.A)〉 .
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First, we observe a general fact about natural transformations α of type F←↩H ,
namely, for all objects I and all coreflexives A such that A⊆ I,

H.A ⊆ αI \ F.A , (12)

since

H.A ⊆ αI \ F.A
= { factors: (2) }

(αI ·H.A)< ⊆ F.A

= { domains: (1) }
F.A ·αI ·H.A = αI ·G.A

= { α has type F←↩H . Thus, F.A ·αI ⊇ αI ·H.A.

A is a coreflexive, so H.A ·H.A = H.A }
F.A ·αI ·H.A ⊆ αI ·H.A

= { F.A⊆ idF.I }
true .

The theorem follows, by monotonicity of the fixpoint operator μ, from the fact
that, for all A,

(F.Q ·S)\ F.(G.A)

= { factors: (2) }
S \ (F.Q\ F.(G.A))

⊇ { factors: (2) }
S \ F.(Q\ G.A)

⊇ { S has type F←↩ Id, (12) }
Q\ G.A . �

6 Generic Unification

In this section, we apply the notion of F -reductivity to a key lemma in the proof
of correctness of a generic unification algorithm. Such an algorithm was first
formulated by Jeuring and Jansson [28] and is further elaborated in [9]. The
algorithm is “generic” in the sense that it is parameterised by a relator F that
specifies the structure of expressions to be unified.

Here, we show that the “occurs-properly-in” relation on expressions is well-
founded. Particularly remarkable about our proof is that it is very simple. This
is a result of its not requiring the definition of a size function on expressions
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in any way, the key to the proof being instead the fact that the converse of an
initial F -algebra is F -reductive.

(The reader is invited to compare the proof presented here with the one given
in [9]. Although the one presented here was the first to be developed, it was
considered expedient at the time not to burden the reader of [9] with too many
new ideas, and to present a more conventional proof instead.)

In its generic form, unification is expressed as follows. A parameter is a relator
F . A second parameter is a type V , elements of which are called variables. Given
these two, we may define a relator FV which maps relation X to F.X+ idV . Then
we assume that in is an initial FV -algebra with carrier F �V . That is,

in :: F �V ← F.F � V +V .

The relator F � (together with appropriately defined unit and multiplier) is a
monad which, as the Kleene-star-like notation suggests, is obtained by repeated
application of the relator F . Elements of F �V are called expressions ; the pa-
rameter F limits the way that new expressions are built up out of subexpres-
sions. Substitution of an expression for a variable can now be defined in such a
way that the composition of substitutions is Kleisli composition in the monad.
The ordering “more general than” on substitutions is defined in the usual way.
Generic unification is then the problem of finding a substitution that unifies two
expressions and is more general than any other unifier.

A fundamental lemma in a proof of correctness of unification is to show that
if a variable occurs in an expression then the variable and expression are not
unifiable. The way to do this is to define an “occurs-properly-in” relation between
expressions, show that this relation is well-founded (and thus is irreflexive) and
finally show that it is preserved by substitution. Here we will just show the first
two of these steps as an illustration of the reductivity calculus.

Suppose mem is the membership relation of the relator F . Let inlA,B denote
the injection function of type A+B←A. (We will drop subscripts from now
on for simplicity.) Then we can define the relation occurs properly in of type
F �V ←F �V by

occurs properly in = (mem · (in·inl)∪)+ .

Informally, the relation (in·inl)∪ (which has type F.(F �V ) ← F �V ) destructs an
element of F �V into an F -structure and then mem identifies the data stored
in that F -structure. Thus mem · (in·inl)∪ destructs an element of F �V into
a number of immediate subcomponents. Application of the transitive-closure
operation repeats this process thus breaking the structure down into all its sub-
components.

The occurs properly in relation has a very simple structure. We ought to be
able to see that it is well-founded almost directly just from that structure. Indeed
this is what the reductivity calculus allows us to do. The lemma and its proof
follow. The first step involves a well-known property of well-founded relations.
Otherwise, every non-trivial step uses the reductivity calculus.
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Theorem 5. The relation occurs properly in is well-founded.

Proof

occurs properly in is well-founded

= { definition of occurs properly in,

R is well-founded ≡ R+ is well-founded }
mem · (in·inl)∪ is well-founded

⇐ { mem ·R is well-founded ≡ R is F -reductive }
(in·inl)∪ is F -reductive

= { (in·inl)∪ = inl∪ · in∪, }
inl∪ · in∪ is F -reductive

⇐ { theorem 4 }
in∪ is FV -reductive ∧ inl∪ :: F←↩ FV

⇐ { theorem 3, definition of ←↩ }
true ∧ 〈∀R :: F.R · inl∪J ⊇ inl∪I · FV .R〉

= { FV .A = F.A+ idV , converse and defn. of inl }
true . �

Note that the proof is entirely algebraic and does not involve any notion of the
“size” of expressions. Many well-foundedness arguments are based on defining
a variant function with range the natural numbers and exploiting their well-
foundedness. The above proof is based on the basic reductivity theorem that the
converse of an initial F -algebra is F -reductive, a consequence of which theorem
is that the natural numbers are well-founded. Introducing the natural numbers
into the proof would be introducing unnecessary detail.
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4. Löh, A., Clarke, D., Jeuring, J.: Dependency-style Generic Haskell. In Shivers,
O., ed.: Proceedings of the International Conference, ICFP’03, ACM Press (2003)
141–152

5. Doornbos, H., Backhouse, R.: Induction and recursion on datatypes. In Möller, B.,
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It is well known that the uniform continuity theorem implies the fan theorem for
detachable bars [5]. Furthermore, it is easy to see that the fan theorem for Π0

1–
bars implies the uniform continuity theorem.1 Here we present a very natural
version of the fan theorem which exactly hits the logical strength of the uniform
continuity theorem in the sense of constructive reverse mathematics [6, 7].

We use the framework BISH of Bishop’s constructive mathematics [3, 4, 5].
We regard BISH as simply mathematics with intuitionistic, rather than classi-
cal, logic, together with some suitable foundation such as CZF [1].

Since the most complex objects we deal with are integer-valued functions on
the Cantor space, our results can easily be carried over to intuitionistic finite-
type arithmetic HAω; see [9, 11] for an introduction to this system. We keep the
formalisation aspect in view; but for the sake of better readability, we do not
carry it out rigorously. Whenever we use a version of the axiom of choice, we
mention this explicitly.

Let N = {1, 2, 3, . . .} denote the set of all natural numbersm,n,N . Let {0, 1}N

denote the set of all infinite binary sequences α, β, γ. Let αn denote the restric-
tion of α to the first n components, where n ∈ N∪{0}. Thus α0 is the empty
sequence ( ). Under the compact2 metric

d(α, β) = inf
{
2−n | αn = βn

}

on {0, 1}N, pointwise continuity of functions F : {0, 1}N → N reads as

∀α ∃n ∀β (αn = βn→ F (α) = F (β)
)

1 We do not give a proof of this fact since it follows from Proposition 1.
2 A metric space is compact if it is complete and totally bounded.
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whereas uniform continuity reads as

∃n ∀α, β (αn = βn→ F (α) = F (β)
)
.

The uniform continuity theorem is the following principle:

UC Every pointwise continuous function F : {0, 1}N → N is uniformly
continuous.

Let {0, 1}∗ denote the set of all finite binary sequences u,w. Concatenation
of u and v is denoted by u ∗ w. For F : {0, 1}N → N and u we set

F (u) = F (u ∗ 0 ∗ 0 ∗ 0 ∗ . . . ).
This leads to a characterisation of uniform continuity:

Lemma 1. Let F : {0, 1}N → N be pointwise continuous. Then we have

∀α ∃n ∀w (F (αn) = F (αn ∗ w)) .

Furthermore, F is uniformly continuous if and only if

∃n ∀α ∀w (F (αn) = F (αn ∗ w)) . (1)

These results can be proved in BISH as well as in HAω.

Proof. We show only the most interesting part of the lemma. Suppose that F is
pointwise continuous and that (1) holds. We have to show that F is uniformly
continuous. By (1) there is N such that

∀α ∀w (F (αN) = F (αN ∗ w)) .

Fix α, β with αN = βN . We claim that F (α) = F (β). By the pointwise conti-
nuity of F there is m ≥ N such that

∀γ (αm = γm→ F (α) = F (γ)) .

and
∀γ (βm = γm→ F (β) = F (γ)

)
.

Putting the pieces together yields

F (α) = F (αm) = F (αN) = F (βm) = F (β).

A subset Y of a set X is detachable from X if

∀x ∈ X (x ∈ Y ∨ x /∈ Y ) .

A subset C of {0, 1}∗ is a c–set if there is a detachable subset D of {0, 1}∗ such
that

∀u (u ∈ C ↔ ∀w (u ∗ w ∈ D)) .
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Thus a sequence u belongs to C if every extension of u belongs to D. The letter
c in the expression c–set should indicate that this notion of complexity is related
to continuity. A subset B of {0, 1}∗ is a bar if

∀α ∃n (αn ∈ B)

and a uniform bar if
∃N ∀α ∃n ≤ N (αn ∈ B) .

Now we can introduce the fan theorem for c–sets:

c–FT every bar which is a c–set is uniform

Every c–set C is closed under extensions; that means

∀u,w (u ∈ C → u ∗ w ∈ C) ;

therefore a c–set C is a uniform bar if and only if

∃N ∀α (αN ∈ C) .

Proposition 1. c–FT implies UC over both BISH and HAω.

Proof. Assume c–FT and fix a pointwise continuous function F : {0, 1}N → N.
We define

D = {u | F (u) = F (u ∗ 1)} , B = {u | ∀w (u ∗ w ∈ D)} .

Then D is detachable from {0, 1}∗ and B is a c–set. From

∀α ∃n ∀w (F (αn) = F (αn ∗ w))

we obtain
∀α ∃n ∀w (F (αn ∗ w) = F (αn ∗w ∗ 1))

and thus
∀α ∃n ∀w (αn ∗w ∈ D) .

Hence B is a bar and therefore, by assumption, a uniform bar. We thus can find
N such that

∀α (αN ∈ B) ,

which reads as
∀α ∀w (F (αN ∗ w) = F (αN ∗ w ∗ 1)) .

We can deduce
∀α ∀w (F (αN) = F (αN ∗ w)) ,

which is just the uniform continuity of F . We thus have shown UC.

The proof of the converse requires a version of unique choice.
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AC∗ Let X be a detachable subset of {0, 1}N × N such that ∀α∃!n (α, n) ∈ X.
Then there exists a function F : {0, 1}N → N such that ∀α (α, F (α) ∈ X.

A similar axiom is called AC1,0! in [9]. Note that unique choice is admissible
in BISH but not in HAω.

Proposition 2. UC implies c–FT over BISH. Furthermore, we have

HAω + AC∗ � UC → c–FT.

Proof. Assume UC. Let D be a detachable subset of {0, 1}∗ such that

B = {u | ∀w (u ∗ w ∈ D)}

is a bar. For every α define

Dα = {n | αn /∈ D} ∪ {1} .

Since B is a bar, Dα is bounded; by AC∗ there is a function F : {0, 1}N → N
such that

∀α (F (α) = maxDα) .

Fix α. There is n such that αn ∈ B. Now, for β with αn = βn, we have
Dα = Dβ; this implies that F (α) = F (β). Thus F is pointwise and therefore
uniformly continuous. By Corollary 4.3 in Chapter 4 of [4], F is bounded, thus
we can find N such that

∀α (F (α) < N) .

We now can conclude that

∀α ∀w (αN ∗ w ∈ D) ;

therefore B is a uniform bar and we have shown c–FT.

The fan theorem for detachable bars reads as:

Δ–FT every detachable bar is uniform

A subset B of {0, 1}∗ is a Π0
1–set if there is a detachable set

D ⊆ {0, 1}∗ × {0, 1}∗

such that
∀u (u ∈ B ↔ ∀w (u,w) ∈ D) .

The fan theorem for Π0
1–bars reads as:

Π0
1–FT every bar which is a Π0

1–set is uniform
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It is easy to see that

Π0
1–FT ⇒ c–FT ⇒ Δ–FT.

It remains to investigate which of these implications are strict. To this end we
will have to place even more emphasis on formalisation. Some authors prove the
equivalence of UC and Δ–FT, with the help of additional assumptions. This is
continuous choice in the case of [5]. In [2, 8, 12] the authors work with pointwise
continuous functions which possess a modulus of pointwise continuity, whereas
in [7, 10] the authors work with so called neighborhood functions. We did not
make use of any such hypothesis.

We presume that further propositions in analysis are equivalent to c–FT.

Acknowledgments. The author benefits from many fruitful discussions about
uniform continuity. Special thanks go to Douglas Bridges, Hajime Ishihara, Ul-
rich Kohlenbach, Peter Schuster, Thomas Streicher, and Wim Veldman.
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Abstract. The elementary algebraic specifications form a small sub-
set of the range of techniques available for algebraic specifications and
are based on equational specifications with hidden functions and sorts
and initial algebra semantics. General methods exist to show that all
semicomputable and computable algebras can be characterised up to
isomorphism by such specifications. Here we consider these specification
methods for specific computable rational number arithmetics. In partic-
ular, we give an elementary equational specification of the 0-totalised
rational function field Q0(X) with its degree operator as an auxiliary
function.

1 Introduction

Between 1979 and 1995 in cooperation with J V Tucker we wrote a series of pa-
pers that classified the computable, semicomputable and cosemicomputable data
types using algebraic specifications (see Bergstra and Tucker [2, 3, 4, 5]). Work
has continued on this subject, refining notions such as finality (e.g., including
Meseguer and Goguen [13] and Moss, Meseguer and Goguen [26]), and on open
questions (e.g., by Marongiu and Tulipani [22] and by Khoussainov [20, 21]).

Recently, we have returned to the foundations of the subject in [7, 8], tack-
ling the specification of basic data types such as the rational numbers, and we
continue here. We will use the elementary algebraic specifications, as proposed
in [8] which are close to the basic techniques of the ADJ Group of the 1970s.

The set Q of rational numbers is a number system designed to denote
measurements. Rationals are used to define the real and complex numbers via
approximation. The rationals are the numbers with which we make finite compu-
tations with full precision. Algebras made by equipping Q with some constants
and operations we call rational arithmetics. We usually calculate with the alge-
bra (Q|0, 1,+,−, ·,−1 ) which is called the field of rational numbers where the
operations satisfy certain standard axioms.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 40–54, 2006.
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In addition to rational arithmetics, of particular interest are field extensions
of the rational number field. One important field extension is the field of rational
functions, based on the set

Q(X) = {p(X)/q(X)|p, q ∈ Q[X ]}.
This has special operations such as the degree operator d : Q(X) → N.

The algebras of rational numbers, such as the field and its extensions by real
and complex numbers, are among the truly fundamental data types. Despite the
fact they have been known and used for over two millennia, they are neglected in
the modern theory of data types. After over 30 years of data type theory, many
questions about the specification of rational arithmetics and their extensions are
open. There is an obvious technical obstacle: the axioms concerning division are
not equations and, indeed, it is known that the class of fields cannot be defined
by a set of equations.

Now the common rational arithmetics and field extensions are all computable
algebras. Indeed, in the theory of computable rings and fields there is a wealth
of constructions of computable algebras that start with the rationals and the fi-
nite fields: see the introduction and survey Stoltenberg-Hansen and Tucker [28].
Therefore, according to the general theory of algebraic specifications of com-
putable data types they have various equational specifications under initial and
final algebra semantics. Computable algebras also have equational specifications
that are complete term rewriting systems ([5]). However, these general specifica-
tion theorems for computable data types involve (binary) hidden functions and
are based on equationally definable enumerations of the data type.

Recently Moss found in [25] that there exists an equational specification of
the ring of rationals (i.e., without division or inverse) with just one unary hidden
function. He used a remarkable enumeration theorem for the rationals in Calkin
and Wilf [9]. He also gave specifications of other rational arithmetics and asked
if hidden functions were necessary. In [7] we proved that there exists a finite
equational specification under initial algebra semantics, without further hidden
functions, but making use of an inverse operation, of the field of rational numbers.
Here we will continue this line of work and in particular we prove:

Theorem 1. There exists a finite equational specification under initial algebra
semantics, without hidden functions, of the algebra

Q0(X, d) = (Q(X)|0, 1, X,+,−, ·,−1 , d)

of rational functions with field and degree operations that are all total.

The structure of the paper is this. In Section 2, we discuss the basics of specifi-
cation theory and define the elementary algebraic specifications. In Section 3, we
describe the algebras and the axioms we will use to specify them. In Section 4 we
prove the main theorem. Finally, in Section 5 we discuss some open problems.

We thank J V Tucker for many valuable discussions on the results of this
paper.
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2 Elementary Algebraic Specifications (EAS)

2.1 What Are the Elementary Algebraic Specifications?

Algebraic specification starts with the idea of modelling - e.g., data, processes,
syntax, hardware, etc. - using sets and functions. Wherever there are sets and
functions there are algebras! For example, the sets X,Y and function f : X → Y
are combined to form the many sorted algebra (X,Y |f). A particular algebra
A is a mathematical model of a specific concrete representation of the system
equipped with concrete operations. The need to understand the system, its rep-
resentations and the extent to which they are unique leads to the concepts of (i)
axiomatic theories for the chosen operators, and (ii) homomorphisms and iso-
morphisms for the comparison of algebras. The simplest axioms are equations.
The simplest deductions are are those of equational logic based on the rewriting
of terms.

The line of thought that focussed on the role of initial algebras in semantic
modelling and specification was expounded in [16]. Joseph Goguen, Jim Thatcher
and Eric Wagner, writing as the ADJ Group, provided a mathematical basis for
modelling and specifying abstract data types, starting in [17]. The ADJ Group
established most of the basic concepts by combining the technical ideas of many
sorted algebras, equations, conditional equations, hidden functions and sorts,
term rewriting and initial algebras. In Kamin [19], a rapidly growing literature
was organised and problems identified and clearly stated, such as when were
hidden functions and sorts necessary? Goguen and Wagner have reflected on the
ADJ Group in [11] and [30], respectively.

The theory of computable data types demonstrates that any computable sys-
tem can be modelled in this way. Therefore, we define the basic elements of EAS
as follows.

Definition 1. An algebraic specification (Σ′, E′) of a Σ algebra A is elementary
if it involves only

1. A many sorted signature Σ′ that is non-void. A signature is non-void if there
is a closed term of every sort.

2. A set E′ of equations or conditional equations.
3. An initial algebra semantics such that I(Σ′, E′)|Σ ∼= A.

In particular, the elementary specifications require total functions, allow hidden
functions and sorts, and may or may not be complete term rewriting systems.
Clearly, there are plenty of restrictions in force: see subsection 2.2 below.

Definition 2. The specification problem is this: Given a Σ algebra A, can one
find an algebraic specification (Σ′, E′) such that I(Σ′, E′)|Σ ∼= A.

An EAS is “better” if it is finite rather than infinite, contains equations rather
than conditional equations, or features nice term rewriting properties such as
confluency and termination. A standard way of validating an elementary speci-
fication is to check these properties:



Elementary Algebraic Specifications of the Rational Function Field 43

Definition 3. An algebraic specification (Σ′, E′) of a Σ algebra A satisfies
Goguen’s conditions if it the following are true:

No Junk or Minimality. The algebra A is Σ-minimal.
No Confusion or Completeness. For all closed Σ terms t, t′, we have

A |= t = t′ if, and only if, E′ � t = t′.

In particular, the Goguen conditions imply that

I(Σ′, E′)|Σ ∼= A.

What makes these features elementary? The purpose of developing a specifica-
tion is to model, analyse and understand. In simple terms, these algebraic tools
are fundamental for any modelling using sets and functions: they are used to
abstract and analyse the properties models of an idea, component, or system.
One chooses a set of operators and postulates a set of laws they satisfy; the laws
are expressed as equations or conditional equations. The terms express all possi-
ble operations that can be derived by combining operations, and the equational
identities express the consequent facts about the model. The term rewriting is a
completely basic mechanism for both abstract reasoning and computation. This
view suggests the elementary character of the equations and that we cannot
make do with less. There is also an argument that they need extension in special
circumstances.

Now, the whole modelling and specification process for elementary specifica-
tions is mathematically robust in the sense that the syntax and semantics have
virtually no special conditions, neither subtle nor obvious.

In modelling using an elementary algebraic specification one simply starts
playing with operators, the equations and rewrites. There are no side conditions,
side effects, and semantic errors to beware. The elementary algebraic specifi-
cations work simply in all cases. The only mistakes possible are mistakes in
understanding what one is trying to model.

Technically, all computable algebras can be specified with hidden functions,
and all semicomputable algebras can be specified with hidden sorts and func-
tions. In general this is the best possible. For computable algebras specifications
may take the from of complete term rewriting systems following [5]. One such
result is in [2]:

Theorem 2. A Σ algebra A with n sorts is computable if, and only if, it pos-
sesses an elementary equational specification (Σ′, E′) containing just 2(n + 1)
equations and 3(n + 1) hidden functions that defines A under both initial and
final algebra semantics.

This result can be adapted by means of a very tedious proof to yield algebraic
specifications involving exclusively unary hidden functions for each computable
data type (though with less efficient bounds on their numbers). Providing an
attractive proof of that fact which merits publication is still an open issue. In-
terestingly in the specification theory for fields we find that a single unary hidden
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function does the job in various cases. Moss used a unary hidden function in [25].
We gave a simplified EAS for the rational number field using the modulus func-
tion as a unary auxiliary operator in [7]. We used the complex conjugate operator
as an auxiliary one for giving an EAS for the 0-totalised complex rational num-
bers in [8], and below we will make use of the degree operator as an auxiliary
operator in the context of the rational function field.

2.2 What Are the Non-elementary Algebraic Specifications?

Since the first examples of algebraic specifications of data types in the 1970s,
there has been a steady growth in the features that one may add to the basic
techniques to be found the early ADJ papers such as [17]. The new techniques
have been introduced for a number of obvious reasons: they have been found to
be natural, or useful, or necessary to solve problems, or they have been used to
extend or explore simpler techniques. The development of languages and tools
(such as OBJ, ASF-SDF, Maude, CASL, etc.) for algebraic specification has
increased the number and complexity of features in use.

What features have we excluded from the Definition 1 and hence have “de-
clared” to be not elementary, and why?

We have excluded final algebra semantics because final algebras of equational
specifications do not always exist and there are different interpretations possible
(see Moss, Meseguer and Goguen [26]).

We have excluded loose semantics because we are focussed on specifying al-
gebras up to isomorphism rather than classes of possible models.

The multi-equations studied by Adamek et. al. [1] are a convincing gener-
alization of equations, but non-elementary by being less well-known. Further
Priority rewriting and innermost rewriting are considered non-elementary due
to their semantic subtleties.

Partial functions Partiality is an essential aspect of computation, but logics
of partial functions are quite sophisticated and by no means elementary.

Subsorts occur naturally and help with modelling subtyping, errors, etc. How-
ever, there are different theories none of which are as obvious as EAS: see, for
example, the survey [15].

In addition EAS excludes features such as: empty sorts (see Goguen and
Meseguer [14]) because of logical difficulties; errors and exceptions; modularity;
and parameterization. Each of these invite a proliferation of semantical founda-
tions vastly exceeding the basics of EAS.

2.3 Totalisation of Algebras

Informally totalised algebras emerge by making algebras total which are usually
considered to contain partial operators. Unavoidably totalisation introduces an
element of arbitrariness which may be considered artificial because values are
added which do not belong to the primary intuitions at hand. If a data type
starts its life as a partial algebra an EAS treatment of it will involve totalisation
at some stage.
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Totalisation is not without problems when specifying a stack, as we have seen
in our [6]. Totalisation is a matter of costs and benefits and in some cases the
theory of a totalised data type, even when specified by means of a convincing
EAS, may be harder to swallow than some of its non-elementary expositions, even
including the required meta-theory for those non-elementary features. Stacks
are a candidate of such a data type. But in the case of fields we have found
totalisation a convincing technique. For that we have four arguments:

(1) Totalisation of fields leads to a specification which itself has a larger model
class consisting of the so-called meadows having remarkably natural properties
in particular in the finite case,

(2) The EAS specification theory of totalised fields is attractive.
(3) EAS provides a fundamental decoupling of syntax and semantics. All sim-

ple answers on the question why 0−1 fails to exist depend on the observation
that this piece of syntax should not have been written down in the first place
because it carries no intended meaning. The partial inverse operator cannot be
syntactically decoupled from its meaning. Exactly this interplay between syntax
and semantics is completely removed in the setting of EAS and totalised fields.

(4) The costs of totalisation, due to the introduction of a ‘fake’ value for 0−1

and its impact on the theory of numbers are already compensated by the gains
mentioned in (2) and (3) above.

2.4 Technical Preliminaries on Algebraic Specifications

We assume the reader is familiar with using equations and conditional equations
and initial algebra semantics to specify data types. Some accounts of this are:
ADJ [17], Meseguer and Goguen [24], or Wirsing [32]. The theory of algebraic
specifications is based on theories of universal algebras (e.g., Wechler [31], Meinke
and Tucker [23]), computable and semicomputable algebras (Stoltenberg-Hansen
and Tucker [27]), and term rewriting (Terese [29]).

We use standard notations: typically, we let Σ be a many sorted signature
and A a total Σ algebra. The class of all total Σ algebras is Alg(Σ) and the
class of all total Σ-algebras satisfying all the axioms in a theory T is Alg(Σ, T ).
The word ‘algebra’ will mean total algebra.

3 Specifications for Rational Arithmetics

We will build our specifications in stages. The primary signature Σ is simply
that of the field of rational numbers:

signature Σ
sorts field
operations
0: → field;
1 : → field;
+: field× field→ field;
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− : field→ field;
· : field× field→ field;
−1 : field→ field
end

3.1 Commutative Rings

The first set of axioms is that of a commutative ring with 1, which estab-
lishes the standard properties of +, −, and ·. We will refer to these axioms
by CR1, . . . , CR8 etc.

equations CR

(x+ y) + z = x+ (y + z) (1)
x+ y = y + x (2)
x+ 0 = x (3)

x+ (−x) = 0 (4)
(x · y) · z = x · (y · z) (5)

x · y = y · x (6)
x · 1 = x (7)

x · (y + z) = x · y + x · z (8)

end

These axioms generate a wealth of properties of +,−, · which we will assume
the reader is familar.

3.2 Totalised Fields

In working with the rational numbers the usual axiom for division −1 is that
found among the axioms of fields. The axioms of a field simply add to CR the
following the general inverse law (Gil) for division:

x �= 0 =⇒ x · x−1 = 1

and the axiom of separation (Sep) for the constants:

0 �= 1.

Neither axioms are equations. In field theory the value of 0−1 is either left
undefined, or left unspecified. However, in working with elementary specifications
operations are total.

Let (Σ, Tfield) be the axiomatic specification of fields, where

Tfield = CR+Gil + Sep.

The class Alg(Σ, Tfield) is the class of total algebras satisfying the axioms in
Tfield. For emphasis, we refer to these algebras as totalised fields.
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Now, for all totalised fields A ∈ Alg(Σ, Tfield) and all x ∈ A, the inverse
x−1 is defined. In particular, 0−1

A is defined. The actual value 0−1
A = a can be

anything but it is convenient to set 0−1 = 0 (see [7], and compare, e.g., Hodges
[18], p. 695). Later we will use a specification which forces 0−1 = 0 (Lemma 1).
A field with 0−1 = 0 is called 0-totalised.

The main Σ-algebras we are interested in are these: first,

Q0 = (Q|0, 1,+,−, ·,−1 )

where the inverse is total

x−1 = 1/x if x �= 0;
= 0 if x = 0

This total algebra satisfies the axioms of a field Tfield and is a totalised field of
rationals. Next, we are interested in the totalised field extension

Q0(X) = (Q|X, 0, 1,+,−, ·,−1 )

and its expansion by the degree operator

Q0(X, d) = (Q|X, 0, 1,+,−, ·,−1 , d)

Our first objective is to replace the axioms Gil and Sep by equations, which
requires an investigation of divison.

3.3 Strong Inverse Properties

Our first set SIP of axioms for −1 contain the following three equations, which
we call the strong inverse properties following [7]. They are “strong” because
they are equations in involving −1 without any guards, such as x �= 0:

equations SIP

(−x)−1 = −(x−1) (9)
(x · y)−1 = x−1 · y−1 (10)
(x−1)−1 = x (11)

end

Our specification CR ∪ SIP draws attention to division by zero. From [7] we
find:

Lemma 1. The following equations are provable from CR ∪ SIP :

0−1 = 0 (12)
0 · x = 0 (13)
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Thus, 0 · 0−1 = 0. In dealing with division it is helpful to have functions such as

Z(x) = 1− x · x−1

Clearly, Z(x) = 0 ⇔ x · x−1 = 1.
In particular, in our [7] (Theorem 3.5) we add an axiom L, based on Lagrange’s

Theorem to give an equational specification of the the rationals. Lagrange’s
Theorem states that every natural number can be represented as the sum of
four squares. We define a special equation L (for Lagrange):

Z(1 + x2 + y2 + z2 + u2) = 0.

L expresses that for a large collection of numbers, in particular those q which
can be written as 1 plus the sum of four squares, q · q−1 equals 1. The following
result is then found.

Theorem 3. There exists a finite elementary equational specification (Σ,CR+
SIP +L), without hidden functions and under initial algebra semantics, of Q0.

3.4 Meadows, Ril and Mil

In [7] we also add to CR+SIP the restricted inverse law (Ril): x · (x ·x−1) = x,
which, using commutativity and associativity, expresses that x · x−1 is 1 in the
presence of x. We note that:

Lemma 2. Ril � x · x−1 = 0 =⇒ x = 0

Proof. Assuming x ·x−1 = 0 one obtains x ·x−1 ·x = 0 ·x by multiplication with
x on both sides. Thus, x = 0 by applying Ril to the LHS and Lemma 1 to the
RHS.

Whilst the initial algebra of CR is the ring of integers, we found in [7] that

Lemma 3. The initial algebra of CR+SIP+Ril is a computable algebra but it is
not an integral domain.

The models of CR+SIP +Ril are algebras with reasonable properties, in spite
of not being fields nor even integral domains. We propose to name this theory
ENA for elementary number algebra (or equational number algebra if one prefers
that explanation). ‘Number algebra’ then represents the (EAS styled) study of
ENA and its extensions, and our use of this phrase corresponds to our use of
the phrases ‘process algebra’, ‘program algebra’, ‘thread algebra’ and ‘module
algebra’ in other work. For models of ENA the following convention is taken
from [7].

Definition 4. A model of ENA(= CR + SIP +Ril) is called a meadow.

All fields are clearly meadows but not conversely. That the initial algebra of
CR+ SIP +Ril is not a field follows from the fact that (1 + 1) · (1 + 1)−1 = 1
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cannot be derivable because it fails to hold in the prime field of characteristic 2
which is a model of these equations as well.

Lemma 4. Let A be a meadow. The following are equivalent:
1. A is a field.
2. For all x ∈ A, x �= 0 =⇒ Z(x) = 0.
3. For all x ∈ A, Z(x) = 0 or Z(x) = 1.

Proof. That (1) implies (2) is easy: if x �= 0 then x ·x−1 = 1, by the field axioms,
and hence Z(x) = 1−x·x−1 = 0. That (2) implies (3) is also clear. For any x ∈ A
there are two cases: if x = 0 then Z(x) = 1−x ·x−1 = 1−0 ·0−1 = 1−0 = 1; and
if x �= 0 then Z(x) = 0 by (2). Finally, suppose that (3) is true. Then assume
x �= 0 and x · x−1 �= 1. Now Z(x) �= 0 and therefore Z(x) = 1 and x · x−1 = 0.
Using Ril x = x · x · x−1 = x · 0 = 0 contradicting the assumption on x.

In fact, consider the axiom the minimal inverse law, Mil: x �= 0 =⇒ x·x−1 �= 0.
Mil is true of fields and of meadows. However, here exist structures that satisfy
Mil but which are not meadows and, in particular, Mil is weaker than Ril.
For example consider A = (Q|0, 1,+,−, ·,−1 ) where the inverse is redefined as
x−1 = x. Then this algebra A satisfies Mil and yet is not a meadow as it does
not satisfy Ril: for x ∈ Q, if x �= 0 then x · (x · x−1) = x · x · x �= x.

Theorem 4. For any closed terms t, t′ ∈ T (Σ), the following are equivalent

1. t = t′ is true in all 0-totalised fields.
2. t = t′ is true in all meadows.

This was shown in [7]. If t = t′ holds in all fields then in all totalised fields and
in all 0-totalised fields and therefore in all meadows. Here is an example of a
non-trivial equation equation true of all meadows: 2 · Z(2 − x

x) = 0. Working
modulo 2 and taking x = 0, 2− 0

0 = 1 from which it follows that Z(2− 0
0 ) is not 0

in all meadows and in particular not in the initial meadow. Stated differently: in
the initial meadow 2 is a zero divisor, which is not the case in any homomorphic
image constituting a field.

3.5 Finite and Minimal Meadows

Writing 0 for 0 and n+ 1 for n+1 and given a positive natural number k we can
define Mk for the initial algebra of CR+ SIP +Ril+ Zk with Zk the equation
k = 0. It is easily seen that for k a prime number Mk is the 0-totalised prime
field of characteristic k. Moreover if k is a product of different primes (no factor
twice) Mk has exactly k elements. In this case we call k the characteristic of Mk

and Mk the minimal meadow of characteristic k. If k and l have the same prime
factors then Mk

∼= Ml. If k is a divisor of l then Mk is a homomorphic image
of Ml and all finite and minimal meadows are of the form Mk for some positive
natural number k. If its non-zero characteristic is not a prime a finite meadow
has proper zero-divisors and fails to be an integral domain.
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4 An EAS of the Rational Function Field

We add to the field signature Σ two items:

(i) the degree operation which, given that the integers are contained in the
rationals, we treat as a function d : field→ field;

(ii) the indeterminate X which we treat as a constant X : → field;

which together forms the signature ΣX,d of the 0-totalised field of rational
polynomial functions with degree operator. According to [28] this is a computable
algebra which implies the existence of an initial algebra specification with hidden
functions. We will establish a specification without auxiliary functions. However,
we will rather consider the degree operator a unary hidden function, used to
specify the 0-totalised field of rational functions.

First, define N(x) = 1 − Z(x) = x · x−1, now consider these equations over
the signature ΣX,d:

equations DG

d(0) = 0 (14)
d(1) = 0 (15)
d(X) = 1 (16)

d(X + 1) = 1 (17)
d(−x) = d(x) (18)
d(x−1) = −d(x) (19)
d(d(x)) = 0 (20)

N(y) · d(x) +N(x) · d(y) = d(x · y) (21)
Z(d(y + 1)− d(y)) · Z(d(x) − 1− d(y)) · (d(x+ 1)− d(x)) = 0 (22)

N(d(x)) · Z(x) = 0 (23)

end

Theorem 5. There exists a finite elementary equational specification (ΣX,d, E),
without hidden functions, of the algebra Q0(X, d) of rational polynomial func-
tions with field and degree operations that are all total, under initial algebra
semantics. That is,

I(ΣX,d, E) ∼= Q0(X, d)

where E = ENA+ L+DG.

Proof. First we must verify that our specification is true of the algebra.

Lemma 5. Q0(X, d) |= ENA+ L+DG

Proof. Most of the axioms are straightforward to check. Those of ENA are
easy. For the axiom L one can argue that the 0-totalised rational function field
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is isomorphic to the rationals expanded with a positive (and real) transcendental
number (e.g. π). It follows that it can be totally ordered with the effect that 1
+ the sum of four squares is always positive and therefore non-zero. This fact
remains when forgetting the ordering. Next we consider the axioms of DG. Only
the last three axioms need attention.

(a) Consider: d(x · y) = N(y) · d(x) +N(x) · d(y).
If x, y are non-zero then N(x) = N(y) = 1 and we have d(x · y) = d(x) + d(y).
Supposing x = 0 the the LHS is d(x · y) = d(0 · y) = d(0) = 0 and the RHS is
N(y) · d(0) +N(0) · d(y) = N(y) · 0 + 0 · d(y) = 0. Hence the two sides agree.

(b) Consider: Z(d(y + 1)− d(y)) · Z(d(x) − 1− d(y)) · (d(x + 1)− d(x)) = 0
Here notice that d(y) is always an integer and that d(y+1)−d(y) = 0 for all and
only y with a non-negative degree. (Notice: d(X−1 + 1) = d(X−1 +X ·X−1) =
d((X+1)·X−1) = 1+(−1) = 0 �= d(X−1) = −1.) Now the equation has the form
Z(r(y)) · Z(p(x, y)) · q(x) = 0. This can be read as: if r = 0 and p = 0 (which
implies Z(r) = 1 and Z(p) = 1) then q = 0. So assume d(y + 1) − d(y) = 0
and d(x) − 1 − d(y) = 0 then d(y) is nonnegative and d(x) = 1 + d(y) and so
d(x) is also a nonnegative integer (within the rationals). For such x we have
d(x) − d(x+ 1) = 0.

(c) Consider: N(d(x)) · Z(x) = 0.
If N(d(x)) = 0 then N(d(x)) · Z(x) = 0. If N(d(x)) �= 0 then d(x) · d(x)−1 �= 0
and also d(x) �= 0. Hence, x �= 0 and Z(x) = 0 which implies N(d(x)) ·Z(x) = 0.

By Lemma 5, there is a ΣX,d-homomorphsim φ : I(ΣX,d, E) → Q0(X, d) .
Since the algebra Q0(X, d) is ΣX,d-minimal the map φ is surjective. Thus, to
complete the theorem we must prove that φ is injective. We introduce a notation
for an equation between closed terms t, r in T (ΣX,d): t�r ⇔ Z(t − r) = 0 ⇔
t−r
t−r = 1. E � t�r expresses that t is provably different from r. Suppose for a
contradiction that φ is not injective. Then there are closed terms s, s′ in T (ΣX,d)
such that [s] �= [s′] in I(Σ,E) and φ([s]) = φ([s′]) in Q0(X, d). We need the
following fact:

Lemma 6. For all closed terms t, r in T (ΣX,d), either E � t = r or E � t�r.
Applying Lemma 6 to the pair s, s′ above, which contradicts the injectivity of

φ, we find that E � s�s′ because otherwise E � s = s′ against the assumptions.
So we find:

φ(Z([s]− [s′])) = φ(0) applying the map
Z(φ([s]− [s′])) = 0 φ is homomorphism

Z(φ([s]) − φ([s′]))) = 0 φ is homomorphism
Z(0) = 0 by assumption that φ is not injective

but this is a contradiction since Z(0) = 1, which demonstrates the injectivity of
φ. It remains to prove Lemma 6.

Proof. It suffices to show that for all t, either E � t = 0 or E � t�0. For suppose
that it is not the case that E � t = r then neither E � t − r = 0. Then
E � (t− r)�0 and thus E � t�r.
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In the proof of Theorem 3 as given in [7] we found that for all terms s of the
form ±m · n−1, where m and n are non-zero, we have CR+ SIP + L � s�0.

We write INT = {−n|n > 0} ∪ {n|n > 0} ∪ {0}.
Note d(X) = 1 and d(0) = d(1) = 0. In fact all the integers appear in this

range of values of the form d(t): with induction one proves: d(Xk) = k, and
d(X−k) = −k. The induction step is thus (for k > 0):
d(X ·Xk) = N(X) ·d(Xk)+N(Xk) ·d(X) = d(Xk)+N(Xk) because d(X) =

1 and thus N(d(X)) = 1 which using equation (22) implies Z(X) = 0 and
N(X) = 1.

As induction hypothesis suppose that d(Xk) = k for k > 0. Since k > 0,
N(k) = 1 and thus N(d(Xk) = 1 which (using equation 21) implies Z(Xk) = 0
and N(Xk) = 1. Then d(X ·Xk−1) = d(Xk−1)+d(X) = k − 1+1 = k. A similar
argument works for negative powers of X .

Thus, for r ∈ INT , there is a term t such that d(t) = r. So d(r) = d(d(t)) = 0
by axiom d(d(x)) = 0 in DG. This implies that the degree of all integers is 0.
Using the axioms d(x−1) = −d(x) and d(x · y) = N(y) · d(x) + N(x) · d(y) we
can show that the degree of all rationals is provably zero too.

The next stage is to prove that a polynomial p = pkX
k + · · ·+ p1X + p0 has

degree k provided pk�0. As a consequence it is non-zero and Z(p) = 0, i.e. p�0.
This is done by induction on k. The basis is clear: for k = 0, p has degree 0.

Suppose it is true for polynomials of degree k = n and consider case k = n+ 1.
Consider p = pn+1X

n+1 + · · ·+ p1X + p0. There are two cases: p0 = 0 and p0�0.
(i) Case p0 = 0: Write p = pn+1X

n+1 + · · ·+p1X = q ·X . We know by induction
that E � d(q) = n and q�0. Thus:
d(p) = d(q · X) = N(q) · d(X) + N(X) · d(q) = 1 · d(X) + 1 · d(q) = n+ 1.

(This is because d(X) = 1 and N(d(X)) = 1; by axiom N(d(x)) · Z(x) = 0 in
DG we have Z(X) = 0 which implies N(X) = 1.)
(ii) Case p0�0: Write p = pn+1X

n+1+· · ·+p1X+p0 = q ·X+p0 = p0( 1
p0
q ·X+1).

Now d( 1
p0
q · X) = d(q · X) = n+ 1 as p0�0. We apply Z(d(y + 1) − d(y)) ·

Z(d(x)−1−d(y)) ·(d(x+1)−d(x)) = 0 with x = 1
p0
q ·X and y = Xn. We obtain

d(y + 1)− d(y) = 0 because n+ 1 is nonnegative d(x)− 1− d(y) = 0 via simple
calculation and as a consequence Z(d(y+1)− d(y)) ·Z(d(x)− 1− d(y)) = 1 and
therefore, d(x + 1)− d(x) = 0, which gives d( 1

p0
q ·X + 1) = d( 1

p0
q ·X) = n+ 1

and thus d(p) = n+ 1. Together with axiom (22) this also proves that p�0.
At this stage we have shown that all for polynomials of positive degree p ,

d(p) equals a positive integer and p�0, i.e., p
p = 1. This allows us to write each

closed term as the quotient of polynomials p and q or 0. In fact this matter takes
an induction argument over all terms but it poses no difficulty.

Now let E � t = p
q where we may assume that d(q) > 0. If d(p) �= d(q) then

d(t)�0, whence t�0 (by axiom 22). If d(p) = d(q) > 1 then N(p) = N(q) = 1 and
N(pq ) = p

q /
p
q = p

p · qq = 1 · 1 = and thus t�0.
Now all cases have been dealt with and we have shown lemma 6.

This also completes the proof of Theorem 5.
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5 Concluding Remarks

We have demonstrated that totalisation is an effective strategy for obtaining a
specification theory of computable fields and meadows and this has been illus-
trated on the field of rational functions. In addition to questions listed in [7, 8]
the following two problems arise from this work:

Problem 1. Is there a finite elementary equational specification of the totalised
field Q0(X) of rational functions, without the use of the degree function d as a
hidden function, and under initial algebra semantics?

Problem 2. Is there a finite elementary equational specification of either of the
algebras Q0(X, d) or Q0(X) of rational functions, without hidden functions, and
under initial algebra semantics, which constitutes a complete term rewriting
system?
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Abstract. We investigate notions of randomness in the space C[2N] of
nonempty closed subsets of {0, 1}N. A probability measure is given and
a version of the Martin-Löf Test for randomness is defined. Π0

2 random
closed sets exist but there are no random Π0

1 closed sets. It is shown that
a random closed set is perfect, has measure 0, and has no computable
elements. A closed subset of 2N may be defined as the set of infinite paths
through a tree and so the problem of compressibility of trees is explored.
This leads to some results on a Chaitin-style notion of randomness for
closed sets.
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1 Classes.

1 Introduction

The study of algorithmic randomness has been of great interest in recent years.
The basic problem is to quantify the randomness of a single real number and here
we will extend this problem to the randomness of a finite-branching tree. Early
in the last century, von Mises [10] suggested that a random real should obey
reasonable statistical tests, such as having a roughly equal number of zeroes and
ones of the first n bits, in the limit. Thus a random real would be stochastic in
modern parlance. If one considers only computable tests, then there are countably
many and one can construct a real satisfying all tests.

Martin-Löf [8] observed that stochastic properties could be viewed as special
kinds of meaure zero sets and defined a random real as one which avoids certain
effectively presented measure 0 sets. That is, a real x ∈ 2N is Martin-Löf random
if for any effective sequence S1, S2, . . . of c.e. open sets with μ(Sn) ≤ 2−n, x /∈
∩nSn.

At the same time Kolmogorov [6] defined a notion of randomness for finite
strings based on the concept of incompressibility. For infinite words, the stronger
notion of prefix-free complexity developed by Levin [7], Gács [5] and Chaitin [3]
is needed. Schnorr later proved that the notions of Martin-Löf randomness and
Chaitin randomness are equivalent.

In this paper we want to consider algorithmic randomness on the space C of
nonempty closed subsets P of 2N. For a finite string σ ∈ {0, 1}n, let |σ| = n. For
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two string σ, τ , say that τ extends σ and write σ � τ if |σ| ≤ |τ | and σ(i) = τ(i)
for i < |σ|. Similarly σ � x for x ∈ 2N means that σ(i) = x(i) for i < |σ|.
Let σ�τ denote the concatenation of σ and τ and let σ�i denote σ�(i) for
i = 0, 1. Let x�n = (x(0), . . . , x(n − 1)). Now a nonempty closed set P may
be identified with a tree TP ⊆ {0, 1}∗ as follows. For a finite string σ, let I(σ)
denote {x ∈ 2N : σ � x}. Then TP = {σ : P ∩ I(σ) �= ∅}. Note that TP has no
dead ends, that is if σ ∈ TP then either σ�0 ∈ TP or σ�1 ∈ TP .

For an arbitrary tree T ⊆ {0, 1}∗, let [T ] denote the set of infinite paths
through T , that is,

x ∈ [T ] ⇐⇒ (∀n)x�n ∈ T.

It is well-known that P ⊆ 2N is a closed set if and only if P = [T ] for some
tree T . P is a Π0

1 class, or effectively closed set, if P = [T ] for some computable
tree T . P is a strong Π0

2 class, or Π0
2 closed set, if P = [T ] for some Δ0

2 tree.
The complement of a Π0

1 class is sometimes called a c.e. open set. We remark
that if P is a Π0

1 class, then TP is a Π0
1 set, but not in general computable.

There is a natural effective enumeration P0, P1, . . . of the Π0
1 classes and thus

an enumeration of the c.e. open sets. Thus we can say that a sequence S0, S1, . . .
of c.e. open sets is effective if there is a computable function, f , such that
Sn = 2N − Pf(n) for all n. For a detailed development of Π0

1 classes, see [1] or
[2].

To define Martin-Löf randomness for closed sets, we give an effective homeo-
morphism with the space {0, 1, 2}N and simply carry over the notion of random-
ness from that space.

Chaitin randomness for reals is defined as follows. Let M be a prefix-free
function with domain ⊂ {0, 1}∗. For any finite string τ , let KM (τ) = min{|σ| :
M(σ) = τ}. There is a universal prefix-free function U such that, for any prefix-
free M , there is a constant c such that for all τ

KU (τ) ≤ KM (τ) + c.

We let K(σ) = KU (σ). Then x is said to be Chaitin random if there is a constant
c such that K(x�n) ≥ n− c for all n. This means that the initial segments of x
are not compressible.

For a tree T , we want to consider the compressibility of Tn = T ∩ {0, 1}n.
This has a natural representation of length 2n since there are 2n possible nodes
of length n. We will show that any tree TP can be compressed, that is, K(Tn) ≥
2n − c is impossible for a tree with no dead ends.

2 Martin-Löf Randomness of Closed Sets

In this section, we define a measure on the space C of nonempty closed subsets
of 2N and use this to define the notion of randomness for closed sets. We then
obtain several properties of random closed sets.

An effective one-to-one correspondence between the space C and the space 3N

is defined as follows. Let a closed set Q be given and let T = TQ be the tree
without dead ends such that Q = [T ].
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Then define the code x = xQ ∈ {0, 1, 2}N for Q as follows. Let σ0 = ∅, σ1, . . .
enumerate the elements of T in order, first by length and then lexicographically.
We now define x = xQ = xT by recursion as follows. For each n, x(n) = 2 if
σ�n 0 and σ�n 1 are both in T , x(n) = 1 if σ�n 0 /∈ T and σ�n 1 ∈ T and x(n) = 0
if σ�n 0 ∈ T and σ�n 1 /∈ T .

Then define the measure μ∗ on C by

μ∗(X ) = μ({xQ : Q ∈ X}).

Informally this means that given σ ∈ TQ, there is probability 1
3 that both σ�0 ∈

TQ and σ�1 ∈ TQ and, for i = 0, 1, there is probability 1
3 that only σ�i ∈ TQ. In

particular, this means that Q∩I(σ) �= ∅ implies that for i = 0, 1, Q∩I(σ�i) �= ∅
with probability 2

3 .
Let us comment briefly on why some other natural representations were re-

jected. Suppose first that we simply enumerated all strings in {0, 1}∗ as σ0, σ1, . . .
and then represent T by its characteristic function so that xT (n) = 1 ⇐⇒ σn ∈
T . Then in general a code x might not represent a tree. That is, once we have
(01) /∈ T we cannot later decide that (011) ∈ T . Suppose then that we allow
the empty closed set by using codes x ∈ {0, 1, 2, 3}∗ and modifying our original
definition as follows. Let x(n) = i give the same definition as above for i ≤ 2
but let x(n) = 3 mean that neither σ�n 0 nor σ�1 is in T . Informally, this would
mean that for i = 0, 1, σ ∈ T implies that σ�i ∈ T with probability 1

2 . The
advantage here is that we can now represent all trees. But this is also a disad-
vantage, since for a given closed set P , there are many different trees T with
P = [T ]. The second problem with this approach is that we would have [T ] = ∅
with probability 1. It then follows that [T ] would have to be empty for a random
tree, that is the only random closed set would be the empty set.

Now we will say that a closed set Q is (Martin-Löf) random if the code xQ
is Martin-Löf random. Since random reals exists, it follows that random closed
sets exists. Furthermore, there are Δ0

2 reals, so we have the following.

Theorem 1. There exists a random Π0
2 closed set.  !

Next we obtain some properties of random closed sets.

Proposition 1. P is a random closed set if and only if, for every σ ∈ TP ,
P ∩ I(σ) is a random closed set.

Proof. One direction is immediate. For the other direction, suppose that P∩I(σ)
is not random and let S0, S1, . . . be an effective sequence of c. e. open sets in C
with μ∗(Sn) < 2−n, such that P ∩ I(σ) ∈ ∩nSn. Let S′

n = {Q : Q ∩ I(σ) ∈ Sn}.
Then P ∈ ∩nS′

n and μ∗(S′
n) ≤ μ∗(Sn) < 2−n for all n.  !

This implies that a random closed set P must be nowhere dense, since certainly
no interval I(σ) is random and hence P ∩ I(σ) �= I(σ) for any σ ∈ {0, 1}∗.

Theorem 2. If Q is a random closed set, then Q has no computable members.
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Proof. Suppose that Q is random and let y be a computable real. For each n,
let

Sn = {P : P ∩ I(y�n) �= ∅}.
Then the S0, S1, . . . is an effective sequence of clopen sets in C, and an easy
induction shows that μ∗(Sn) = (2/3)n. This is a Martin-Löf test and it follows
that Q /∈ Sn for some n, so that y /∈ Q.  !
Theorem 3. If Q is a random closed set, then Q has no isolated elements.

Proof. Let Q = [T ] and suppose by way of contradiction that Q contains an
isolated path x. Then there is some node σ ∈ T such that Q ∩ I(σ) = {x}. For
each n, let

Sn = {P ∈ C : card({τ ∈ {0, 1}n : P ∩ I(σ�τ) �= ∅}) = 1}.
That is, P ∈ Sn if and only if the tree TP has exactly one extension of σ of
length n+ |σ|. It follows that

card(P ∩ I(σ)) = 1 ⇐⇒ (∀n)P ∈ Sn

Now for each n, Sn is a clopen set in C and again by induction, Sn has measure
(2/3)n. Thus the sequence S0, S1, . . . is a Martin-Löf test. It follows that for some
n, Q /∈ Sn. Thus there are at least two extensions in TQ of σ of length n+ |σ|,
contradicting the assumption that x was the unique element of Q ∩ I(σ).  !
Corollary 1. If Q is a random closed set, then Q is perfect and hence has
continuum many elements.  !
Theorem 4. If Q is a random closed set, then μ(Q) = 0.

Proof. We will show that in the space C, μ(P ) = 0 with probability 1. This is
proved by showing that for each m, μ(P ) ≥ 2−m with probability 0. For each
m, let

Sm = {P : μ(P ) ≥ 2−m}.
We claim that for each m, μ∗(Sm) = 0. The proof is by induction on m.
For m = 0, we have μ(P ) ≥ 1 if and only if P = 2N, which is if and only if

xP = (2, 2, . . .), so that S0 is a singleton and thus has measure 0.
Now assume by induction that Sm has measure 0. Then the probability that

a closed set P = [T ] has measure ≥ 2−m−1 can be calculated in two parts.

(i) If T does not branch at the first level, say T0 = {(0)} without loss of
generality. Now consider the closed set P0 = {y : 0�y ∈ P}. Then μ(P ) ≥ 2−m−1

if and only if μ(P0) ≥ 2−m, which has probability 0 by induction, so we can
discount this case.

(ii) If T does branch at the first level, let Pi = {y : i�y ∈ P} for i = 0, 1.
Then μ(P ) = 1

2 (μ(P0)+μ(P1)), so that μ(P ) ≥ 2−m−1 implies that at least one
of μ(Pi) ≥ 2−m−1. Let p = μ∗(Sm+1). The observations above imply that

p ≤ 1
3
(1 − (1− p)2) =

2
3
p− 1

3
p2,

and therefore p = 0.
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To see that a random closed set Q must have measure 0, fix m and let S = Sm.
Then S is the intersection of an effective sequence of clopen sets V	, where for
P = [T ],

P ∈ V	 ⇐⇒ μ([T	]) ≥ 2−m.

Since these sets are uniformly clopen, the sequence m	 = μ∗(V	) is computable.
Since lim	 m	 = 0, it follows that this is a Martin-Löf Test and therefore no
random set Q belongs to ∩	V	. Then in general, no random set can have measure
≥ 2−m for any m.  !
No computable real can be random and it follows that no decidable Π0

1 class can
be random, where P is decidable if P = [T ] for some computable tree T with no
dead ends. We can now extend this to arbitrary Π0

1 classes.

Lemma 1. For any closed set Q, μ∗({P : P ⊆ Q}) ≤ μ(Q).

Proof. Let PC(Q) denote {P : P ⊆ Q}. We first prove the result for (nonempty)
clopen sets U by the following induction. Suppose U = ∪σ∈SI(σ), where S ⊆
{0, 1}n. For n = 1, either μ(U) = 1 = μ∗(PC(U)) or μ(U) = 1

2 and μ∗(PC(Q)) =
1
3 . For the induction step, let Si = {σ : i�σ ∈ S, let Ui = ∪σ∈SiI(σ), let
mi = μ(Ui) and let vi = μ∗(PC(Ui)), for i = 0, 1. Then considering the three
cases in which S includes both initial branches or just one, we calculate that

μ∗(PC(U)) =
1
3
(v0 + v1 + v0v1).

Thus by induction we have

μ∗(PC(U)) ≤ 1
3
(m0 +m1 +m0m1).

Now
2m0m1 ≤ m2

0 +m2
1 ≤ m0 +m1,

and therefore

μ∗(PC(U)) ≤ 1
3
(m0 +m1 +m0m1) ≤ 1

2
(m0 +m1) = μ(U).

For a closed set Q, let Q = ∩nUn, with Un+1 ⊆ Un for all n. Then P ⊂ Q if and
only if P ⊆ Un for all n. Thus

PC(Q) = ∩nPC(Un),

so that
μ∗(PC(Q)) = lim

n→∞μ∗(PC(Un)) ≤ lim
n→∞μ(Un) = μ(Q).

This completes the proof of the lemma.  !
Theorem 5. Let Q be a Π0

1 class with measure 0. Then no subset of Q is
random.
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Proof. Let T be a computable tree (possibly with dead ends) and let Q = [T ].
Then Q = ∩nUn, where Un = [Tn]. Since μ(Q) = 0, it follows from the lemma
that limn μ

∗(PC(Un)) = 0. But PC(Un) is a computable sequence of clopen sets
in C and μ∗(PC(Un)) is a computable sequence of rationals with limit 0. Thus
PC(Un) is a Martin-Löf Test, so that no random closed set can be a member.  !
Since any random class has measure 0, we have the following immediate corollary.

Corollary 2. No Π0
1 class can be random.  !

3 Chaitin Complexity of Closed Sets

In this section, we consider randomness for closed sets and trees in terms of
incompressibility.

Of course, Schnorr’s theorem tells us that P is random if and only if the code
xP ∈ {0, 1, 2}∗ for P is Chaitin random, that is, K3(x�n) ≥ n − O(1). Here
we write K3 to indicate that we would be using a universal prefix-free function
U : {0, 1, 2}∗ → {0, 1, 2}∗.

However, many properties of trees and closed sets depend on the levels Tn =
T ∩ {0, 1}n of the tree. For example, if [Tn] = ∪{I(σ) : σ ∈ Tn}, then [T ] =
∩n [Tn] and μ([T ]) = limn→∞μ([Tn]).

So we want to consider the compressibility of a tree in terms of K(Tn). Now
there is a natural representation of Tn as a subset of {0, 1}n which has length
2n. That is, list {0, 1}	 in lexicographic order as σ1, . . . , σ2� and represent T	 by
the string e1, . . . , e2� where ei = 1 if σ ∈ T	 and ei = 0 otherwise. Henceforth we
identify T	 with this natural representation. It is interesting to note that there
is no immediate connection between Tn and xT �n. For example, if x is the code
for the full tree {0, 1}∗, then x = (2, 2, . . .) and the code for Tn is a string of
2n − 1 2’s. On the other hand, if [T ] = {y} is a singleton, then x = y and the
code for Tn is x�n. For the remainder of this section, we will focus on the natural
representation, rather than the code.

The natural question here is whether there is a formulation of randomness in
terms of the incompressibility of Tn. In this section, we will explore this question
and give some partial answers.

At first it seems plausible that P is random if and only if there is a constant
c such that K(T	) ≥ 2	 − c for all �.

As usual, let U be a universal prefix-free Turing machine and let K(T	) =
min{|σ| : U(σ) = T	}. Now suppose that P = [T ] is a random closed set with
code X . Since X is 1-random, we know that K(X�n) ≥ n− c for some constant
c. In general, we can compute X�n from Tn and hence

K(Tn) ≥ K(X�n)− b.

for some constant b.
That is, define the (not necessarily prefix-free) machine M so that M(Tn) =

XT �n and then let
V (σ) = M(U(σ)).
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Then KV (XT �n) ≤ K(Tn), so that for some constant b, K(XT �n) ≤ K(Tn) + b
and hence

K(Tn) ≥ K(X�n)− b ≥ n− b− c.

Thus we have shown

Proposition 2. If P is a random closed set and T = TP , then there is a con-
stant c such that K(Tn) ≥ n− c for all n.  !
But this is a very weak condition.

Going in the other direction, we can compute T	 uniformly from X�2	, so that
as above, K(X�2	) ≥ K(T	) − b for some b. Thus in order to conclude that X
is random, we would need to know that K(T	) ≥ 2	 − c for some c. Our first
observation is that this is not possible, since trees are naturally compressible.

Theorem 6. For any tree T ⊆ {0, 1}∗, there are constants k > 0 and c such
that K(T	) ≤ 2	 − 2	−k + c for all �.

Proof. For the full tree {0, 1}∗, this is clear so suppose that σ /∈ T for some
σ ∈ {0, 1}m. Then for any level � > m, there are 2	−m possible nodes for T which
extend σ and T	 may be uniformly computed from σ and from the characteristic
function of T	 restricted to the remaining set of nodes. That is, fix σ of length m
and define a prefix-free computer M which computes only on input of the form
0	1τ where |τ | = 2	−2	−m and outputs the standard representation of a tree T	
where no extension of σ is in T	 and where τ tells us whether strings not extending
σ are in T	. M is clearly prefix-free and we have KM (T	) = � + 1 + 2	 − 2	−m.
Thus K((T	) ≤ �+ 1 + 2	 − 2	−m + c for some constant c. Now �+ 1 < 2	−m−1

for sufficiently large � and thus by adjusting the constant c, we can obtain c′ so
that

K(T	) ≤ 2	− 2	−m−1 + c′.  !
We might next conjecture that K(T	) > 2	−c is the right notion of Chaitin
randomness. However, classes with small measure are more compressible.

Theorem 7. If μ([T ]) < 2−k, then there exists c such that, for all �,
K(T	) ≤ 2	−k + c.

Proof. Suppose that μ([T ]) < 2−k. Then for some level n, Tn has < 2n−k nodes
σ1, . . . , σt. Now for any � > n, T	 can be computed from the list σ1, . . . , σt and
the list of nodes of T	 taken from the at most 2	−k extensions of σ1, . . . , σt. It
follows as in the proof of Theorem 6 above that for some constant c,
K(T	) ≤ 2	−k + c.  !

Note that if μ([T ]) = 0, then for any k, there is a constant c such that K(T	) ≤
2	−k + c. But by Theorem 4, random closed sets have measure zero. Thus if P
is random, then it is not the case that K(Tn) ≥ 2n−k.

Next we try to directly construct trees with not too much compressibility. The
standard example of a random real [3] is a so-called c.e. real and therefore Δ0

2.
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Thus there exists a Δ0
2 random tree T and by our observations above K(T	) ≥

�− c for some c. Our first result here shows that we can get a Π0
1 tree with this

property.

Theorem 8. There is a Π0
1 class P = [T ] such that K(Tn) ≥ n for all n.

Proof. Recall the universal prefix-free machine U and let S = {σ ∈ Dom(U) :
|U(σ)| ≥ 2|σ|}. Then S is a c.e. set and can be enumerated as σ1, σ2, . . ..

The tree T = ∩sT s where T s is defined at stage s. Initially we have T 0 =
{0, 1}∗.
σt requires action at stage s ≥ t when τ = U(σt) = T sn for some n (so that

|τ | = 2n and n ≥ |σ|). Action is taken by selecting some path ρt of length n and
define T s+1 to contain all nodes of T s which do not extend ρt. Then τ �= T s+1

n

and furthermore τ �= T rn for any r ≥ s+ 1 since future action will only remove
more nodes from Tn.

At stage s + 1, look for the least t ≤ s + 1 such that σt requires action and
take the action described if there is such a t. Otherwise, let T s+1 = T s.

Recall that
∑

t 2
−|σt| < 1. Since |ρt| ≥ |σt|, it follows that

∑
t∈A 2−|ρt| < 1 as

well. Now μ([T ]) = 1−∑t 2
−|ρt| > 0 and

μ([T s]) = 1−
∑

t∈A,t≤s
2−|ρt| > 2−|ρs+1|.

Thus when U(σs+1) = τ = T sn with n ≥ |σs+1|, there will always be at least 2
nodes of length n in Ts so that we can remove one of them without killing the
tree.

Let T = ∩T s and observe that by the construction each T s is nonempty and
therefore T is nonempty by compactness.

It follows from the construction that for each t, action is taken for σt at most
once.

Now suppose by way of contradiction that U(σ) = Tn for some σt with |σ| ≤ n.
There must be some stage r ≥ t such that for all s ≥ r, T sn = Tn and such that
action is never taken on any t′ < t after stage r. Then σt will require action at
stage r + 1 which makes T r+1

n �= T rn, a contradiction.  !
Next we construct a closed Π0

2 class with a stronger incompressibility property.

Theorem 9. There is a Π0
2 class P = [T ] such that K(T	) ≥ 2

√
	 for all �.

Proof. We will construct a tree T such that Tn2 can not be computed from fewer
than 2n bits. We will assume that U(∅) ↑ to take care of the case n = 0. At stage
s, we will define the (nonempty) level Ts2 of T , using an oracle for 0′.

We begin with T0 = {∅}∗.
At stage s > 0, we consider

Ds = {σ ∈ Dom(U) : |σ| < 2s}.
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Since U is prefix-free, card(Ds) < 22s

. Now there are at least 222s−1

trees
of height s2 which extend T(s−1)2 and we can use the oracle to choose some
finite extension T ′ = Ts2 of T(s−1)2 such that, for any σ ∈ Ds, U(σ) �= T ′ and
furthermore, U(σ) �= Tr for any possible extension Tr with s2 ≤ r. That is, since
there are < 22s

finite trees which equal U(σ) for some σ ∈ Ds, there is some
extension T ′ of T(s−1)2 which differs from all of these at level s2. We observe
that the oracle for 0’ is used to determine the set Ds.

At stage s, we have ensured that for any extension T ⊆ {0, 1}∗ of Ts2 , any
σ with |σ| ≤ 2s

2

and any n ≥ s2, U(σ) �= Tn. It is immediate that K(Tn) ≥
2
√
n.  !

4 Conclusions and Future Research

In this paper we have proposed a notion of randomness for closed sets and
derived several interesting properties of random closed sets. Random strong Π0

2
classes exist but no Π0

1 class is random. A random closed set has measure zero
and contains no computable elements. A random closed set is perfect and hence
uncountable. There are many other properties of closed sets and also of effectively
closed sets which can be studied for random closed sets. For example, does a
random closed set contain a c.e. real, or a real of low degree. We have obtained a
Π0

2 random closed set, whereas there is no Π0
1 random closed set. We conjecture

that every element of a random closed set is a random real and in fact the
members are mutually random.

A real x is said to be K-trivial if K(x�n) ≤ K(n) + c for some c. Much
interesting work has been done on the K-trivial reals. Chaitin showed that if A
is K-trivial, then A ≤T 0′. Solovay constructed a noncomputable K-trivial real.
Downey, Hirschfeldt, Nies and Stephan [4] showed that no K-trivial real is c.e.
complete. It should be interesting to consider K-trivial closed sets.

We have examined the notion of compressibility for trees based on the Chaitin
complexity of the nth level Tn of a tree. We constructed a Π0

1 class P = [T ] such
that K(Tn) ≥ n for all n and also a Π0

2 class Q = [T ] such that K(Tn) ≥ 2
√
n

for all n. Much remains to be done here. It should not be difficult to improve the
result of Proposition 2 to at leastK(Tn) ≥ n2 or perhaps even 2

√
n. For the other

direction, we need some level of incompressibility which implies randomness. We
conjecture that K(Tn) ≥ 2n/c should imply that [T ] is random for any constant
c > 0. We would like to explore the notion that Π0

1 classes more compressible
than arbitrary closed sets.

For many mathematical problems, the set of solutions can be viewed as a
closed set in {0, 1}N. This includes combinatorial problems such as graph-coloring
and matching, problems from logic and algebra such as finding a complete consis-
tent extension of a consistent theory, and problems from analysis such as finding
a zero or a fixed point of a continuous function. See [2] for a detailed discussion
of many such problems. Of course the notion of a random graph is well-known.
The connection between a randomly posed problem and the randomness of the
set of solutions should be of interest.
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Abstract. We see a notion of normal derivation for the calculus of struc-
tures, which is based on a factorisation of derivations and which is more
general than the traditional notion of cut-free proof in this formalism.

1 Introduction

An inference rule in a traditional proof theoretical formalism like the sequent
calculus or natural deduction only has access to the main connective of a formula.
It does not have the feature of deep inference, which is the ability to access
subformulas at arbitrary depth. Proof theoretical systems which do make use of
this feature can be found as early as in Schütte [21], or, for a recent example,
in Pym [19]. The calculus of structures is a formalism due to Guglielmi [11]
which is centered around deep inference. Thanks to deep inference it drops the
distinction between logical and structural connectives, a feature which already
Schütte desired [20]. It also drops the tree-shape of derivations to expose a
vertical symmetry which is in some sense new. One motivation of the calculus
of structures is to find cut-free systems for logics which lack cut-free sequent
systems. There are plenty of examples of such logics, and many are relevant
to computer science: important modal logics like S5, many temporal and also
intermediate logics. The logic that gave rise to the calculus of structures is the
substructural logic BV which has connectives that resemble those of a process
algebra and which can not be expressed without deep inference [26]. Systems
in the calculus of structures so far have been studied for linear logic [24], non-
commutative variants of linear logic [13, 7], classical logic [2] and several modal
logics [22].

In this paper we ask the question what the right notion of cut-free, normal
or analytic proof should be in the calculus of structures, and we see one such
notion which is a factorisation of derivations and which generalises the notion
that is used in the works cited above. This factorisation has independently been
discovered by McKinley in [18]. The existence of normal derivations follows easily
from translations between sequent calculus and calculus of structures. Here we
consider systems for classical predicate logic, i.e. system LK [9] and system SKSgq
[2] as examples, but it is a safe conjecture that this factorisation applies to any
logic which has a cut-free sequent calculus.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 65–74, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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After recalling a system for classical predicate logic in the calculus of struc-
tures, as well as the traditional notion of cut admissibility for this system, we
see a more general notion based on factorisation as well as a proof that each
derivation can be factored in this way. An outlook on some current research
topics around the calculus of structures concludes this paper.

2 A Proof System for Classical Logic

The formulas for classical predicate logic are generated by the grammar

A ::= f | t | a | [A,A ] | (A,A ) | ∃xA | ∀xA ,

where f and t are the units false and true, a is an atom, which is a predicate
symbol applied to some terms, possibly negated, [A,B ] is a disjunction and
(A,B) is a conjunction. Atoms are denoted by a, b, c, formulas are denoted by
A,B,C,D. We define Ā, the negation of the formula A, as usual by the De
Morgan laws. There is a syntactic equivalence relation on formulas, which is
the smallest congruence relation induced by commutativity and associativity of
conjunction and disjunction, the capture-avoiding renaming of bound variables
as well as the following equations:

[A, f ] = A [t, t] = t
(A, t) = A (f, f) = f ∀xA = A = ∃xA if x is not free in A .

Thanks to associativity, we write [A,B,C ] instead of [A, [B,C ] ], for example.
The inference rules in the calculus of structures are just rewrite rules known

from term rewriting that work on formulas modulo the equivalence given above.
There is the notational difference that here the context S{ }, in which the rule
is applied, is made explicit. Here are two examples of inference rules:

S{t}
i↓

S [A, Ā]
and

S(A, Ā)
i↑

S{f} .

The name of the rule on the left is i↓ (read i–down or identity), and seen from
top to bottom or from premise to conclusion it says that wherever the constant
t occurs inside a formula, it can be replaced by the formula [A, Ā] where A is an
arbitrary formula. The rule on the right (read i–up or co-identity or cut), also
seen from top to bottom, says that anywhere inside a formula the formula (A, Ā)
can be replaced by the constant f. The two rules are dual meaning that one is
obtained from the other by exchanging premise and conclusion and replacing
each connective by its De Morgan dual. Here is another example of an inference
rule, which is called switch and which happens to be its own dual:

S([A,B ], C)
s
S [(A,C), B ]

.
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S{t}
i↓

S [A, Ā]

S(A, Ā)
i↑

S{f}

S([A, B ], C)
s

S [(A, C), B ]S{∀x[A, B ]}
u↓

S [∀xA,∃xB ]

S(∀xA,∃xB)
u↑

S{∃x(A, B)}

S{f}
w↓

S{A}
S{A}

w↑
S{t}

S [A, A]
c↓

S{A}
S{A}

c↑
S(A,A)

S{A[x/t]}
n↓

S{∃xA}
S{∀xA}

n↑
S{A[x/t]}

Fig. 1. Predicate logic in the calculus of structures

A derivation is a finite sequence of instances of inference rules. For example

([A,C ], [B,D ])
s

[A, (C, [B,D ])]
s

[A,B, (C,D)]
.

The topmost formula in a derivation is its premise of the derivation, and the
formula at the bottom is its conclusion. A proof is a derivation with the premise
t. Dually, a refutation is a derivation with the conclusion f.

Figure 1 shows system SKSgq from [2]: a system for classical predicate logic.
It is symmetric in the sense that for each rule in the system, the dual rule is
also in the system. Like all systems in the calculus of structures it consists of
two dual fragments: an up- and a down-fragment. The down-fragment is the sys-
tem {i↓, s,w↓, c↓, u↓, n↓} and the up-fragment is the system {i↑, s,w↑, c↑, u↑, n↑}.
We also denote these two systems respectively by ↓ and ↑ and their union, the
symmetric system, by $. The letters w, c, u, n are respectively for weakening, con-
traction, universal and instantiation. It is proved in [2] that the down-fragment is
complete in the sense that it has a proof for each valid formula, the up-fragment
is complete in the sense that it has a refutation for each unsatisfiable formula
and their union is complete also in the sense that for each valid implication it
has a derivation from the premise to the conclusion of this implication.
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3 Cut Elimination

The importance of cut-free proofs in the sequent calculus comes from the fact
that they have the subformula property. Now, clearly the subformula property
does not make sense for the calculus of structures in the same way as a “subse-
quent property” does not make sense for the sequent calculus. So the question
for the calculus of structures is: what is is a cut-free proof?

Definition 1 (Cut-free Proof). A proof in the calculus of structures is cut-free if
it does not contain any up-rules.

The cut elimination theorem takes the following form:

Theorem 2 (Up-fragment Admissibility). For each proof in the symmetric sys-
tem there is a proof in the down-fragment with the same conclusion.

The above notion seems reasonable for our system for classical predicate logic,
since it gives us the usual immediate consequences of Gentzen’s Hauptsatz such
as consistency and Herbrand’s Theorem [3]. Craig Interpolation also follows, but
it would be a bit of a stretch to call it an immediate consequence. It requires
some work because rules are less restricted in the calculus of structures than in
the sequent calculus.

Since for classical predicate logic there is a cut-free sequent system, Theorem 2
can be proved easily: we first translate derivations from the calculus of structures
into this sequent system, using the cut in the sequent system to cope with the
deep applicability of rules. Then we apply the cut elimination theorem for the
sequent system. Finally we translate back the cut-free proof into the calculus of
structures, which does not introduce any up-rules. Details are in [2]. To give an
idea of how derivations in the sequent calculus are translated into the calculus of
structures and to justify why the i↑-rule is also named cut, we see the translation
of the cut rule:

Φ � A,Ψ Φ′, A � Ψ ′
Cut

Φ,Φ′ � Ψ, Ψ ′ translates into

([Φ̄, A, Ψ ], [Φ̄′, Ā, Ψ ′ ])
s

[Φ̄, Ψ, (A, [Φ̄′, Ψ ′, Ā])]
s

[Φ̄, Φ̄′, Ψ, Ψ ′, (A, Ā)]
i↑

[Φ̄, Φ̄′, Ψ, Ψ ′, f ]
=

[Φ̄, Φ̄′, Ψ, Ψ ′ ]

.

A natural question here is whether there is an internal cut elimination pro-
cedure, i.e. one which does not require a detour via the sequent calculus. Such
a procedure was nontrivial to find, since the deep applicability of rules renders
the techniques of the sequent calculus useless. It has been given in [2, 1] for the
propositional fragment and has been extended to predicate logic in [3].

Now we see a more general notion of cut-free or normal derivation. It is not
characterised by the absence of certain inference rules, but by the the way in
which the inference rules are composed:
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Definition 3 (Normal Derivation). A derivation in the calculus of structures is
normal if no up-rule occurs below a down-rule. To put it differently, a normal
derivation has the form

A
‖‖ ↑
B
‖‖ ↓
C

.

This definition subsumes the definition of a cut-free proof: a proof is cut-free if
and only if it is normal. Consider a proof, i.e. a derivation with premise syn-
tactically equivalent to t, of the form given in the definition above. Since the
conclusion of all rules in the up-fragment is equivalent to t if their premise is
equivalent to t, then B has to be equivalent to t. We thus have a proof of C in
the down-fragment. So the following theorem subsumes the admissibility of the
up-fragment:

Theorem 4 (Normalisation). For each derivation in the symmetric system there
is a normal derivation with the same premise and conclusion.

We will see a proof of this theorem shortly, but let us first have a look at
an immediate consequence. Since no rule in the up-fragment introduces new
predicate symbols going down and no rule in the down-fragment introduces new
predicate symbols going up, the formula that connects the derivation in the up-
with the derivation in the down-fragment is an interpolant:

Corollary 5 (Craig Interpolation). For each two formulas A,C such that A im-
plies C there is a formula B such that A implies B, B implies C and all the
predicate symbols that occur in B occur in both A and C.

To prove Theorem 4 we go the easy route just as for Theorem 2, we use cut
elimination for LK and translations that we see in the two lemmas that follow.
However, there is a crucial difference between the translations used to obtain
Theorem 2 and the translations that we are going to see now: while the former
just squeeze a tree into a sequence by glueing together the branches, the latter
will rotate the proof by ninety degrees. We use a version of LK, which works on
multisets of formulas, has multiplicative rules and which is restricted to formulas
in negation normal form. LK is cut-free, we denote the system with the cut rule
as LK + Cut. It is easy to check that we preserve cut admissibility when we
replace the negation rules by two additional axioms:

A, Ā � and � A, Ā .

Formulas of the calculus of structures and sequents of the sequent calculus
are easily translated into one another: for a sequent

Φ � Ψ = A1, . . . , Am � B1, . . . , Bn
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A � A � A

A, Ā � � (A, Ā)
i↑

f
� A, Ā � t

i↓
[A, Ā]

.

Φ, A, A � Ψ
cL

Φ, A � Ψ

�

Φ, A
c↑

(Φ, A, A)
‖‖ ↑

C
‖‖ ↓

Ψ

Φ � A, A, Ψ
cR

Φ � A, Ψ

�

Φ
‖‖ ↑

C
‖‖ ↓

[A, A, Ψ ]
c↓

[A, Ψ ]

Φ, � Ψ
wL

Φ, A � Ψ

�

(Φ, A)
w↑

Φ
‖‖ ↑

C
‖‖ ↓

Ψ

Φ � Ψ
wR

Φ � A,Ψ

�

Φ
‖‖ ↑

C
‖‖ ↓

Ψ
w↓

[A, Ψ ]

Fig. 2. Axioms and structural rules

we obtain two formulas that we denote by Φ and Ψ as well: (A1, . . . , Am) and
[B1, . . . , Bn ]. We identify an empty conjunction with t and an empty disjunction
with f.

Lemma 6 (SKS to LK). For each derivation from A to B in SKSgq there is a
proof of A � B in LK + Cut.

Proof. By induction on the length of the derivation, where we count applications
of the equivalence as inference rules. The base case gives an axiom in the sequent
calculus. The inductive case looks as follows:

S{C}
ρ
S{D}
‖‖
B

�

Π1

C � D
Δ

S{C} � S{D}
Π2

S{D} � B
Cut ,

S{C} � B
where Π2 exists by induction hypothesis, the existence of the derivation Δ can
be easily shown for arbitrary formulas C,D and the existence of the proofΠ1 can
be easily shown for each rule ρ ∈ SKSgq and for the equations which generate
the syntactic equivalence.  !
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A, Φ � Ψ B, Φ′ � Ψ ′

∨L
A ∨ B, Φ, Φ′ � Ψ, Ψ ′

�

([A, B ], Φ, Φ′)
s
2

[(A, Φ), (B, Φ′)]
‖
‖ ↑

[C, C′ ]
‖
‖ ↓

[Ψ, Ψ ′ ]

Φ � A, Ψ Φ′ � B, Ψ ′

∧R
Φ, Φ′ � A ∧ B, Ψ, Ψ ′

�

(Φ, Φ′)
‖
‖ ↑

(C, C′)
‖
‖ ↓

([A, Ψ ], [B, Ψ ′ ])
s
2

[(A, B), Ψ, Ψ ′ ]

Φ, A, B � Ψ
∧L

Φ, A ∧ B � Ψ

�
(Φ, A, B)

‖
‖ ↑

C
‖
‖ ↓

Ψ

Φ � A, B, Ψ
∨R

Φ � A ∨ B, Ψ

�
Φ
‖
‖ ↑

C
‖
‖ ↓

[A, B, Ψ ]

Φ, A[x/τ ] � Ψ
∀L

Φ,∀xA � Ψ

�

(Φ,∀xA)
n↑

(Φ, A[x/τ ])
‖
‖ ↑

C
‖
‖ ↓

Ψ

Φ � A[x/τ ], Ψ
∃R

Φ � ∃xA, Ψ

�

Φ
‖
‖ ↑

C
‖
‖ ↓

[A[x/τ ], Ψ ]
n↓

[∃xA, Ψ ]

Φ, A[x/y ] � Ψ
∃L

Φ,∃xA � Ψ

�

(Φ,∀xA)
=

(∀yΦ,∃yA[x/y ])
u↑

∃y(Φ, A[x/y ])
‖
‖ ↑

∃yC
‖
‖ ↓

∃yΨ
=

Ψ

Φ � A[x/y ], Ψ
∀R

Φ � ∀xA, Ψ

�

Φ
=

∀yΦ
‖
‖ ↑

∀yC
‖
‖ ↓

∀y [A[x/y ], Ψ ]
u↓

[∀yA[x/y ],∃yΨ ]
=

[∀xA, Ψ ]

Fig. 3. Logical rules

Lemma 7 (LK to SKS). For each proof of Φ � Ψ in LK there is a normal derivation
from Φ to Ψ in SKSgq.

Proof. By induction on the depth of the proof tree. All cases are shown in Fig-
ure 2 and Figure 3. In the cases of the ∨L,∧R-rules we get two normal derivations
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by induction hypothesis, and they have to be taken apart and composed in the
right way to yield the normal derivation that is shown in the picture. In the cases
of the ∃L, ∀R-rules the proviso on the eigenvariable is exactly what is needed to
ensure the provisos of the syntactic equivalence.  !
It is instructive to see how the cut translates, and why it does not yield a normal
derivation:

Φ � A,Ψ Φ′, A � Ψ ′
Cut

Φ, Φ′ � Ψ, Ψ ′

�

(Φ, Φ′)
‖‖ ↑

C
‖‖ ↓

(Φ′, [A,Ψ ])
s

[Ψ, (Φ′, A)]
‖‖ ↑

[Ψ, C′ ]
‖‖ ↓

[Ψ, Ψ ′ ]

.

While the detour via the sequent calculus in order to prove the normalisation
theorem is convenient, it is an interesting question whether we can do without.
While it is easy to come up with local proof transformations that normalise a
derivation if they terminate, the presence of contraction makes termination hard
to show.

Problem 8. Find an internal normalisation procedure for classical logic in the
calculus of structures.

The point of proving with different means the same theorem is of course that a
solution might give us a clue on how to attack the next problem:

Problem 9. Prove the normalisation theorem for logics which do not have a
cut-free sequent calculus but which do have cut-free systems in the calculus of
structures, such as BV or the modal logic S5.

4 Outlook

The problems above illustrate one direction of research around the calculus of
structures: developing a proof theory which carries over to logics which do not
have cut-free sequent systems. Examples are modal logics which can not be cap-
tured in the (plain vanilla) sequent calculus, like S5. Hein, Stewart and Stouppa
are working on the project of obtaining modular proof systems for modal logic
in the calculus of structures [15, 22, 23].

Another research thread is that of proof semantics. There is still the question
of the right categorical axiomatisation of classical proofs. For predicate logic
there is an approach by McKinley [18] which is derived from the concept of
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classical category by Führmann and Pym [8] and which is partly inspired by
the shape of inference rules in the calculus of structures. A second approach is
based on the notion of a boolean category by Lamarche and Straßburger [17, 25].
It is also involves concepts from the calculus of structures, in particular the fact
that contraction can be reduced to atomic form and the so-called medial rule
[5], which achieves that reduction.

The proof complexity of systems in the calculus of structures is also a topic
of current research. The cut-free calculus of structures allows for an exponential
speedup over the cut-free sequent calculus, as Bruscoli and Guglielmi [6] show
using Statman’s tautologies. Among the many open questions is whether there
are short proofs for the pigeonhole principle. Short cut-free proofs in the calculus
of structures of course come with a price: there is much more choice in applying
rules than in the sequent calculus, which is an obstacle to implementation and
applications. Work by Kahramanoğullari [16] is attacking this issue.

Finally there is a war against bureaucracy, which is also known as the quest
for deductive proof nets, due to Guglielmi [12]. We say that a formalism contains
bureaucracy if it allows to form two different derivations that differ only due to
trivial rule permutations and are thus morally identical. Proof nets, for exam-
ple, do not contain bureaucracy, while the sequent calculus and the calculus of
structures do. Deductive proof nets, which still do not exist, should not contain
bureaucracy (and thus be like proof nets and unlike sequent calculus), but should
also have a locally and/or easily checkable correctness criterion (and thus be like
sequent calculus and unlike proof nets). Approaches to the identification and
possibly elimination of bureaucracy can be found in Guiraud [14] and Brünnler
and Lengrand [4].

This has been a subjective and incomplete outlook, but more open problems
and conjectures can be found on the calculus of structures website [10].
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Abstract. Logspace complexity of functions and structures is based on
the notion of a Turing machine with input and output as in Papadmitriou
[16]. For any k > 1, we construct a logspace isomorphism between {0, 1}∗

and {0, 1, . . . , k}∗. We improve results of Cenzer and Remmel [5] by char-
acterizing the sets which are logspace isomorphic to {1}∗. We generalize
Proposition 8.2 of [16] by giving upper bounds on the space complexity of
compositions and use this to obtain the complexity of isomorphic copies
of structures with different universes. Finally, we construct logspace mod-
els with standard universe {0, 1}∗ of various additive groups, including
Z(p∞) and the rationals.
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1 Introduction

Complexity theory has been a central theme of computer science and related
areas of mathematics since the middle of the last century. Much work has been
done on the time complexity of sets, functions and structures. The practical goal
is to find efficient algorithms for computing functions and solving problems. In his
encyclopedic book [12], Knuth examines in detail the quest for fast multiplication
and also considers the problem of radix conversion of numbers between binary
and decimal representation. Recent striking advances include the proof that
primality is polynomial-time decidable [1] and the result that division of integers
can be computed in logspace [10]. The latter result will be used below in our
construction of a logspace model for the additive group of rationals.

Complexity theoretic model theory and algebra was developed by Nerode,
Remmel and Cenzer [13, 14, 15, 4, 5]; see the handbook article [9] for details. One
of the basic questions which have been studied is the existence problem, that is,
whether a given computable structure is isomorphic, or computably isomorphic,
to a resource-bounded (typically polynomial time) structure. For example, it was
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shown in [4] that every computable relational structure is computably isomor-
phic to a polynomial time structure and that the standard model of arithmetic
(N,+,−, ·, <, 2x) has a polynomial time model, where 2x indicates the unary ex-
ponential function. The fundamental effective completeness theorem states that
any decidable theory has a decidable model and it follows that any decidable
theory has a polynomial time model. However, there is a fundamental difference
between computable structures and complexity theoretic structures. Any two in-
finite computable sets of integers are computably isomorphic and therefore any
computable structure may be taken to have a standard universe N. However, it
is not the case that any two infinite polynomial time sets are polynomial time
isomorphic. Thus the refined existence question is whether a given computable
structure has a polynomial time model with a standard universe, meaning either
Bin(N) (the set of binary representations of natural numbers) or Tal(N) (the
set of tally representations). It was shown in [5] that there is a family of Abelian
p-groups, including the computably categorical p-groups of [17] which are com-
putably isomorphic to polynomial time groups with a standard universe. At the
same time, Abelian p-groups were constructed in [5] which are not computably
isomorphic to polynomial time groups with a standard universe. The question of
uniqueness of representation, that is, categoricity, was studied further in [6, 8].

In the present paper, we consider the efficient use of space. It was established
by Hopcroft and Ullman [11] that an appropriate model for function calculation
is the machine with read-only input and write-only output. The motivation for
the input/output approach is that simple functions such as addition can be
performed in logarithmic space (in fact in zero space) whereas including the
input and/or output would automatically require at least space n.

In particular, addition of integers can be computed with zero space and multi-
plication can be computed in logspace. Recent work of Chiu et al [10] has shown
that division can also be computed in logspace. It then follows from [2] that
powering and iterated multiplication can also be computed in logspace. On the
other hand, the best upper bound for radix conversion seems to require space
log n log log n. (see [2]). We show that, nevertheless, for each k, there is a
logspace isomorphism between the binary and k-ary representations of natural
numbers.

We improve some results of Cenzer and Remmel [5] by characterizing the sets
of natural numbers which are logspace isomorphic to {1}∗ and by giving various
lemmas which ensure that a given sum or product of logspace sets is logspace
isomorphic to Tal(N) or to Bin(N).

The family of logspace functions is closed under composition and therefore this
notion of logspace computation is robust. We give a generalization of this result
which gives upper bounds for the complexity of the composition of functions of
arbitrary space complexity.

All of these results come together in the construction of logspace models
for certain standard Abelian groups, such as the additive groups Qp of p-adic
rationals and Z(p∞) of p-adic rationals modulo 1, where p is a prime. We also
construct logspace models for the additive groups Q mod 1 and Q.
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We conclude this section with some definitions.
Our model of computation is the multi-tape Turing machine of Papadimitriou

[16]. The cursor of each tape can move independently of the cursors of other
tapes. Our Turing machines are both read-only (input tape symbols are never
overwritten) and write-only (the output-string cursor never moves left).

Let N denote the set {0, 1, 2, . . .} of natural numbers and N+ = N − {0}. A
function F (x) : N+ → N+ is a proper complexity function if F is nondecreasing
and furthermore, there is a Turing machine M with input and output which,
on any input x, computes the string 1F (|x|) in ≤ O(|x| + F (|x|) steps and uses
space ≤ O(F (|x|). Some examples are constant functions, k log x, (log x)k, kx,
xk, 2(log x)k

, 2kx, 2x
k

, or 22kx

. (We use log x as an abbreviation for log2 x.)
Fix a finite alphabet Σ and a proper complexity function G. Then a function

f : (Σ∗)k → Σ∗ is computable in SPACE(G) if there is a Turing machine M
with input and output which computes f(x1, . . . , xk) using space ≤ G(|x|); f is
computable in TIME(G) if there is a Turing machine M with input and output
which computes f(x1, . . . , xk) using time ≤ G(|x|). For time complexity, the
restriction on input and output does not change the capability of the Turing
machine, by Proposition 2.2 of [16].

We are primarily interested in the following families

LOG = LOGSPACE = ∪c∈NSPACE(c log n);
PLOGSPACE = ∪c∈NSPACE((log n)c);
P = PTIME = ∪c∈NTIME(nc).

A function mapping Σ∗ to Σ∗ is sometimes said to be FLOG computable, or
simply FLOG if it is in LOG. The following is part of Theorem 7.4 of [16].

Lemma 1. For any proper complexity function G:

(a) TIME(G) ⊆ SPACE(G);
(b) SPACE(G) ⊆ TIME(klog n+G(n)) for some k. �

This implies in particular that LOG ⊆ P and hence the following fact.

Lemma 2. For any function f in FLOG, there is a constant k such that
|f(x)| ≤ |x|k for all inputs x.

The standard universes for computation are the following. Let Tal(0) = 0 and for
n > 0, let Tal(n) = 1n. Then Tal(N) = {0}∪ {1}∗ = {Tal(n) : n ∈ N}. For each
n ∈ N and each k > 1, let Bk(n) = b0b1 . . . br ∈ {0, 1, . . . , k−1}∗ be the standard
(reverse order) k-ary representation, so that br > 0 and n = b0 +b1k+ . . .+brk

r.
Then

Bk(N) = {Bk(n) : n ∈ N} = {b0 . . . br ∈ {0, 1, . . . , k − 1}∗ : br �= 0}.

In particular, let Bin(n) = B2(n) and Bin(N) = B2(N).



78 D. Cenzer and Z. Uddin

2 Composition

In this section, we consider the space complexity of composite functions. We
give a general result which provides an upper bound on the complexity of a
composition of functions and some specific corollaries which we will need for the
study of resource-bounded structures.

Theorem 1. Let F and G be nonconstant proper complexity functions and let
g be a unary function in SPACE(G) and f an n-ary function in SPACE(F ).
Then the composition g ◦ f can be computed in SPACE ≤ G(2kF ) for some
constant k.

Proof. The proof is a generalization of the standard proof that the composition
of two LOGSPACE functions is in LOGSPACE. In particular, note that by
Lemma 1 for x = (x1, . . . , xn), f(x) can be computed in time c|x|n2kF (|x|) for
some constants c and k which bounds the length of f(x). The logspace algorithm
uses a binary counter to keep track of the location of the pointer for the g work
tape and recreates the bits of f(x) as needed.

Corollary 1. (a) LOGSPACE ◦ LINSPACE = LINSPACE;
(b) PLOGSPACE ◦ PLOGSPACE = PLOGSPACE;

3 Logspace Sets and Radix Representation

In this section, we establish a few lemmas about logspace isomorphisms of sets
which will be needed for the discussion of logspace structures.

The first lemma characterizes sets isomorphic to Tal(N) and is similar to
Lemma 2.4 of [5].

Lemma 3. Let A be a LOGSPACE subset of Tal(N), and list the elements
a0, a1, a2 . . . of A in the standard ordering. Then the following are equivalent:

(a) A is LOGSPACE set-isomorphic to Tal(N).
(b) For some k and all n � 2, we have |an| ≤ nk.
(c) The canonical bijection between Tal(N) and A that associates 1n with an,

n ≥ 0, is in LOGSPACE.

Proof. The map taking an to 1n is FLOG even without assumption (b). That
is, given tally input a = an, one proceeds as follows. First convert a to binary
b and write this on a worktape. Now a second tape will begin with Bin(0) and
increment at stage t + 1 from Bin(t) to Bin(t + 1) as long as Bin(t) ≤ b. The
output tape will begin with 0. Then at stage t, we will simulate testing whether
Tal(t) ∈ A as follows. Use the standard LINSPACE conversion Bin(t) into
Tal(t) and then the LOG test of whether Tal(T ) ∈ A. It follows from Corollary 1
that this computation is LINSPACE in the input Bin(t) and since Tal(t) ≤ an,
the computation can be done in LOGSPACE with respect to input an. If the
test is positive, then a “1” is appended to the output tape.
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For the map taking 1n to an = Tal(m), assume (b) and use the following
procedure. As above, at stage t ≤ n, we will have Bin(t) on one work tape and
test whether Tal(t) ∈ A. If the test is positive, then we move the cursor on the
input tape to the right and otherwise not. Once the end of the input tape is
reached, we will have Bin(m) on the work tape. The final step is to convert this
to an = Tal(m). Since an ≤ nk, it follows that |Bin(m)| ≤ log(nk), so that the
computation can be done in LOGSPACE.

The next lemma is crucial for building structures with a standard universe.

Lemma 4. For each k � 2, the following sets are LOGSPACE isomorphic:

(a) Bin(N);
(b) Bk(N);
(c) {0, 1, . . . , k − 1}∗.

Furthermore, there exists a LOGSPACE bijection f : Bin(N) → Bk(N) and
constants c1, c2 > 0 such that, for every n ∈ N:

(i) |f(Bin(n))| ≤ c1|Bin(n)| and
(ii) |f−1(Bk(n))| ≤ c2|Bk(n)|.
Proof. It is easy to see that Bin(N) is logspace isomorphic to {0, 1}∗. For any
k > 2, {0, 1, . . . , k − 1}∗ is logspace isomorphic to {0, 1}∗ by the function f
defined as follows.

First define g : {0, 1, . . . , k − 1} −→ {0, 1}∗ by g(0) = 0k−1 and g(i) =
0i−11 for 1 ≤ i < k. Then let f(∅) = ∅, f(0n) = 0n, f(σ�0n) = f(σ)�0n

when σ is a string with at least one non-0 symbol, and f(a0a1 . . . an−1) =
g(a0)�g(a1)� . . .� g(an−1) where each ai ∈ {0, 1, . . . , k − 1} and at least one
ai �= 0.

Observe that Bk(N) − {0} is the set of strings in {0, 1, . . . , k − 1}∗ − {∅},
beginning with i = 1, 2, . . . , k − 1 and is therefore logspace isomorphic to k − 1
copies of {0, 1 . . . , k − 1}∗. On the other hand, {0, 1, . . . , k − 1}∗ is naturally
isomorphic to k copies of itself. We will show that {0, 1 . . . , k − 1}∗ − {∅} is
logspace isomorphic to k−1 copies of itself and thus Bk(N) is logspace isomorphic
to {0, 1, . . . , k − 1}∗. Elements of {0, 1 . . . , k − 1}∗ are denoted below by σ and
elements of the k − 1 fold disjoint union by 〈j, σ〉, and arbitrary elements of
{0, 1 . . . , k− 1}∗ are denoted by τ . The mapping is defined by the following sets
of rules. For strings not beginning with 0 or 1, we have:

2 → 〈1, 0〉 2�0n → 〈1, 0n+1〉 2�σ → 〈1, σ〉
3 → 〈2, 0〉 3�0n → 〈2, 0n+1〉 3�σ → 〈2, σ〉
...

...
...

k − 2 → 〈k − 3, 0〉 (k − 2)�0n → 〈k − 3, 0n+1〉 (k − 2)�σ → 〈k − 3, σ〉
k − 1 → 〈k − 2, 0〉 (k − 1)�0n → 〈k − 2, 0n+1〉 (k − 1)�σ → 〈k − 2, σ〉

For strings beginning with 1, we have:

1 → 〈0, (k − 1)�0〉 1�0n → 〈0, (k − 1)�0n+1〉 1�σ → 〈0, (k − 1)�σ〉
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For strings beginning with 0, we have:

0n → 〈0, 0n〉

0�(k − 1)�τ → 〈0, (k − 2)�τ 〉 0n+1�(k − 1)�τ → 〈0, 0n�(k − 2)�τ 〉
0�(k − 2)�τ → 〈0, (k − 3)�τ 〉 0n+1�(k − 2)�τ → 〈0, 0n�(k − 3)�τ 〉
...

...
02�τ → 〈0, 1�τ 〉 0n+1�2�τ → 〈0, 0n�1�τ 〉
01�τ → 〈0, 0�(k − 1)�τ 〉 0n+1�1�τ → 〈0, 0n+1�(k − 1)�τ 〉

It is not hard to see that this defines a bijection f and that both f and f−1

are logspace computable, in fact, can be computed without using any space.

Lemma 5. Let A be a nonempty LOGSPACE subset of Tal(N). Then

(a) The set A⊕ Tal(N) is LOGSPACE isomorphic to Tal(N) and the set
A⊕Bin(N) is LOGSPACE set-isomorphic to Bin(N).

(b) The set A× Tal(N) is LOGSPACE isomorphic to Tal(N) and the set
A×Bin(N) is LOGSPACE set-isomorphic to Bin(N).

(c) Both Bin(N)⊕Bin(N) and Bin(N)×Bin(N) are LOGSPACE isomorphic
to Bin(N).

(d) If B is a nonempty finite subset of Bin(N), then both B ⊕ Bin(N) and
B ×Bin(N) are LOGSPACE isomorphic to Bin(N).

Proof. The tally cases of parts (a) and (b) follow from Lemma 3. That is, for
example, A⊕ Tal(N) contains all odd numbers and therefore the nth element is
certainly ≤ 2n+ 1.

For the binary cases of (a) and (b), first observe that Bin(N) − Tal(N) is
logspace isomorphic to Bin(N) via the map f(x) = x + 1 − |x| and Tal(N) ⊗
Bin(N) is logspace isomorphic to Bin(N) via the map g defined as follows:

g(〈1m, 0〉) = 0m�1 and g(〈1m, Bin(n)〉) = 0m�1�Bin(n) for n �= 0;
g(〈1, Bin(n)〉) = 1�Bin(n);
g(〈0, 0〉] = 0 and g(〈0, 1〉) = 1.

Then A ⊕ Bin(N) is logspace isomorphic to A ⊕ Tal(N)⊕ (Bin(N) − Tal(N)),
which is logspace isomorphic to Tal(N)⊕Bin(N)−Tal(N) by the tally case and
thus logspace isomorphic to Bin(N). Finally, A ⊗ B is logspace isomorphic to
A⊗ Tal(N)⊗Bin(N), which is logspace isomorphic to Tal(N)⊗Bin(N) by the
tally case and thus logspace isomorphic to Bin(N).

For part (c), partition N× N into an infinite disjoint union as follows.
For each n � 1, define

An = {0, 1, . . . , 2n − 1} × {2n, 2n + 1, . . . , 2n+1 − 1},
Bn = {2n, 2n + 1, . . . , 2n+1 − 1} × {0, 1, . . . , 2n − 1},
Cn = {2n, 2n + 1, . . . , 2n+1 − 1} × {2n, 2n + 1, . . . , 2n+1 − 1}.
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Define the map f from N × N to N by f(0, 0) = 0, f(1, 0) = 2, f(1, 1) = 3 and
for each n ≥ 1,

(x, y) )→ 2nx+ y + 22n − 2n if (x, y) ∈ An,
(x, y) )→ 2nx+ y + 22n if (x, y) ∈ Bn,
(x, y) )→ 2nx+ y + 22n+1 − 2n if (x, y) ∈ Cn.

Then it can be shown that the corresponding map from Bin(N) × Bin(N) to
Bin(N) is a logspace isomorphism.

Part (d) is not difficult.

4 Logspace Structures

This section contains the main construction of resource-bounded models, with
standard universe, of certain basic groups, including the p-groups Z(p∞) and
the additive group Q of rationals. We begin with some necessary lemmas.

Lemma 6. Let A be a LOGSPACE structure and let φ be a LOGSPACE
bijection from A (the universe of A) onto a set B. Then B is a LOGSPACE
structure, where the functions and relations on its universe B are defined to
make φ an isomorphism of the structures.

Lemma 7. Let M be a structure with universe M ⊆ N, and let A = Tal(M)
and B = Bk(M), where k ≥ 2. Then we have

(a) If B ∈ LOGSPACE, then A ∈ PLOGSPACE.
(b) If B ∈ LINSPACE and for all functions fB, |fB(m1, . . . ,mn)| � c(|m1|+

. . .+ |mn|) for some fixed constant c and all but finitely many n-tuples, then
A ∈ LOGSPACE.

The direct sum, or external weak product, of a sequence Ai = (Ai,+i,−i, ei) of
groups is defined as usual to have elements (a0, a1, . . .) where, for all but finitely
many i, ai = ei and the operations are coordinatewise. The sequence is fully
uniformly LOGSPACE over B (either Bin(N) or Tal(N)) if the following hold.
(i) The set {〈B(n), a〉 : a ∈ An} is a LOGSPACE subset of B ⊗ B, where
B(n) = Tal(n) if B = Tal(N) and B(n) = Bin(n) if B = Bin(N).
(ii) The functions F and G, defined by F (B(n), a, b) = a+nb and G(B(n), a, b) =
a−n b, are LOGSPACE computable.
(iii) The function e : Tal(N) → B, defined by e(Tal(i)) = ei, is in LOGSPACE.

Lemma 8. Let B be either Tal(N) or Bin(N). Suppose that the sequence
{Ai}i∈N of groups is fully uniformly LOGSPACE over B. Then

(a) The direct sum ⊕iAi is recursively isomorphic to a LOGSPACE group with
universe contained in Bin(N).

(b) If Ai is a subgroup of Ai+1 for all i,and if there is a LOGSPACE function
f : {0, 1}∗ → B such that for all a ∈ ⋃iAi, we have a ∈ Af(a), then the
union

⋃
iAi is a LOGSPACE group with universe contained in B.
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(c) If the sequence is finite, one of the components has universe B, and the
remaining components have universes that are LOGSPACE subsets of
Tal(N), then the direct sum is recursively isomorphic to a LOGSPACE
group with universe B.

(d) If the sequence is infinite and if each component has universe Bin(N), then
the direct sum is recursively isomorphic to a LOGSPACE group with uni-
verse Bin(N).

(e) If each component has universe Tal(N) and there is a uniform constant c
such that for each i and any a, b ∈ Ai, we have both |a +i b| � c(|a| +i |b|)
and |a−i b| � c(|a|+i |b|), then the direct sum is recursively isomorphic to a
LOGSPACE group with universe Tal(N).

Proof. We just sketch the proof of (d) to give the idea. Elements of the sum may
be viewed as finite sequences from Bin(N) with coordinatewise operations and
therefore LOGSPACE. For the isomorphism, sequences of length n > 0 may be
mapped to 〈n,m〉 ∈ Bin(N)⊕Bin(N) since the set of sequences of length n is a
finite sum of n− 1 copies of Bin(N) with one copy of Bin(N) − {0} and hence
isomorphic to Bin(N) by Lemma 5. This will give a logspace isomorphism of the
universe which then leads to a group isomorphism by Lemma 6.

For a given prime p, let Qp denote the additive group of all p-adic rationals

Theorem 2. Let k > 1 be in N and let p be a prime. Each of the groups Z,⊕
ω Zk, Z(p∞), and Qp are computably isomorphic to LOGSPACE groups A

with universe Bin(N), and B with universe Tal(N).

Proof. The standard structure for Z is clearly logspace and can be made to have
universe Bin(N) or Tal(N) by mapping n to 2n for n ≥ 0 and mapping −n to
2n+ 1 for n > 0. For any k,

⊕
ω Zk is easily seen to be in logspace by Lemma 4.

For a fixed prime number p, the group Z(p∞) consists of rational numbers of
the form a/pi where a, i ∈ N, 0 ≤ a < pi and i > 0 with addition modulo 1. For
our logspace model G(p∞), we let the string e0e1 . . . en−1 ∈ Bp(N) represent the
p-adic rational

e0
p

+
e1
p2 + · · ·+ en−1

pn
.

It can be verified that the addition operation on these strings is indeed FLOG
computable so that (G(p∞),+G) is a logspace model of Z(p∞) with universe
Bp(N). Note that in Z(p∞), the sum x+G y of two rationals either equals x+ y
(if x+y < 1) or equals x+y−1 (if x+y ≥ 1), and these cases can be determined
in logspace. Now Lemma 7 implies that there is a logspace model with universe
Bin(N). Furthermore, |a⊕ b| � max(|a|, |b|), so that by Lemmas 4 and 7, there
is a logspace model with universe Tal(N).

The group Qp is almost the direct sum of the groups Z and Z(p∞). That is,
the universe of Qp is the product of the universes of the two groups, but for
the addition, we have to check as in the remarks above, whether the elements of
Z(p∞), viewed as rational numbers, have a sum less than 1, or not.
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Now let (B1,+1) be our logspace model of Z and let (B2,+2) be our logspace
model of Z(p∞) and let 1B denote the element of B1 corresponding to the integer
1. The desired model of Qp will have elements 〈b1, b2〉 with b1 ∈ B1 and b2 ∈ B2.
To compute (b1, b2)+ (c1, c2), first compute b1 +1 c1 and b2 +2 c2. Note from the
remarks above that we can also decide in logspace whether the b2 +2 c2 = b2 + c2
or equals b2+c2−1. In the former case, (b1, b2)+(c1, c2) = (b1+1c1, b2+2 c2) and
in the latter case, (b1, b2) + (c1, c2) = (b1 +1 c1 +1 1, b2 +2 c2). This construction
will carry over to the models with binary and tally universes.

Theorem 3. The additive group Q of rationals and also the additive groups
Q mod 1, are computably isomorphic to LOGSPACE groups with universe
Bin(N), and to LOGSPACE groups with universe Tal(N).

Proof. The group Q mod 1 can be represented as the infinite sum of the groups
Z(p∞), for prime p, and Lemma 8 implies that there are logspace models with
universe Bin(N) and with universe Tal(N). We will briefly explain how this
sum can be obtained in a fully uniformly LOGSPACE fashion. Let Ap be a
LOGSPACE group with universe B = Tal(N) and define Cp to be a copy of Ap

with the element a replaced by 〈Tal(p), a〉. Given x = 〈Tal(n), 〈Tal(p), T al(a)〉,
x ∈ Cpn if and only if p = pn, the nth prime. Since the set of primes is poly-
nomial time in Binary, it is LOGSPACE in Tally and therefore we can check
whether p = pn in LOGSPACE. The second clause in the definition of uni-
formly LOGSPACE follows from the uniformity of the proof of Theorem 2.
Part (e) of Lemma 8 now gives a group with universe Tal(N). Omitting the first
component C2 from the sequence, we get a group with universe Tal(N) which
can then by combined with a binary copy of Z(2∞) to obtain a copy of Q mod 1
with universe Bin(N), by Lemma 5.

For the group Q, we proceed as in the proof of Theorem 2. That is, the universe
of Q is the product of the universes of models for Z and for Q mod 1 and thus
by Lemma 8 may be taken to be Bin(N) or Tal(N) as desired. However, for
the addition, we have to add the elements from Q mod 1 as rationals and then
carry the integer part over. Now in our model of Q mod 1, a finite sequence
of strings σ1, . . . , σn where each σi = (ei0, e

i
2, . . . , e

i
ki−1) ∈ Bki

pi
represents the

pi-adic rational ei
0

pi
+ · · · + eki−1

p
ki
i

. To compute the sum σ1 + . . . + σn requires

taking a common denominator pk1

1 · pk2

2 . . . pkn
n and using iterated multiplication

and addition to obtain the numerator and finally division to obtain desired carry
value c to be added to the integer sum. The results of [2, 10] imply that this can
be done in logspace.

5 Conclusion and Further Research

In this paper we have begun to examine the role of logspace computability (and
other notions of space complexity) in complexity theoretic model theory and
algebra. We have established basic results on the standard universes Bin(N)
and Tal(N) and on the composition of functions. Finally, we have constructed
logspace models with standard universes of certain computable Abelian groups.
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For future research, we will investigate space complexity of other structures,
including in particular torsion-free Abelian groups and equivalence structures
(see [3]). The general notion of categoricity is of particular interest. Research of
Cenzer and Remmel [6, 7, 8] found very few positive categoricty results for time
complexity, but we believe that space complexity holds more promise.
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Abstract. Computability in the limit represents the non-plus-ultra of
constructive describability. It is well known that the limit computable
functions on naturals are exactly those computable with the oracle for
the halting problem. However, prefix (Kolmogorov) complexities defined
with respect to these two models may differ. We introduce and compare
several natural variations of prefix complexity definitions based on gen-
eralized Turing machines embodying the idea of limit computability, as
well as complexities based on oracle machines, for both finite and infinite
sequences.

Keywords: Kolmogorov complexity, limit computability, generalized
Turing machine, non-halting computation.

1 Introduction

Limit computable functions are functions representable as a limit of a com-
putable function over an extra argument. They are a well-known extension of
the standard notion of computability, and appear in many contexts, e. g. [1,6,14].
It was argued that many human activities (such as program debugging) produce
the final result only in the limit, and that limit computability is the non-plus-
ultra of constructive describability—even more powerful models of computation
cannot be classified as constructive any more, e. g. [11,13]. Several papers discuss
the possibility of infinite computations in the physical world, e. g. [5, 10, 19].

Several authors considered variants of Kolmogorov complexity based on limit
computations and computations with the halting problem oracle 0′, e. g. [2,3,9].
Limit computable functions are exactly functions computable with the oracle 0′

by the well-known Shoenfield limit lemma [21]. In algorithmic information the-
ory, however, we cannot simply apply the Shoenfield lemma to replace limit
computability by 0′-computability. The reason is that the lemma is proven
for functions on naturals, whereas definitions of prefix and monotone complex-
ity require functions on sequences satisfying some kind of prefix property—see
[7, 12, 16, 17].

In the present paper, we prove equalities and inequalities for prefix complex-
ity with the oracle 0′ and several natural variations of prefix complexity based on
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generalized Turing machines (GTMs), one of the natural models for limit com-
putability [20] (also compare [4]). GTMs never halt and are allowed to rewrite
their previous output, with the only requirement being that each output bit
eventually stabilizes forever. We prove that depending on the subtleties of the
definition, the corresponding complexities may differ up to a logarithmic term.

Originally, Kolmogorov [15] defined the complexity of an object as the mini-
mal size of its description with respect to some effective specifying method (mode
of description), i. e. a mapping from the set of descriptions to the set of objects.
The specifying methods may be implemented on various computing devices (such
as ordinary TMs, possibly non-halting TMs, possibly supplied with an oracle,
etc.). All yield different complexity variants. Restricting oneself to values defined
up to a bounded additive term, one can speak about complexity with respect to
a certain class of machines (containing a universal one).

Even for a given machine, however, we get different complexity variants defin-
ing the machine input and the input size in different ways. Let us consider a
generic machine with a single one-way infinite input tape containing only zeros
and ones, reading the input tape bit by bit, and generating some output object.
Researchers used (sometimes implicitly) at least three variants of “input mode”:

Strong Prefix Mode. The machine has to separate explicitly the description
(“a significant part of the input”) from the rest of the input. More formally,
the description is the initial part of the input actually read during generating
the output object. The size of the description is its length; the set of possible
descriptions is prefix-free: no description is a prefix of another one.

Weak Prefix Mode. The description is a finite sequence such that the machine
generates the object if the input tape contains any prolongation of this sequence;
the size of the description is its length. The set of descriptions is not prefix-free,
but if a description is a prefix of another one, they describe the same object.
Every strong prefix description is also a weak one, but the converse does not
hold. In the weak prefix case, the set of the “shortest descriptions” (those that
are not prolongations of other descriptions) is prefix-free, but in general this set
cannot be enumerated effectively, unlike the strong prefix case.

For machines with halting computations, the weak prefix mode can be inter-
preted with the help of an “interactive” input model. Instead of reading the input
off an input tape, the machine obtains its finite or infinite input sequence bit by
bit from the user (or some physical or computational process), who decides when
the next bit is provided. The result of any computation may not depend on the
timing of the input bits, but depends on the input sequence only. Clearly, if the
machine generates some object on input x, the machine will generate the same
object on all prolongations of x (since the user may provide x at the beginning
and the rest once the machine has halted). On the other hand, one may assume
the following property: if the machine halts and generates some object on all
prolongations of x, then the machine halts and generates the same object also
on x. (It is sufficient to note that one can enumerate all such x: Consider the
set of y such that the machine halts on xy, but does not halt on any prefix of
xy. This set contains a prefix of any infinite prolongation of x. This set is finite,
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otherwise the machine does not halt on some infinite prolongation of x.) Clearly,
the input sequences of a machine with this property are exactly the weak prefix
descriptions.

Probabilistic Mode. In this case, the input tape is interpreted as a source of
random bits, and the probability of generating some object serves to measure
its complexity (complex objects are unlikely). More formally, a description is
any set of infinite sequences such that the machine generates the object when
the input tape contains an element of this set. The size of the description is
the negative logarithm of its uniform measure. If x is a weak prefix description
of size n, then the set of all prolongations of x is a probabilistic description of
size n. On the other hand, for any collection of non-overlapping probabilistic
descriptions there is a prefix-free set of finite sequences of the same sizes (the
set of strong prefix descriptions), but in general one cannot find it effectively.

For any machine model, one may consider these three input modes and get
three complexity types. The strong prefix mode complexity is the largest, the
probabilistic mode complexity the smallest. In fact, two important results of al-
gorithmic complexity theory can be interpreted as comparing these input modes
for specific machine models. These results concern prefix and monotone complex-
ity, and provide examples of machine models where the three kinds of complexity
coincide and where they are different. In both cases, the standard TM is used,
and the difference is in the definition of the computational result (the computed
object) only.

For prefix complexity, the machine is said to generate an object if the machine
prints the object and halts (thus, objects are identifiable with finite sequences).
Levin’s Coding Theorem [16] (see also [7]) implies that in this case all three input
modes lead to the same complexity (up to an additive constant). Informally
speaking, the theorem says that the probability of guessing any program for the
given data is essentially equal to the probability of guessing its shortest program.
Technically, the Levin theorem simplifies many proofs allowing us to switch at
any moment to the most suitable of the three definitions (see [23] for an extensive
discussion of the strong and weak prefix modes for prefix complexity).

For monotone complexity, the objects are finite and infinite sequences, the
TM prints its output bit by bit and does not necessarily halt. We say a finite
sequence is generated by the machine if this sequence appears on the output tape
at some point (subsequently the machine may prolong the output); an infinite
sequence is generated if all its finite prefixes appear during the computation. In
this case, the probabilistic mode gives the value known as the logarithm of the
a priori semimeasure on binary sequences. The weak prefix mode is used for the
main definition of monotone complexity by Gács in [12] (which is referred to
as type 2 monotone complexity in [17, pp. 312–313]). The strong prefix mode
is used for definition of monotone complexity in the main text of [17] (where it
also referred to as type 3 monotone complexity, pp. 312–313). All three values
coincide up to a logarithmic additive term. Gács [12] proved that the difference
between the monotone complexity (under his definition) and the logarithm of
the a priori semimeasure (between the probabilistic and weak prefix modes in
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our terms) is unbounded on finite sequences. It is unknown whether the two
monotone complexities (the weak and strong prefix modes) coincide; all known
theorems hold for both.

Here the three modes are studied for finite and infinite output sequences
computed on GTMs. Informally speaking, it turns out that the strong prefix-
mode complexity differs from the weak prefix-mode complexity by a logarith-
mic term, for both finite and infinite sequences. For finite sequences, the weak
prefix-mode complexity coincides with the probabilistic-mode complexity up to
a constant. For infinite sequences, they coincide up to a logarithm. It remains
an open question whether this bound is tight. A diagram in Sect. 6 displays
the results including relations to complexities with the halting problem oracle
0′. The rest of the paper is organized as follows: Sect. 2 contains definitions of
GTM and complexities; Sect. 3 provides technical lemmas connecting GTMs and
oracle machines; the main results are given in Sect. 4 for finite sequences and in
Sect. 5 for infinite sequences. For the full proofs, see technical report [8].

2 Definition of GTMs and Complexities

Denote by B∗ the space of finite sequences over the binary alphabet B = {0, 1}
and by B∞ the space of infinite sequences. Denote by �(x) the length of x ∈ B∗,
and put �(x) = ∞ for x ∈ B∞. For x ∈ B∗ ∪ B∞ and n ∈ N, let xn be the n-th
bit of x (0 or 1) if n ≤ �(x) and a special symbol “blank” otherwise.

A generalized Turing machine (GTM) is a machine with one read-only input
tape, several work tapes, and one output tape; all tapes are infinite in one di-
rection. A GTM never halts; it reads the input tape bit by bit from left to right;
it can print on the output tape in any order, i.e. can print or erase symbols in
any cell many times. For a machine T and an input sequence p ∈ B∞, denote by
Tt(p) the finite binary sequence1 on the output tape at the moment t. We say
that a GTM T on an input p ∈ B∞ converges to x ∈ B∗ ∪ B∞ (write T (p) 	 x)
if ∀n ∃tn ∀t > tn [Tt(p)]n = xn (informally speaking, each bit of the output sta-
bilizes eventually). The sequence x is called the output of T on p, and p is called
a program for x.

We say that a GTM T on an input p ∈ B∗ strongly converges to x ∈ B∗∪B∞

(write T (p) ⇒ x) if T (p0∞) 	 x and T reads exactly p during the computation.
We say that a GTM T on an input p ∈ B∗ weakly converges to x ∈ B∗ ∪ B∞

(write T (p) � x) if T (pq) 	 x for any q ∈ B∞. These two kinds of convergence
reflect the strong and weak prefix modes. Clearly, if T (p) ⇒ x, then T (p) � x.

Recall that for the weak prefix mode we had two equivalent models in the
case of halting computations. For non-halting computations, there are several
(non-equivalent) ways of defining some analogue of the “interactive” machine

1 For technical convenience, we assume that the content of the output tape is always
a finite sequence of zeros and ones followed by blanks (without blanks inside). This
assumption is not restrictive: for any T one can consider T ′ that emulates T but
postpones printing a bit to the output tape if the requirement is violated; clearly,
the results of converging computations are not affected.
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(where the user sometimes provides a new bit). The following variant is chosen
for conveniently relating GTMs to oracle machines below. We say that a GTM T
on an input p ∈ B∗ uniformly weakly converges to x ∈ B∗∪B∞ (write T (p) � x)
if ∀n ∃tn ∀t > tn∀q ∈ B∞ [Tt(pq)]n = xn. The last formula differs from the
definition of weak convergence only by the order of quantifiers (T (p) � x iff
∀q ∈ B∞ ∀n ∃tn ∀t > tn [Tt(pq)]n = xn). Informally speaking, in the uniform
case, the moment of stabilization of a certain output bit is determined by some
finite part of the input. It is easy to see that uniform weak convergence can be
implemented by some kind of “interactive” machine. In the non-uniform case,
however, for any initial part of the input sequence there may be a prolongation
where this bit will change. One can show that strong, weak, and uniform weak
convergence yield different classes of computable functions.

By the standard argument, there is a universal GTM U . For x ∈ B∗ ∪ B∞,
we define complexities corresponding to the strong and weak prefix modes:

KG
⇒

(x) = min{�(p) | U(p) ⇒ x} ,
KG

�
(x) = min{�(p) | U(p) � x} ,

KG
�

(x) = min{�(p) | U(p) � x} .
The idea of probabilistic mode is reflected by the a priori GTM-probability

PG(x) = λ{p | U(p) 	 x} ,
where λ is the uniform measure on B∞; we do not introduce a special sign
for the corresponding complexity − log2 P

G(x). These complexity measures are
well-defined in the sense that if U is replaced by any other GTM, then KG

⇒
(x),

KG
�

(x), KG
�

(x), and − log2 P
G(x) can decrease at most by a constant, the same

for all x. Clearly, for x ∈ B∗ ∪ B∞,

− log2 P
G(x) ≤ KG

�
(x) ≤ KG

�
(p) ≤ KG

⇒
(x) . (1)

As usual in complexity theory, many relations hold up to a bounded additive
term, which is denoted by +=, +≤ in the sequel.

The complexity KG
⇒

(x) coincides with KG(x) originally defined in [20]. Po-
land [18] suggested a definition of complexity for enumerable output machines
similar to KG

�
(x) in our case, and proved that for enumerable output machines,

his complexity is equal to the logarithm of the a priori measure up to a constant
(for GTMs such an equality was not known even with logarithmic accuracy [20]).

3 Oracle Machines and GTMs

Recall that an oracle Turing machine is a Turing machine with one additional
operation: for any number n, the machine can check whether n belongs to a fixed
set called an oracle (or, equivalently, the machine can get any bit of a certain
infinite sequence). The oracle is not a part of the machine: the machine can work
with different oracles but the result depends on the oracle used.



90 A. Chernov and J. Schmidhuber

Denote by 0′ the oracle for the halting problem (see [22]). By the Shoenfield
limit lemma [21], 0′-computable functions are exactly the limit computable func-
tions. The GTM also embodies the idea of computability in the limit: it tries
various answers and eventually (in the limit) gives the correct answer. But if
the input is provided without delimiters, a difference arises. In the strong prefix
mode case, an oracle machine can use the oracle to detect the input end (and to
stop reading in time), while a GTM does not differ from an ordinary TM in this
respect. In the probabilistic mode case, a GTM has an advantage since it does
not halt and may use the entire (infinite) input sequence.

It turns out that uniform weak convergence for GTMs is equivalent to weak
convergence for machines with the oracle for the halting problem2.

Lemma 1. 1. For any GTM T there exists an oracle machine T̃ with two input
tapes3 such that: For any p ∈ B∗, if T (p) � x, then ∀q ∈ B∞ ∀n T̃ 0′

(pq, n) halts
and prints x1:n.
2. For any oracle machine T with two input tapes there exists a GTM T̃ with
the following properties. For any p ∈ B∞, if T 0′

(p, n) halts and prints x1:n for
all n, then T̃ (p) 	 x. If T 0′

(pq, n) halts and prints x1:n for some p ∈ B∗, for all
q ∈ B∞ and for all n, then T̃ (p) � x.

Note that one cannot replace uniform weak convergence by weak convergence in
the first statement of Lemma 1, because the behavior of the GTM may always
depend on the unread part of the input, which is unacceptable for halting ma-
chines. Actually, there are functions computable on GTMs in the sense of weak
convergence, but not on machines with the oracle 0′. For example, let f(n) be
0 if the n-th oracle machine with the oracle 0′ halts on all inputs, and let f(n)
be undefined otherwise (compare [11]).

The next lemma relates probabilistic GTM-descriptions to 0′-machines. For
any halting machine (such as traditional prefix and monotone machines), it is
easy to show that the probability of generating a certain object is enumerable
from below, since the pre-image of any object is a countable union of cylinder
sets (sets of all infinite sequences with a fixed prefix q), see [17]. In contrast,
Example 7 in [18] shows that the set {p ∈ B∞ | ∀n ∃tn ∀t > tn [Tt(p)]n = xn}
may contain no cylinder set for some GTM T . Nevertheless, GTM-probabilities
turn out to be 0′-enumerable from below.

Lemma 2. For any GTM T , the value

R(x,m) = λ
({p ∈ B∞ | ∀n ≤ m ∃tn ∀t > tn [Tt(p)]n = xn}

)

is 0′-enumerable from below for any x ∈ B∗ ∪ B∞ and m ∈ N.

2 It was mentioned in [20] that the oracle complexity K 0′
equals the GTM-complexity

KG(+= K G
⇒), but without proof and without specifying accuracy. Surprisingly, our

present refinement of the connection between oracle machines and GTMs is enough
to refute (for x ∈ B∗) Conjecture 5.3 from [20], namely, that P G(x) = O(2−KG

⇒(x)).
3 The first tape contains the GTM input, the second tape provides the required length

of the output (to deal with infinite GTM outputs).
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4 Finite Sequences

The prefix complexity of x ∈ B∗ is K (x) = min{�(p) | V (p) = x}, where V is
a universal prefix machine. The universal enumerable semimeasure on naturals
(encoded by finite binary sequences) is m(x) = λ{pq | V (p) = x, p ∈ B∗, q ∈ B∞}
(see [17] for details). For any other enumerable semimeasure on naturals μ
there is a constant c such that m(x) ≥ cμ(x) for all x. By the Levin theo-
rem [16], K (x) += − log2 m(x). Relativizing w.r.t. the oracle 0′, we get K 0′

(x) =
min{�(p) | V 0′

(p) = x}, the universal 0′-enumerable semimeasure m0′
(x), and

K 0′
(x) += − log2m

0′
(x). The following two theorems provide a complete descrip-

tion of relations between GTM- and 0′-complexities for finite sequences.

Theorem 1. For x ∈ B∗, it holds

− log2m
0′

(x) += − log2 P
G(x) += KG

�
(x) += KG

�
(x) += K 0′

(x) .

Theorem 2. For x ∈ B∗, it holds K 0′
(x) +≤ KG

⇒
(x) +≤ K 0′

(x) + K (K 0′
(x)).

Both bounds are almost tight; namely, for some constant C and for infinitely
many x it holds that K 0′

(x) ≥ KG
⇒

(x)− 2 log2 log2 K 0′
(x) − C; and for infinitely

many x it holds that KG
⇒

(x) ≥ K 0′
(x) + K (K 0′

(x)) − 2 log2 K (K 0′
(x)) − C.

Note. In the tightness statements, log2 K (K 0′
(x)) and log2 log2 K 0′

can be re-
placed by expressions with any number of logarithms.

5 Infinite Sequences

The complexity of infinite sequences can be defined with the help of halting
machines having two inputs and generating the initial segment of the infinite
output sequence (as in Lemma 1). It follows easily, however, that this approach
will lead to the usual monotone complexity but restricted to infinite sequences.

Monotone machines are non-halting machines that print their output (finite
or infinite) bit by bit (see [17] for details). Let W be a universal monotone ma-
chine. For p ∈ B∞, by W (p) denote the (complete) output of W on the input
sequence p; for p ∈ B∗ by W (p) denote the output of W printed after reading
just p and nothing else. In the book [17], the monotone complexity of x ∈ B∗ ∪
B∞ is defined as Km(x) = min{�(p) | p ∈ B∗,W (p) = xy, y ∈ B∗ ∪ B∞} (which
corresponds to the strong prefix mode in our terms). Gács [12] used another
definition, KmI(x) = min{�(p) | p ∈ B∗, ∀q ∈ B∞W (pq) = xy, y ∈ B∗ ∪ B∞}
(corresponding to the weak prefix mode). The universal (a priori) probability of
x ∈ B∗ ∪ B∞ is M(x) = λ{p ∈ B∞ |W (p) = xy, y ∈ B∗ ∪ B∞}. Gács [12] showed
that − log2M(x) +≤ KmI(x)

+≤ Km(x) +≤ − log2M(x) + log2 Km(x) and the
difference between − log2 M(x) and KmI(x) is unbounded for x ∈ B∗ (unlike
the prefix complexity case). His proof does not bound the difference between
− log2M(x) and KmI(x) for x ∈ B∞, and the question about coincidence of
− log2M(x), KmI(x), and Km(x) for x ∈ B∞ remains open. After relativization
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w.r.t. the oracle 0′, we get Km0′
and M 0′

. Note that for x ∈ B∞, Km0′
(x) and

− log2M
0′

(x) are finite iff x is 0′-computable.

Theorem 3. For x ∈ B∞, it holds − log2 P
G(x) += − log2 M

0′
(x).

Theorem 4. For x ∈ B∞, it holds KG
�

(x) += Km0′
I (x).

Theorem 5. For x ∈ B∞, it holds Km0′
(x) +≤ KG

⇒
(x) +≤ Km0′

(x)+K (Km0′
(x)).

The upper bound is almost tight: for some constant C and for infinitely many x
it holds KG

⇒
(x) ≥ Km0′

(x) + K (Km0′
(x)) − 2 log2 K (Km0′

(x))− C.

6 Conclusion

Generalized Turing machines (GTMs) are a natural model for computability
in the limit, and hence are closely related to machines with the oracle 0′. It
turns out, however, that there is no single obvious way of formally specifying a
prefix complexity based on GTMs. Instead there are several closely related but
slightly different ways that all seem natural. This paper introduced and studied
them, exhibiting several relations between them, and also between them and
0′-complexities, as summarized by the following diagram:

PROB WP UWP PREF

finite sequences

GTM − log2 P
G KG

�
KG

�
KG

⇒

0′-machine − log2m
0′

K 0′

infinite sequences

GTM − log2 P
G KG

�
KG

�
KG

⇒

0′-machine − log2M
0′

Km0′
I Km0′

The columns correspond to probabilistic, weak prefix, uniform weak prefix, and
strong prefix descriptions, respectively. The borders between cells describe re-
lation between the corresponding values: no border means that the values are
equal up to a constant, the solid line separates values that differ by a logarithmic
term, the dashed line shows that the relation is unknown.

The main open question is whether weak GTM-complexities (KG
�

, KG
�

,
and − log2 P

G) coincide on infinite sequences. A closely related (and probably,
difficult) question is if Km0′

(x) and Km0′
I (x) coincide with − log2M

0′
(x) for

x ∈ B∞, and if this holds for non-relativized Km(x), KmI(x), and − log2M(x).
If they do coincide, this would form a surprising contrast to the famous result
of Gács [12] on the monotone complexity of finite sequences.

Acknowledgments. The authors are grateful to Marcus Hutter, Jan Poland,
and Shane Legg for useful discussions and proofreading.



Prefix-Like Complexities and Computability in the Limit 93

References

1. E. Asarin and P. Collins. Noisy Turing Machines. Proc. of 32nd ICALP, v. 3580
LNCS, pp. 1031–1042, Springer, 2005.

2. V. Becher and S. Figueira. Kolmogorov Complexity for Possibly Infinite Compu-
tations. J. Logic, Language and Information, 14(2):133–148, 2005.

3. V. Becher, S. Figueira, A. Nies, and S. Picchi. Program Size Complexity for Pos-
sibly Infinite Computations. Notre Dame J. Formal Logic, 46(1):51–64, 2005.

4. M. S. Burgin. Inductive Turing Machines. Soviet Math., Doklady, 27(3):730–734,
1983.

5. C. S. Calude and B. Pavlov. Coins, Quantum Measurements, and Turing’s Barrier.
Quantum Information Processing, 1(1-2):107–127, 2002.

6. J. Case, S. Jain, and A. Sharma. On Learning Limiting Programs. Proc. of
COLT’92, pages 193–202, ACM Press, 1992.

7. G. J. Chaitin. A Theory of Program Size Formally Identical to Information Theory.
Journal of the ACM, 22:329–340, 1975.

8. A. Chernov, J. Schmidhuber. Prefix-like Complexities of Finite and Infinite Se-
quences on Generalized Turing Machines. Technical Report IDSIA-11-05, IDSIA,
Manno (Lugano), Switzerland, 2005.

9. B. Durand, A. Shen, and N. Vereshchagin. Descriptive Complexity of Computable
Sequences. Theoretical Computer Science, 271(1-2):47–58, 2002.

10. G. Etesi and I. Nemeti. Non-Turing Computations via Malament-Hogarth Space-
Times. International Journal of Theoretical Physics, 41:341, 2002.

11. R. V. Freivald. Functions Computable in the Limit by Probabilistic Machines.
Proc. of the 3rd Symposium on Mathematical Foundations of Computer Science,
pages 77–87, Springer, 1975.
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Abstract. It is well known that to be able to represent continuous functions be-
tween domain representable spaces it is critical that the domain representations
of the spaces we consider are dense. In this article we show how to develop a rep-
resentation theory over a category of domains with morphisms partial continuous
functions. The raison d’être for introducing partial continuous functions is that by
passing to partial maps, we are free to consider totalities which are not dense. We
show that there is a natural subcategory of the category of representable spaces
with morphisms representable maps which is Cartesian closed. Finally, we con-
sider the question of effectivity.

Keywords: Domain theory, domain representations, computability theory, com-
putable analysis.

1 Introduction

One way of studying computability on uncountable spaces is through effective domain
representations. A domain representation of a space X is a domain D together with a
continuous function δ : DR → X onto X where DR is some nonempty subset of D.
WhenD is an effective domain the computability theory onD lifts to a δ-computability
theory on the space X . If (E, ER, ε) is a domain representation of the space Y we
say that f : X → Y is representable if there is a continuous function f : D → E
which takes δ-names of x ∈ X to ε-names of f(x) for each x ∈ X . If every continuous
function fromX to Y is representable we may construct a domain representation of the
space of continuous function from X to Y over [D → E].

It thus becomes interesting to find necessary and sufficient conditions on the do-
main representations (D, DR, δ) and (E, ER, ε) to ensure that every continuous func-
tion from X to Y is representable. This problem has been studied by (among others)
Stoltenberg-Hansen, Blanck and Hamrin (c.f. [SH01], [Bla00] and [Ham05]). It turns
out that it is often important that the representation (D, DR, δ) is dense. That is, that
the set DR of δ-names is dense in D with respect to the Scott-topology on D. How-
ever, if (D, DR, δ) is not dense there is no general effective construction which given
(D, DR, δ) yields a dense and effective representation of X . This is perhaps not so
problematic as long as we are interested in building type structures over Rn or Cn, but
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if we would like to study computability on more complex topological spaces such as
the space C∞(R) of smooth functions from R to C, or the space D of smooth func-
tions with compact support which are considered in distribution theory, the requirement
of denseness becomes a rather daunting exercise in computability theory. Indeed, it is
still not known if there is an effective dense domain representation of the space D of
smooth functions with compact support. The natural candidate for an effective domain
representation of D is not dense, and so the standard arguments showing that every
distribution is representable fail.

One way to effectively circumvent the problem of finding dense representations of
the spaces under consideration is to represent continuous functions from X to Y by
partial continuous functions from D to E. Here, a partial continuous function from D
to E is a pair (S, f) where S is a subobject of D (in the sense of category theory) and
f is a (total) continuous function from S to E.

To make sure that enough continuous functions are representable, and to be able to
lift the order theoretic characterisations of continuity to partial continuous functions, we
need to place some restrictions on the domain S ⊆ D of a partial continuous function
f from D to E. As we shall see, by a careful analysis of which properties we require of
S we get a category of domains with morphisms partial continuous functions which is
well suited for representation theory in general, and an effective theory of distributions
in particular.

2 Preliminaries from Domain Theory

A Scott-Ershov domain (or simply domain) is a consistently complete algebraic cpo.
Let D be a domain. Then Dc denotes the set of compact elements in D. Given x ∈ D
we write approx(x) for the set {a ∈ Dc; a � x}. Since D is algebraic, approx(x) is

directed and
⊔

approx(x) = x for each x ∈ D.

D is effective if there is a surjective numbering1 α : N → Dc of the set Dc such
that (Dc, �, !, cons, ⊥) is a computable structure with respect to α. When (D,α)
and (E, β) are effective domains then x ∈ D is α-computable if approx(x) is α-
semidecidable, and if f : D → E is continuous then f is effective if the relation
β(n) �E f(α(m)) is r.e. We usually leave out the prefixes α, β and (α, β), if the
numberings α and β are either clear from the context or not important.

Let X be a topological space. A domain representation of X is a triple (D, DR, δ)
where D is a domain, DR a nonempty subset of D, and δ : DR −→ X a continuous
function fromDR onto X . We assume throughout that ⊥ �∈ DR. For r ∈ D and x ∈ X
we write r ≺ x if x ∈ δ[↑ r ∩DR]. Thus, r ≺ x if and only if there is some s ∈ DR

such that r � s and δ(s) = x.
When D is effective then (D, DR, δ) is an effective domain representation of X .

Suppose (D, DR, δ) and (E, ER, ε) are effective domain representations of X and
Y respectively. We say that x ∈ X is δ-computable (or simply computable if the rep-
resentation δ is clear from the context) if there is some computable r ∈ D such that

1 We will write α : N → Dc even though the domain of α may be a proper (decidable) subset
of the natural numbers. For an introduction to the theory of numberings c.f. [Ers73, Ers75].
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δ(r) = x. A continuous function f : X → Y is representable if there is a continuous
function f : D → E such that f [DR] ⊆ ER and f(δ(r)) = ε(f(r)) for each r ∈ DR.
f is (δ, ε)-computable (or simply computable) if f is effective. A domain representation
(D, DR, δ) of a space X is dense if the set DR of representing elements is dense in D
with respect to the Scott-topology on D.

Definition 1. Let (E, ER, ε) be a domain representation of Y . (E, ER, ε) is called
admissible2 if for each triple (D, DR, δ) where D is a countably based domain,DR ⊆
D is dense in D, and δ : DR → Y is a continuous function from DR to Y , there is a
continuous function δ : D → E such that δ[DR] ⊆ ER and δ(r) = ε(δ(r)) for each
r ∈ DR.

The following simple observation indicates why admissibility is interesting from a
purely representation theoretic point of view.

Theorem 1. Suppose (D, DR, δ) is a countably based dense representation of X and
(E, ER, ε) is an admissible representation of Y . Then every sequentially continuous
function from X to Y is representable.

(For a proof of Theorem 1 see [Ham05].)

Theorem 1 can be used as a tool in constructing a representation of the space of contin-
uous functions fromX to Y over the domain [D → E] of continuous functions from D
to E. However, if the representation (D, DR, δ) is not dense Theorem 1 does not tell
us anything.

3 Partial Continuous Functions

In the case when (D, DR, δ) is a countably based and dense representation of the
space X and (E, ER, ε) is an admissible representation of Y Theorem 1 tells that
every sequentially continuous function f : X → Y from X to Y lifts to a continuous
function f : D → E such that ε(f(x)) = f(δ(x)) for each x ∈ DR. In the case
when the representation (D, DR, δ) of X is not dense there is a standard construction
in domain theory which constructs a dense representation of X from (D, DR, δ): Let

DD
c = {a ∈ Dc; a � x for some x ∈ DR}

and
DD = {

⊔
A; A ⊆ DD

c is directed}.
DD is sometimes called the dense part of D. It is not difficult to show that DD =
(DD, �D, ⊥D) is a domain and that DR ⊆ DD. In fact, DR is a subspace of DD.
Thus, (DD, DR, δ) is a domain representation of X and DR is dense in DD by
construction.

2 This notion of an admissible representation corresponds to that of an ω-admissible representa-
tion found in [Ham05].
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We may now apply Theorem 1 to show that every sequentially continuous function
f : X → Y from X to Y has a continuous representation f : DD → E from DD to E.
However, there is no a priori reason why the relation (∃x ∈ DR)(a � x) on Dc should
be decidable, even when (D, DR, δ) is effective, and thus (DD, DR, δ) is noneffective
in general.

3.1 Partial Continuous Functions with Scott-Closed Domains

A reasonable alternative to working over DD would be to view (DD, f) as a partial
function (in the sense of category theory) from D to E. Partial continuous functions in
categories of domains have been studied before by (among many others) Plotkin and
Fiore (c.f. [Plo85] and [Fio94]). Here a partial continuous function from D to E is a
pair (U, f) where U ⊆ D is a Scott-open subset of D and f : U → E is a continuous
function from U to E. However, this notion of a partial continuous function is not the
appropriate one for our purposes for essentially two different reasons:

i. DD is not an open subset of D in general. (In fact, it is easy to see that DD is open
if and only if DD = D.)

ii. Every partial continuous function (U, f) fromD to E with open domain U extends
to a total continuous function f : D → E. Thus nothing is gained from a represen-
tation theoretic point of view when going to partial continuous functions with open
domains.

Thus, as a first step we would like to distinguish a class of subobjects M in the
category of domains which contains DD ↪→ D for each representation (D, DR, δ)
and which is admissible3 in the sense of [RR88]. (A collection of subobjects M from
a category C is admissible in the sense of [RR88] if the objects in C together with the
collection of partial morphisms (S, f) where S ∈ M form a category.) The following
three observations are crucial.

Lemma 1. Let D be a domain and let S be a nonempty subset of D. Then the closure
S of S satisfies

S = {
⊔
A; A ⊆ ↓S is directed}.

Thus in particular, DD is closed in D since DD
c is downwards closed. If D is a

domain and s : S � D is a subobject of D then s : S � D is Scott-closed4 if S is
isomorphic via s to a Scott-closed subset of D. Now we have

Lemma 2. Let D be a domain and suppose S ⊆ D. Then S is a Scott-closed subobject
of D if and only if S is a nonempty closed subset of D.

By Lemma 2 DD is a Scott-closed subobject of D. Finally, we note that

3 The term admissible is unfortunate here since it clashes with the notion of an admissible do-
main representation defined earlier. However, it is only used here to provide an inspiration for
the definition of a partial continuous function below.

4 We leave it to the interested reader to convince him or herself that this definition is independent
of how we choose to represent s : S → D.
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Lemma 3. The class of Scott-closed subobjects is admissible (in the sense of [RR88])
in the category of domains with morphisms strict continuous functions.

Inspired by this we make the following definition:

Definition 2. Let D and E be domains. A partial continuous function from D to E is a
pair (S, f) where S ⊆ D is a nonempty closed subset of D and f is a strict continuous
function from S to E.

We write f : D ⇀ E if (dom(f), f) is a partial continuous function from D to E and
we denote by [D ⇀ E] the set of partial continuous functions from D to E. We will
write [D →⊥ E] for the domain of strict continuous functions from D to E.

As a motivation for Definition 2 we give a new characterisation of admissibility in
terms of partial continuous functions.

Theorem 2. Let (E, ER, ε) be a domain representation of Y . Then (E, ER, ε) is
admissible if and only if for every triple (D, DR, δ) where D is a countably based
domain, DR ⊆ D, and δ : DR → Y is a continuous function from DR to Y , there is a
partial continuous function δ : D ⇀ E such that

i. DR ⊆ dom(δ).
ii. δ[DR] ⊆ ER.

iii. δ(x) = ε(δ(x)) for each x ∈ DR.

Theorem 2 suggests representing continuous functions in the category of topological
spaces using partial continuous functions on domains. We now make this idea more
precise. If (D, DR, δ) is a domain representation X and (E, ER, ε) a domain repre-
sentation of Y we say that f : D ⇀ E represents the continuous function f : X → Y
if

i. DR ⊆ dom(f).
ii. f [DR] ⊆ ER.

iii. f(δ(x)) = ε(f(x)) for each x ∈ DR.

f : X → Y is called representable if there is a partial continuous function f : D ⇀ E
satisfying the conditions i – iii above. (If we would like to distinguish between partial
representations and total representations we say that f is partially representable if the
continuous function f representing f is a partial continuous function and f is totally
representable if f is a total function.)

Now Theorem 2 immediately yields a version of Theorem 1 for partial continuous
functions.

Theorem 3. Let (D, DR, δ) be a countably based domain representation ofX and let
(E, ER, ε) be an admissible representation of Y . Then every sequentially continuous
function f : X → Y is representable by a partial continuous function f : D ⇀ E.

Just as in the case when the representation (D, DR, δ) is dense we have the following
characterisation of the sequentially continuous functions fromX to Y . (For a thorough
study of the dense and total case, see [Ham05].)
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Theorem 4. Let (D, DR, δ) be a countably based admissible domain representation
of X and let (E, ER, ε) be a domain representation of Y . If f : X → Y is repre-
sentable then f is sequentially continuous.

Corollary 1. Let (D, DR, δ) be a countably based admissible domain representation
of X and let (E, ER, ε) be an admissible domain representation of Y . Then f : X →
Y is representable if and only if f is sequentially continuous.

3.2 The Domain of Partial Continuous Functions

It is well known that the category of domains with morphisms total continuous func-
tions forms a Cartesian closed category (c.f. [SLG94]). This convenient circumstance
is employed in representation theory to build domain representable type structures over
domain representable spaces. It is only natural to expect that much of this categorical
structure will be lost when going to partial continuous functions. However, as we shall
see not all is lost.

As a first step we show that the Scott-closed subobjects of a domainD have a natural
domain structure. Let cl(D) be the collection of all nonempty Scott-closed subsets of
D. We order cl(D) by

S � T ⇐⇒ S ⊆ T.

Then � is a partial order on D with least element {⊥}. More is true however.

Theorem 5. Let D be a domain. Then cl(D) = (cl(D), �, {⊥}) is a domain and
S ∈ cl(D) is compact if and only if S = (↓ a0) ∪ (↓ a1) ∪ . . . ∪ (↓ an) for some n ∈ N
and compact a0, a1, . . . an in D.

Remark 1. Note that when D is countably based, so is cl(D). Furthermore, if S =
(↓ a0) ∪ (↓ a1) ∪ . . . ∪ (↓ am) and T = (↓ b0) ∪ (↓ b1) ∪ . . . ∪ (↓ bn) are compact in
cl(D), then S � T ⇐⇒ for each ai there is some bj such that ai �D bj . It follows
that cl(D) is isomorphic to the Hoare power domain over D.

Now, letD andE be domains. To show that [D ⇀ E] admits a natural domain structure
we define a partial order on [D ⇀ E] by

f � g ⇐⇒ dom(f) ⊆ dom(g) and f(x) �E g(x) for each x ∈ dom(f).

� is a partial order on [D ⇀ E] with least element ⊥[D⇀E] = ({⊥D}, λx.⊥E).

Theorem 6. Let D and E be domains. Then [D ⇀ E] = ([D ⇀ E], �, ⊥[D⇀E]) is
a domain and g : D ⇀ E is compact in [D ⇀ E] if and only if dom(g) is compact in
cl(D) and g is compact in [dom(g) →⊥ E].

Remark 2. It follows immediately by the characterisation of [D ⇀ E]c that [D ⇀ E]
is countably based whenever D and E are countably based.

We now apply Theorems 3 and 6 to construct a countably based and admissible domain
representation of the space of sequentially continuous functions from X to Y , given
countably based and admissible representations of the spaces X and Y .
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Let X and Y be topological spaces. We write [X →ω Y ] for the space of sequen-
tially continuous functions from X to Y . If A ⊆ X and B ⊆ Y we let M(A,B) =
{f ∈ [X →ω Y ]; f [A] ⊆ B}. The collection of all sets M({xn}n ∪ {x}, U) where
(xn)n −→ x in X and U is an open subset of Y form a subbasis for a topology τω on
[X →ω Y ]. The topology τω is a natural generalisation of the topology of pointwise
convergence on [X →ω Y ], the latter being generated by the collection of all finite
intersection of sets M({x}, U) where x ∈ X and U is open in Y . The following lemma
characterises the convergence relation on ([X →ω Y ], τω).

Lemma 4. Let X and Y be topological spaces. (fn)n −→ f in ([X →ω Y ], τω) if and
only if (fn(xn))n −→ f(x) in Y for each convergent sequence (xn)n −→ x in X .

Now, suppose (D, DR, δ) is a countably based admissible domain representation of
X and (E, ER, ε) is a countably based admissible representation of Y . By Theorem
3, every sequentially continuous function f : X → Y from X to Y is representable
by a partial continuous function f : D ⇀ E from D to E. Let [D ⇀ E]R be the set
{f : D ⇀ E; f represents some sequentially continuous function f : X → Y } and
define [δ ⇀ ε] : [D ⇀ E]R → [X →ω Y ] by

[δ ⇀ ε](f) = f ⇐⇒ f represents f.

Then [δ ⇀ ε] is well defined and [δ ⇀ ε] is surjective by Theorem 3.

Theorem 7. Let (D, DR, δ) be a countably based admissible domain representation
of X and let (E, ER, ε) be a countably based admissible domain representation Y .
Then ([D ⇀ E], [D ⇀ E]R, [δ ⇀ ε]) is a countably based admissible domain repre-
sentation of ([X →ω Y ], τω).

Proof. To show that [δ ⇀ ε] is continuous it is enough to show that [δ ⇀ ε] is se-
quentially continuous since [D ⇀ E] is countably based. That [δ ⇀ ε] is sequentially
continuous follows by an application of Lemma 4.

That ([D ⇀ E], [D ⇀ E]R, [δ ⇀ ε]) is admissible follows since the standard rep-
resentation ([DD → E], [DD → E]R, [δ → ε]) of ([X →ω Y ], τω) is admissible.  !
Before we go on to study evaluation and type conversion we take note of the following
fact. (For a proof, see [Ham05].)

Fact 1. Let (D, DR, δ) and (E, ER, ε) be countably based and admissible domain
representations of the spacesX and Y . Then (D×E, DR×ER, δ× ε) is a countably
based and admissible domain representation of X × Y . Moreover, the projections π1 :
X×Y → X and π2 : X×Y → Y are sequentially continuous and thus representable
by Theorem 3.

Since evaluation (f, x) )→ f(x) is a sequentially continuous by Lemma 4, and
([D ⇀ E], [D ⇀ E]R, [δ ⇀ ε]) is admissible, it follows immediately by Fact 1
and Theorem 3 that

Proposition 1. (f, x) )→ f(x) is representable.
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Let X , Y , and Z be topological spaces. If f : X × Y → Z is sequentially continuous
then y )→ f(x, y) is sequentially continuous for each x ∈ X . We write f∗ : X →
[Y →ω Z] for the map x )→ f(x, ·).

Proposition 2. Let (D, DR, δ), (E, ER, ε), and (F, FR, ϕ) be countably based and
admissible domain representations of the spacesX , Y andZ and suppose f : X×Y →
Z is sequentially continuous. Then f∗ : X → [Y →ω Z] is representable.

Proof. The result follows since f∗ is sequentially continuous using Lemma 4.  !

We may summarise the results of this section in the following way: Let ADM be the
category with objects ordered pairs (D,X) where D is a countably based and admis-
sible domain representation of the space X , and morphisms f : (D,X) → (E, Y )
sequentially continuous functions fromX to Y which are representable by some partial
continuous function f : D ⇀ E. We now have the following theorem:

Theorem 8. ADM is Cartesian closed.

3.3 Effectivity

In this section we will show that the constructions from the previous section are effec-
tive. We first consider the domain of Scott-closed subsets of an effective domain D.

Let (D,α) be an effective domain. We define cl(α) : N → cl(D) by cl(α)(k) =
(↓ a1)∪ (↓ a2)∪ . . .∪ (↓ an) ⇐⇒ k = 〈k1, k2, . . . kn〉, where ki ∈ dom(α) and
α(ki) = ai for each 1 ≤ i ≤ n. It is clear that cl(α) is surjective.

Theorem 9. Let (D,α) be an effective domain. Then (cl(D), cl(α)) is effective.

Remark 3. It follows from the proof of Theorem 9 that an index for (cl(D), cl(α)) can
be obtained uniformly from an index for (D,α).

If S is compact in cl(D) we define αS : N → S by dom(αS) = {n ∈ dom(α);
α(n) ∈ S} and αS(n) = α(n) for each n ∈ dom(αS). We write αk for the num-
bering αcl(α)(k) : N → cl(α)(k).

Let (D,α) and (E, β) be effective domains and let [α →⊥ β] : N → [D →⊥ E]c
be the standard numbering of [D →⊥ E]c. We define [α ⇀ β] : N → [D ⇀ E]c
by k ∈ dom([α ⇀ β]) if and only if k = 〈l,m〉 where l ∈ dom(cl(α)) and m ∈
dom([αl →⊥ β]) and then [α ⇀ β](k) = (cl(α)(l), [αl →⊥ β](m)).

Theorem 10. Let (D,α) and (E, β) be effective domains. Then ([D ⇀ E], [α ⇀ β])
is an effective domain.

Remark 4. As before, it actually follows from the proof of Theorem 10 that an index for
([D ⇀ E], [α ⇀ β]) can be obtained uniformly from indices for (D,α) and (E, β).

To be able to analyse the effective content of Propositions 1 and 2 we now introduce a
notion of an effective partial continuous function.
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Definition 3. Let (D,α) and (E, β) be effective domains and let f : D ⇀ E be a
partial continuous function from D to E. f : D ⇀ E is called (α, β)-effective if
there is an r.e. relation Rf ⊆ N × N such that if m ∈ dom(α), n ∈ dom(β) and
α(m) ∈ dom(f), then

Rf (m,n) ⇐⇒ β(n) �E f(α(m)).

An r.e. index for Rf is called an index for f : D ⇀ E.

If the numberingsα and β are clear from the context we will economise on the notation
and simply say that f is effective rather than (α, β)-effective. The following elementary
lemma describes some basic but important properties of effective partial continuous
functions.

Lemma 5. Let (D,α), (E, β), and (F, γ) be effective domains, and suppose f : D ⇀
E and g : E ⇀ F are effective. Then

i. g◦f : D → F is effective and an index for g◦f is obtained uniformly from indices
for f and g.

ii. If x ∈ dom(f) is computable in D then f(x) is computable in E.

Remark 5. If (D,α) is an effective domain then idD : D → D is effective. It fol-
lows by Lemma 5 that the class of effective domains with morphisms effective partial
continuous functions form a category.

We now have two notions of computability for partial continuous functions from (D,α)
to (E, β). A partial continuous function f : D ⇀ E from D to E may either be
effective in the sense of Definition 3, or f : D ⇀ E may be computable as an element
of ([D ⇀ E], [α ⇀ β]). The next proposition relates these two notions of computability
to each other.

Proposition 3. Let (D,α) and (E, β) be effective domains and suppose f : D ⇀ E is
a partial continuous function from D to E. Then f : D ⇀ E is computable if and only
if f : D → E is effective and dom(f) is computable.

Let (D, DR, δ) and (E, ER, ε) be effective domain representations of the spaces X
and Y and suppose that f : X → Y is a continuous function from X to Y . Then
f : X → Y is called (δ, ε)-effective when there is an effective partial continuous
function f : D ⇀ E from D to E which represents f . A (δ, ε)-index for f is an index
for the effective partial continuous function f : D ⇀ E.

It is easy to see that the identity on X is (δ, δ)-effective, and if (F, FR, ϕ) is an
effective domain representation of Z and g : Y → Z is an (ε, ϕ)-effective continuous
function, then g◦f : X → Z is (δ, ϕ)-effective by Lemma 5. If the representations δ, ε
and ϕ are clear from the context we will drop the prefixes and simply say that f , g and
g◦f are effective.

We note that evaluation (f, x) )→ f(x) is effective.

Proposition 4. Let (D, DR, δ) and (E, ER, ε) be effective admissible domain repre-
sentations of X and Y . Then eval : [X →ω Y ]×X → Y is effective.
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Next, we consider type conversion in the category ADM. We will show that for a
restricted class of effectively representable sequentially continuous functions f : X ×
Y → Z in ADM, type conversion is effective and yields a new effective sequentially
continuous function f∗ : X → [Y →ω Z].

We begin with some definitions: Let (D,α), (E, β) and (F, γ) be effective domains
and suppose f : D × E ⇀ F . f is called right-computable if f is effective and
dom(f) = S × T for some Scott-closed set S ⊆ D and some computable Scott-
closed set T ⊆ E. Left-computability for a partial continuous function f : D×E ⇀ F
is defined analogously. By Proposition 3, if f : D×E ⇀ F and dom(f) = S×T then
f : D × E ⇀ F is computable if and only if f is both left- and right-computable.

Proposition 5. Let (D, DR, δ), (E, ER, ε), and (F, FR, ϕ) be effective admissible
domain representations of the spaces X , Y and Z and suppose f : X × Y → Z
is sequentially continuous. If f is effectively representable by some right-computable
partial continuous function then f∗ : X → [Y →ω Z] is effective.

In many cases of interest, ED is a computable Scott-closed subset of E. It turns out
that this is enough to ensure that any effectively representable sequentially continuous
function f : X × Y → Z has a right-computable representation.
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Abstract. We define a new cost model for the call-by-value lambda-
calculus satisfying the invariance thesis. That is, under the proposed
cost model, Turing machines and the call-by-value lambda-calculus can
simulate each other within a polynomial time overhead. The model only
relies on combinatorial properties of usual beta-reduction, without any
reference to a specific machine or evaluator. In particular, the cost of a
single beta reduction is proportional to the difference between the size
of the redex and the size of the reduct. In this way, the total cost of nor-
malizing a lambda term will take into account the size of all intermediate
results (as well as the number of steps to normal form).

1 Introduction

Any computer science student knows that all computational models are exten-
sionally equivalent, each of them characterizing the same class of computable
functions. However, the definition of complexity classes by means of computa-
tional models must take into account several differences between these models,
in order to rule out unrealistic assumptions about the cost of respective com-
putation steps. It is then usual to consider only reasonable models, in such a
way that the definition of complexity classes remain invariant when given with
reference to any such reasonable model. If polynomial time is the main concern,
this reasonableness requirement take the form of the invariance thesis [13]:

Reasonable machines can simulate each other within a polynomially-
bounded overhead in time and a constant-factor overhead in space.

Once we agree that Turing machines are reasonable, then many other machines
satisfy the invariance thesis. Preliminary to the proof of polynomiality of the
simulation on a given machine, is the definition of a cost model, stipulating when
and how much one should account for time and/or space during the computation.
For some machines (e.g., Turing machines) this cost model is obvious; for others
it is much less so. An example of the latter kind is the type-free lambda-calculus,
where there is not a clear notion of constant time computational step, and it is
even less clear how one should count for consumed space.

The idea of counting the number of beta-reductions [6] is just too näıve,
because beta-reduction is inherently too complex to be considered as an atomic
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operation, at least if we stick to explicit representations of lambda terms. Indeed,
in a beta step

(λx.M)N →M{x/N},
there can be as many as |M | occurrences of x inside M . As a consequence,
M{x/N} can be as big as |M ||N |. As an example, consider the term n 2, where
n ≡ λx.λy.xny is the Church numeral for n. Under innermost reduction this
term reduces to normal form in 3n − 1 beta steps, but there is an exponential
gap between this quantity and the time needed to write the normal form, that
is 2n. Under outermost reduction, however, the normal form is reached in an
exponential number of beta steps. This simple example shows that taking the
number of beta steps to normal form as the cost of normalization is at least
problematic. Which strategy should we choose1? How do we account for the size
of intermediate (and final) results?

Clearly, a viable option consists in defining the cost of reduction as the time
needed to normalize a term by another reasonable abstract machine, e.g. a Turing
machine. However, in this way we cannot compute the cost of reduction from
the structure of the term, and, as a result, it is very difficult to compute the cost
of normalization for particular terms or for classes of terms. Another invariant
cost model is given by the actual cost of outermost (normal order) evaluation,
naively implemented [9]. Despite its invariance, it is a too generous cost model
(and in its essence not much different from the one that counts the numbers
of steps needed to normalize a term on a Turing machine). What is needed is
a machine-independent, parsimonious, and invariant cost model. Despite some
attempts [7,9,10] (which we will discuss shortly), a cost model of this kind has
not appeared yet.

To simplify things, we attack in this paper the problem for the call-by-value
lambda-calculus, where we do not reduce under an abstraction and we always
fully evaluate an argument before firing a beta redex. Although simple, it is a
calculus of paramount importance, since it is the reduction model of any call-
by-value functional programming language. For this calculus we define a new,
machine-independent cost model and we prove that it satisfies the invariance
thesis for time. The proposed cost model only relies on combinatorial properties
of usual beta-reduction, without any reference to a specific machine or evaluator.
The basic idea is to let the cost of performing a beta-reduction step depend on
the size of the involved terms. In particular, the cost of M → N will be related to
the difference |N |−|M |. In this way, the total cost of normalizing a lambda term
will take into account the size of all intermediate results (as well as the number
of steps to normal form). The last section of the paper will apply this cost model
to the combinatory algebra of closed lambda-terms, to establish some results
needed in [3]. We remark that in this algebra the universal function (which
maps two terms M and N to the normal form of MN) adds only a constant
overhead to the time needed to normalize MN . This result, which is almost
1 Observe that we cannot take the length of the longest reduction sequence, both

because in several cases this would involve too much useless work, and because for
some normalizing term there is not a longest reduction sequence.
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obvious when viewed from the perspective of lambda-calculus, is something that
cannot be obtained in the realm of Turing machines.

An extended version including all proofs is available [4].

1.1 Previous Work

The two main attempts to define a parsimonious cost model share the reference
to optimal lambda reduction à la Lévy [11], a parallel strategy minimizing the
number of (parallel) beta steps (see [2]).

Frandsen and Sturtivant [7] propose a cost model essentially based on the
number of parallel beta steps to normal form. Their aim is to propose a measure
of efficiency for functional programming language implementations. They show
how to simulate Turing machines in the lambda calculus with a polynomial
overhead. However, the paper does not present any evidence on the existence
of a polynomial simulation in the other direction. As a consequence, it is not
known whether their proposal is invariant.

More interesting contributions come from the literature of the nineties on op-
timal lambda reduction. Lamping [8] was the first to operationally present this
strategy as a graph rewriting procedure. The interest of this technique for our
problem stems from the fact that a single beta step is decomposed into several el-
ementary steps, allowing for the duplication of the argument, the computation of
the levels of nesting inside abstractions, and additional bookkeeping work. Since
any such elementary step is realizable on a conventional machine in constant
time, Lamping’s algorithm provides a theoretical basis for the study of complex-
ity of a single beta step. Lawall and Mairson [9] give results on the efficiency of
optimal reduction algorithms, highlighting the so-called bookkeeping to be the
bottleneck from the point ot view of complexity. A consequence of Lawall and
Mairson’s work is evidence on the inadequacy of the cost models proposed by
Frandsen and Sturtivant and by Asperti [1], at least from the point of view of the
invariance thesis. In subsequent work [10], Lawall and Mairson proposed a cost
model for the lambda calculus based on Lévy’s labels. They further proved that
Lamping’s abstract algorithm satisfies the proposed cost model. This, however,
does not imply by itself the existence of an algorithm normalizing any lambda
term with a polynomial overhead (on the proposed cost). Moreover, studying the
dynamic behaviour of Lévy labels is clearly more difficult than dealing directly
with the number of beta-reduction steps.

2 Syntax

The language we study is the pure untyped lambda-calculus endowed with weak
reduction (that is, we never reduce under an abstraction) and call-by-value
reduction.
Definition 1. The following definitions are standard:
• Terms are defined as follows:

M ::= x | λx.M |MM

Λ denotes the set of all lambda terms.
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• Values are defined as follows:

V ::= x | λx.M

Ξ denotes the set of all closed values.
• Call-by-value reduction is denoted by → and is obtained by closing the rule

(λx.M)V → M{V/x} under all applicative contexts. Here M ranges over
terms, while V ranges over values.

• The length |M | of M is the number of symbols in M .

Following [12] we consider this system as a complete calculus and not as a mere
strategy for the usual lambda-calculus. Indeed, respective sets of normal forms
are different. Moreover, the relation → is not deterministic although, as we are
going to see, this non-determinism is completely harmless.

The way we have defined beta-reduction implies a strong correspondence
between values and closed normal forms:

Lemma 1. Every value is a normal form and every closed normal form is a
value.

The prohibition to reduce under abstraction enforces a strong notion of conflu-
ence, the so-called one-step diamond property, which instead fails in the usual
lambda-calculus.

Proposition 1 (Diamond Property). If M → N and M → L then either
N ≡ L or there is P such that N → P and L→ P .

As an easy corollary of Proposition 1 we get an equivalence between all normal-
ization strategies— once again a property which does not hold in the ordinary
lambda-calculus.

Corollary 1 (Strategy Equivalence). M has a normal form iff M is strongly
normalizing.

But we can go even further: in this setting, the number of beta-steps to the
normal form is invariant from the evaluation strategy:

Proposition 2. For every term M , there are at most one normal form N and
one integer n such that M →n N .

3 An Abstract Time Measure

We can now define an abstract time measure and prove a diamond property
for it. Intuitively, every beta-step will be endowed with a positive integer cost
bounding the difference (in size) between the reduct and the redex.

Definition 2. • Concatenation of α, β ∈ N∗ is simply denoted as αβ.
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• � will denote a subset of Λ × N∗ × Λ. In the following, we will write M
α
�

N standing for (M,α,N) ∈�. The definition of � (in SOS-style) is the
following:

M
ε
� M

M → N n = max{1, |N | − |M |}
M

(n)
� N

M
α
� N N

β
� L

M
αβ
� L

Observe we charge max{1, |N | − |M |} for every step M → N . In this way,
the cost of a beta-step will always be positive.

• Given α = (n1, . . . , nm) ∈ N∗, define ||α|| =∑m
i=1 ni.

The result of Proposition 2 can be lifted to this new notion on weighted reduction.

Proposition 3. For every term M , there are at most one normal form N and
one integer n such that M

α
� N and ||α|| = n.

We are now ready to define the abstract time measure which is the core of the
paper.

Definition 3 (Difference cost model). If M
α
� N , where N is a normal

form, then Time(M) is ||α||+ |M |. If M diverges, then Time(M) is infinite.

Observe that this is a good definition, in view of Proposition 3. In other words,
showing M

α
� N suffices to prove Time(M) = ||α||+ |M |. This will be particu-

larly useful in the following section.
As an example, consider again the term n 2 we discussed in the introduction.

It reduces to normal form in one step, because we do not reduce under the
abstraction. To force reduction, consider E ≡ n 2 c, where c is a free variable; E
reduces to

λyn.(λyn−1 . . . (λy2.(λy1.c
2y1)2y2)2 . . .)yn

in Θ(n) beta steps. However, Time(E) = Θ(2n), since at any step the size of the
term is duplicated.

4 Simulating Turing Machines

In this and the following section we will show that the difference cost model
satisfies the polynomial invariance thesis. The present section shows how to
encode Turing machines into the lambda calculus.

We denote by H the term MM , where M ≡ λx.λf.f(λz.xxfz). H is a call-
by-value fixed-point operator: for every N , there is α such that

HN
α
� N(λz.HNz)

||α|| = O(|N |)
The lambda term H provides the necessary computational expressive power to
encode the whole class of computable functions.
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The simplest objects we need to encode in the lambda-calculus are finite sets.
Elements of any finite set A = {a1, . . . , an} can be encoded as follows:

�ai�
A ≡ λx1. . . . .λxn.xi

Notice that the above encoding induces a total order on A such that ai ≤ aj iff
i ≤ j.

Other useful objects are finite strings over an arbitrary alphabet, which will
be encoded using a scheme attributed to Scott [14]. Let Σ = {a1, . . . , an} be
a finite alphabet. A string in s ∈ Σ∗ can be represented by a value �s�Σ

∗
as

follows, by induction on s:

�ε�Σ
∗ ≡ λx1. . . . .λxn.λy.y

�aiu�Σ
∗ ≡ λx1. . . . .λxnλy.xi�u�Σ

∗

Observe that representations of symbols in Σ and strings in Σ∗ depend on the
cardinality of Σ. In other words, if u ∈ Σ∗ and Σ ⊂ Δ, �u�Σ

∗ �= �u�Δ
∗
. Besides

data, we want to be able to encode functions between them. In particular, the
way we have defined numerals lets us concatenate two strings in linear time in the
underlying lambda calculus. The encoding of a string depends on the underlying
alphabet. As a consequence, we also need to be able to convert representations for
strings in one alphabet to corresponding representations in a bigger alphabet.
This can be done efficiently in the lambda-calculus. A deterministic Turing
machine M is a tuple (Σ, ablank , Q, qinitial , qfinal , δ) consisting of:

• A finite alphabet Σ = {a1, . . . , an};
• A distinguished symbol ablank ∈ Σ, called the blank symbol ;
• A finite set Q = {q1, . . . , qm} of states ;
• A distinguished state qinitial ∈ Q, called the initial state;
• A distinguished state qfinal ∈ Q, called the final state;
• A partial transition function δ : Q × Σ ⇀ Q × Σ × {←,→, ↓} such that
δ(qi, aj) is defined iff qi �= qfinal .

A configuration for M is a quadruple in Σ∗ × Σ × Σ∗ × Q. For example, if
δ(qi, aj) = (ql, ak,←), then M evolves from (uap, aj , v, qi) to (u, ap, akv, ql) (and
from (ε, aj , v, qi) to (ε, ablank , akv, ql)). A configuration like (u, ai, v, qfinal ) is fi-
nal and cannot evolve. Given a string u ∈ Σ∗, the initial configuration for u
is (ε, a, u, qinitial ) if u = av and (ε, ablank , ε, qinitial ) if u = ε. The string corre-
sponding to the final configuration (u, ai, v, qfinal ) is uaiv.

A Turing machine (Σ, ablank , Q, qinitial , qfinal , δ) computes the function f :
Δ∗ → Δ∗ (where Δ ⊆ Σ) in time g : N → N iff for every u ∈ Δ∗, the initial
configuration for u evolves to a final configuration for f(u) in g(|u|) steps.

A configuration (s, a, t, q) of a machine M = (Σ, ablank , Q, qinitial , qfinal , δ) is
represented by the term

�(u, a, v, q)�M ≡ λx.x�ur�Σ
∗

�a�Σ �v�Σ
∗

�q�Q

We now encode a Turing machine M = (Σ, ablank , Q, qinitial , qfinal , δ) in the
lambda-calculus. Suppose Σ = {a1, . . . , a|Σ|} and Q = {q1, . . . , q|Q|} We proceed
by building up three lambda terms:
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• First of all, we need to be able to build the initial configuration for u from u
itself. This can be done in linear time.

• Then, we need to extract a string from a final configuration for the string.
This can be done in linear time, too.

• Most importantly, we need to be able to simulate the transition function
of M, i.e. compute a final configuration from an initial configuration (if it
exists). This can be done with cost proportional to the number of steps M
takes on the input.

At this point, we can give the main simulation result:

Theorem 1. If f : Δ∗ → Δ∗ is computed by a Turing machine M in time
g, then there is a term U(M, Δ) such that for every u ∈ Δ∗ there is α with
U(M, Δ)�u�Δ

∗ α
� �f(u)�Δ

∗
and ||α|| = O(g(|u|))

Noticeably, the just described simulation induces a linear overhead: every step
of M corresponds to a constant cost in the simulation, the constant cost not
depending on the input but only on M itself.

5 Evaluating with Turing Machines

We informally describe a Turing machine R computing the normal form of a
given input term, if it exists, and diverging otherwise. If M is the input term,
R takes time O((Time(M))4).

First of all, let us observe that the usual notation for terms does not take into
account the complexity of handling variables, and substitutions. We introduce
a notation in the style of deBruijn [5], with binary strings representing occur-
rences of variables. In this way, terms can be denoted by finite strings in a finite
alphabet.

Definition 4. • The alphabet Θ is {λ,@, 0, 1,�}.
• To each lambda term M we can associate a string M# ∈ Θ+ in the stan-

dard deBruijn way, writing @ for (prefix) application. For example, if M ≡
(λx.xy)(λx.λy.λz.x), then M# is @λ@ � 0�λλλ� 10. In other words, free
occurrences of variables are translated into �, while bounded occurrences of
variables are translated into � s, where s is the binary representation of the
deBruijn index for that occurrence.

• The true length ||M || of a term M is the length of M#.

Observe that ||M || grows more than linearly on |M |:
Lemma 2. For every term M , ||M || = O(|M | log |M |). There is a sequence
{Mn}n∈N such that |Mn| = Θ(n), while ||Mn|| = Θ(|Mn| log |Mn|).
R has nine tapes, expects its input to be in the first tape and writes the output on
the same tape. The tapes will be referred to as Current (the first one), Preredex ,
Functional , Argument, Postredex , Reduct , StackTerm, StackRedex , Counter . R
operates by iteratively performing the following four steps:
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1. First of all, R looks for redexes in the term stored in Current (call it M), by
scanning it. The functional part of the redex will be put in Functional while
its argument is copied into Argument. Everything appearing before (respec-
tively, after) the redex is copied into Preredex (respectively, in Postredex ).
If there is no redex in M , then R halts. For example, consider the term
(λx.λy.xyy)(λz.z)(λw.w) which becomes @@λλ@@� 1� 0� 0λ� 0λ� 0 in
deBruijn notation. Table 1 summarizes the status of some tapes after this
initial step.

Table 1. The status of some tapes after step 1

Preredex @@
Functional λλ@@�1�0�0
Argument λ�0
Postredex λ�0

2. Then, R copies the content of Functional into Reduct , erasing the first oc-
currence of λ and replacing every occurrence of the bounded variable by the
content of Argument. In the example, Reduct becomes λ@@λ�0�0�0.

3. R replaces the content of Current with the concatenation of Preredex , Reduct
and Postredex in this particular order. In the example, Current becomes
@λ@@λ�0�0�0λ�0, which correctly correspond to (λy.(λz.z)yy)(λw.w).

4. Finally, the content of every tape except Current is erased.

Every time the sequence of steps from 1 to 4 is performed, the term M in
Current is replaced by another term which is obtained from M by performing
a normalization step. So, R halts on M if and only if M is normalizing and the
output will be the normal form of M .

Tapes StackTerm and StackRedex are managed in the same way. They help
keeping track of the structure of a term as it is scanned. The two tapes can only
contain symbols Aλ, F@ and S@. In particular:

• The symbol Aλ stands for the argument of an abstraction;
• the symbol F@ stands for the first argument of an application;
• the symbol S@ stands for the second argument of an application;

StackTerm and StackRedex can only be modified by the usual stack operations,
i.e. by pushing and popping symbols from the top of the stack. Anytime a new
symbol is scanned, the underlying stack can possibly be modified:

• If @ is read, then F@ must be pushed on the top of the stack.
• If λ is read, then Aλ must be pushed on the top of the stack.
• If � is read, then symbols S@ and Aλ must be popped from the stack, until

we find an occurrence of F@ (which must be popped and replaced by S@) or
the stack is empty.

Now, consider an arbitrary iteration step, where M is reduced to N . We claim
that the steps 1 to 4 can all be performed in O((||M ||+ ||N ||)2).
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Lemma 3. If M →n N , then n ≤ Time(M) and |N | ≤ Time(M).

Proof. Clear from the definition of Time(M).

Theorem 2. R computes the normal form of the term M in O((Time(M))4)
steps.

6 Closed Values as a Partial Combinatory Algebra

If U and V are closed values and UV has a normal form W (which must be
a closed value), then we will denote W by {U}(V ). In this way, we can give
Ξ the status of a partial applicative structure, which turns out to be a partial
combinatory algebra. The abstract time measure induces a finer structure on
Ξ, which we are going to sketch in this section. In particular, we will be able
to show the existence of certain elements of Ξ having both usual combinatorial
properties as well as bounded behaviour. These properties are exploited in [3],
where elements of Ξ serves as (bounded) realizers in a semantic framework.

In the following, Time({U}(V )) is simply Time(UV ) (if it exists). Moreover,
〈V, U〉 will denote the term λx.xV U .

First of all, we observe the identity and basic operations on couples take con-
stant time. For example, there is a term Mswap such that {Mswap}(〈V, U〉) =
〈U, V 〉 and Time({Mswap}(〈V, U〉)) = 5. There is a term in Ξ which takes as
input a pair of terms 〈V, U〉 and computes the composition of the functions
computed by V and U . The overhead is constant, i.e. do not depend on the
intermediate result. We need to represent functions which go beyond the
realm of linear logic. In particular, terms can be duplicated, but linear time
is needed to do it: there is a term Mcont such that {Mcont}(V ) = 〈V, V 〉 and
Time({Mcont}(V )) = O(|V |). From a complexity viewpoint, what is most inter-
esting is the possibility to perform higher-order computation with constant over-
head. In particular, the universal function is realized by a term Meval such that
{Meval}(〈V, U〉) = {V }(U) and Time({Meval}(〈V, U〉)) = 4 + Time({U}(V )).
The fact that a “universal” combinator with a constant cost can be defined is
quite remarkable. It is a consequence of the inherent higher-order of the lambda-
calculus. Indeed, this property does not hold in the context of Turing machines.

7 Conclusions

We have introduced and studied the difference cost model for the pure, untyped,
call-by-value lambda-calculus. The difference cost model satisfies the invariance
thesis, at least in its weak version [13]. We have given sharp complexity bounds
on the simulations establishing the invariance and giving evidence that the differ-
ence cost model is a parsimonious one. We do not claim this model is the definite
word on the subject. More work should be done, especially on lambda-calculi
based on other evaluation models.

The availability of this cost model allows to reason on the complexity of
call-by-value reduction by arguing on the structure of lambda-terms, instead of
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using complicated arguments on the details of some implementation mechanism.
In this way, we could obtain results for eager functional programs without having
to resort to, e.g., a SECD machine implementation.

We have not treated space. Indeed, the very definition of space complexity
for lambda-calculus—at least in a less crude way than just “the maximum ink
used [9]”—is an elusive subject which deserves better and deeper study.
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Abstract. We present a reduction from the Pigeon-Hole Principle to
the classical Sperner Lemma. The reduction is used

1. to show that the Sperner Lemma does not have a short constant-
depth Frege proof, and

2. to prove lower bounds on the Query Complexity of the Sperner
Lemma in the Black-Box model of Computation.

Keywords: Propositional Proof Complexity, Constant-Depth Frege,
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1 Introduction

The classical Sperner Lemma, which was introduced and proven by E. Sperner in
[11], is a combinatorial statement about a vertex-coloured regular triangulation
of an equilateral triangle. It is of great importance in Topology since various
fixed-point theorems can be easily derived from the lemma.

The Sperner Lemma is of interest in Computational Complexity, too. Indeed,
it is one of the problems considered by Papadimitriou in [10] whose motivation
was to classify the total search problems, i.e. computational problems whose
solution is guaranteed to exists by some well known combinatorial principle.
In was proven there that the Sperner Lemma belongs to one of the important
complexity classes of total-function search problems, the so-called PPAD. A
three-dimensional variant of the lemma was in fact proven to be complete for
PPAD. Another line of research studied the Query Complexity of Search Prob-
lems in the Black-Box Model of Computation. A number of algorithms and, more
importantly, lower bounds concerning the Sperner Lemma were proven in [7, 8].

As far as we are aware, though, the Proof Complexity of the Sperner Lemma
has not been studied so far. Thus the main motivation of our work was to show
a hardness result in this setting. The main theorem of the paper is that the
Sperner Lemma is hard for Constant-Depth Frege proof systems, i.e. every such
proof is exponential in the size of the propositional encoding of the lemma. We
prove this result through a reduction from another well-known combinatorial
principle, the Pigeon-Hole Principle. Our reduction is inspired from and very
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similar to a reduction shown by S. Buss in [5]. Our reduction can be used to
reprove the optimal deterministic query lower bound from [7], and we conjecture
that it can be used to achieve the randomised query lower bound from as well.

The rest of the paper is organised as follows. We first give the necessary
background. We then explain the reduction from the Pigeon-Hole Principle to the
Sperner Lemma, and prove that it preserves constant-depth Frege proofs, thus
showing that the Sperner Lemma is hard for constant-depth Frege. Finally, we
give a simple argument that proves the optimal deterministic query lower bound
for the Pigeon-Hole Principle, and show that it translates via the reduction into
an optimal lower bound for the Sperner Lemma.

2 Preliminaries

The (Classical) Sperner lemma is the following well-known combinatorial prin-
ciple: An equilateral triangle with side length n is regularly triangulated into
unit triangles. Every vertex of the triangulation is coloured in black, white or
grey, and so that each colour is forbidden for a different side of the big trian-
gle (see figure 1(a) for an example of legitimate Sperner colouring where grey
is forbidden for the horizontal side, black is forbidden for the right side, and
white is forbidden for the left side; note also that this enforces unique colouring
of the vertices of the big triangle). The Sperner lemma asserts that, for every
Sperner colouring, there exists a trichromatic unit triangle (in fact there are an
odd number of such triangles).

A classical proof, which also gives an algorithm for finding a trichromatic
triangle, is the so-called path-following argument, depicted on figure 1(b). Let
us call “door” an edge of the triangulation that has a white and a black end, and
let us assume that the doors are one-way, i.e. one can go through a door so that
the white vertex remains on the right. Let us now observe that every “room” (a
small triangle) can have no doors, 1 door or 2 doors. Moreover, if a room has
two doors, one of them is an entrance and the other is an exit, i.e. we can only
go through such a room. If a room has a single door, then it is a trichromatic
triangle. Now observe that the horizontal side of the big triangle contains a
sequence of alternating entrances and exits, which starts and finishes with an

j

i

0 1 2

0

2
1

n

n

O

(a) Sperner triangle (b) Path-following argument

Fig. 1. Two-dimensional Sperner lemma
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entrance. This means that when one tries all entrances by walking through and
then continuing as far as possible, from all of them but one, one will leave
the triangle through an exit. The entrance, which is not matched by any exit,
though, will lead to a room that can only be entered, i.e. a trichromatic triangle
(see figure figure 1(b)) .

We shall be interested in formalising this or any other proof in a certain
propositional proof system. Thus we first need to encode the Sperner lemma in
propositional logic. Let us assume a numbering of the rows and the (non-vertical)
columns of the triangulation as shown on figure 1(a), and let us introduce propo-
sitional variables spi j for 0 ≤ i, j ≤ n, i+ j ≤ n, p ∈ {1, 2, 3} to mean “the point
in row i and column j has colour p (assuming 1 is black, 2 is white, and 3 is
grey)”. It is not hard to see that the following set of clause, which we shall refer
to as Spernern, correctly encodes the negation of the Sperner Lemma,

s1i j ∨ s2i j ∨ s3i j 0 ≤ i, j < n, i+ j ≤ n

¬spi j ∨ ¬sqi j 0 ≤ i, j < n, i+ j ≤ n, 1 ≤ p < q ≤ 3

¬s30 j 0 ≤ j ≤ n

¬s2i 0 0 ≤ i ≤ n

¬s1i n−i 0 ≤ i ≤ n

¬spi j ∨ ¬sqi j+1 ∨ ¬sri+1 j 0 ≤ i, j < n, 0 ≤ i+ j < n, {p, q, r} = {1, 2, 3}
¬spi j ∨ ¬sqi j−1 ∨ ¬sri−1 j 0 < i, j ≤ n, 0 < i+ j ≤ n, {p, q, r} = {1, 2, 3} .

The first two lines say that every vertex is coloured in exactly one colour, the
next three lines impose the restrictions on the sides of the big triangle, and the
las two lines claim that no small triangle is trichromatic.
The (Bijective) Pigeon-Hole Principle. Simply says that there is no bijection
between a (finite) set of n+ 1 pigeons and a (finite) set of n holes. Its negation,
which we call PHPn+1

n , can be encoded as the following set of clauses:

n∨

j=1

pi j 1 ≤ i ≤ n+ 1

¬pi j ∨ ¬pi k 1 ≤ i ≤ n+ 1, 1 ≤ j < k ≤ n
n+1∨

i=1

pi j 1 ≤ j ≤ n

¬pi j ∨ ¬pk j 1 ≤ j ≤ n, 1 ≤ i < k ≤ n+ 1

(obviously pi j stands for “pigeon i goes to hole j”).

Frege and Constant-Depth Frege Propositional Proof Systems. Frege proof sys-
tems are the usual “text-book”, Hilbert-style, proof systems for propositional
logic based on modus ponens [6]. Proof lines of a Frege proof are propositional
formulae built upon finite set of variables as well as the logical connectives ¬,
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∨, ∧ and →. There are a finite number of axiom schemata (propositional tau-
tologies, such as ϕ → ϕ ∨ ψ, where ϕ and ψ could be arbitrary propositional
formulae), and w.l.o.g. there is a single derivation rule, the modus ponens:

ϕ ϕ→ ψ

ψ
.

It is well known that Frege systems are sound and complete.
The propositional proof systems, which we consider in the paper, is a special

restricted variant of Frege systems called Constant-Depth Frege (or Bounded-
Depth Frege) and denoted further by cdF . We restrict the proof lines to formulae
with negation on variables only, and with a constant number of alternation of
the connectives ∨ and ∧ (→ is not permitted).

Additionally, we consider refutations rather than proofs. That is, instead of
the formula we want to prove, we take its negation, usually encoded as a set
(conjunction) of simpler formulae (usually clauses). We then use these formulae
as axioms in a Frege (or cdF) proof whose goal is now to derive the empty
formula (constant false), thus refuting the negation of the original formula.

A well-known result from Propositional Proof Complexity, which we shall use,
is that the Pigeon-Hole Principle is hard for constant-depth Frege, i.e. every proof
of PHPn+1

n in depth d Frege is of size 2n
1/2

Ω(d)

: in a great breakthrough, Ajtaj
first proved a super-polynomial lower bound in [1], which was later improved in
[3] to the exponential lower bound we have just mentioned.

Search Problems and Black-Box Complexity. are two concepts that arise in con-
nection with propositional contradictions [9]. The Search Problem for an unsat-
isfiable set of clauses is as follows: given an assignment, find a clause which is
violated by the assignment. In a different context, Search problems were first
defined and studied by Papadimitriou [10] whose motivation was classifying
computational problems that are guaranteed to have a solution (as opposed
to decision problems commonly studied in Structural Complexity). Since then,
a number of reductions and separations have been obtained among different
(classes of) search problems [2, 4]. As the latter paper shows, there is a strong link
between Search problems and Propositional Proof Complexity. In the present pa-
per, though, we are interested in the Query Complexity of the classical Sperner
Lemma in the so-called Black-Box Model of Computation: given the proposi-
tional encoding and an assignment of the variables, what is the minimal number
of variables that an algorithm has to query in order to find a contradiction, i.e.
a clause which is falsified under the assignment? The query complexity of the
Sperner Lemma was previously studied in [7] and [8].

3 Complexity Results

We first show a

Reduction from the Pigeon-Hole Principle to the Sperner Lemma. It is depicted
on figure 2(a). The pigeons, P1, P2 . . . Pn, Pn+1 and the holes H1, H2 . . . Hn are
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P1

Pn−1

Pn

HnH1 Hn−1

Pn+1

(a) Sperner triangle

Pi

Pi′

Hj′ Hj

h

e

v

c

t

(b) Pigeon-Hole Principle

Fig. 2. Reduction from PHP n+1

n to Sperner12n+6

represented by small 3 × 3 rhombs. The arrow represent paths, i.e. they cross
a sequence of edges whose left end is black and whose right end is white (here
left and right are relative to the direction of the arrow). There is a single “door”
on the horizontal side of the big triangle (this means that the horizontal side
consist of a sequence of (few) black vertices followed by a (long) sequence of
white vertices). The walk through the door leads to the n + 1st pigeon. There
are long paths starting from a hole i and ending into a pigeon i for 1 ≤ i ≤ n.
There are no paths inside the two triangles, the topmost and the rightmost ones
(this means that they contain mostly grey vertices).

The essence of the reduction, though, is concentrated into the rhomb in the
middle (filled in grey on figure 2(a)), which is enlarged on figure 2(b). If pigeon
i goes into hole j in the Pigeon-Hole formula, there is a path in the Sperner
formula starting from left side of the rhomb on row i, going horizontally as far
as column j, then turning left and thus going down straight to the bottom side of
the rhomb (in column j). We could imagine that a path is represented by means
of several different types of 3×3 rhombs that we shall call tiles. Clearly, we need
horizontal and vertical tiles denoted by h and v, respectively, as well as an empty
tile e and a turn tile t (see figure 2(b)). The last type of tile, which we need, is
a “cross” tile c: if there are pigeons i < i′ and holes j > j′ such that pigeon i
goes to hole j while pigeon i′ goes to hole j′, the two corresponding paths cross
each other at position (i, j′) - the intersection of row j and column j′. Note that
the tile of type c does not actually make two paths to cross but to switch over;
however only the positions of incoming and outgoing edges are important, so
we might as well think that the paths cross each other. The implementation of
these tiles by 3×3 rhombs is depicted on figure 3 (the empty tile e, which is not
shown there, has all vertices coloured in grey).

It is obvious that a (fictional) violation of the Pigeon-Hole Principle (i.e. a
satisfying assignment of the clauses PHPn+1

n translates via our reduction into
a violation of the Sperner Lemma (i.e. a satisfying assignment of the clauses
Sperner12n+6). We are now ready to explain why

The Sperner Lemma is Hard for Constant-Depth Frege. We shall show how to
transform a Constant-Depth Frege (cdF) refutation of Sperner12n+6 of size S
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(a) horizontal tile h (b) vertical tile v

(c) turn tile t (d) cross tile c

Fig. 3. Different kinds of tiles

into a cdF refutation of PHPn+1
n of size at most poly (n, S). The fact that

PHPn+1
n is hard for Constant-Depth Frege would then give the desired result.

Given a cdF refutation of Sperner12n+6, we need to show

1. how to replace each Sperner variable by a small-depth and small-size formula
over the Pigeon-Hole variables, and

2. that this substitution preserves the correctness of the refutation.

First of all, going back to the smaller picture of the reduction (figure 2(b)), we
note that the presence of a particular kind of tile on a particular position can
be expressed as a formula over the Pigeon-Hole variables as follows.

ti j ≡ pi j

ei j ≡
n∧

l=j

¬pi l ∧
n+1∧

k=i

¬pk j

hi j ≡
j∧

l=1

¬pi l ∧
n+1∧

k=i

¬pk j

vi j ≡
n∧

l=j

¬pi l ∧
i∧

k=1

¬pk j

ci j ≡
j∧

l=1

¬pi l ∧
i∧

k=1

¬pk j .

Indeed, the case of a turn tile ti j is the easiest one: if such a tile is present,
the pigeon i has to go hole j. An empty tile on position (i, j) prevents pigeon
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i from going into the jth hole as well as any hole which is to the right, i.e. all
holes whose number is greater than or equal to j; similarly, hole j cannot be
occupied by any pigeon whose number is greater than or equal to i. The other
three cases, those of tile types h, v and c, can be easily verified using the same
way of reasoning.

We can now explain how the Sperner variables can be substituted by formulae
over the Pigeon-Hole variables. Looking back at the bigger picture of the reduc-
tion (figure 2(a)), we note that all Sperner variables that are outside the grey
rhomb in the middle are to be substituted by constants true or false. As far as
the other variables are concerned, we first observe that the tile (3× 3 rhomb) at
position (i, j) corresponding to the ith pigeon and the jth hole in PHPn+1

n has
its bottom left corner with coordinates (3n− 3 + 3i, 3n+ 3j). Every variable spk l
within a tile (i, j) can be expressed in terms of variables ti j , ei j , hi j , vi j and
ci j . We shall give several typical cases as examples:

1. Looking at figure 3, we easily observe that the corners of the tiles are always
grey, i.e.

s33n−3+3i 3n+3j ≡ true

s13n−3i 3n+3j ≡ false

s23n−3i 3n+3j ≡ false

for 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ n+ 1.
2. If the point (2, 1) within a tile (assuming the bottom left corner is (0, 0)) is

coloured in black, then the tile has to be a horizontal tile, i.e.

s13n−1+3i 3n+1+3j ≡ vi j

for 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n.
3. If the point (1, 1) within a tile is coloured in white, then the tile has to be

of type either v or h, i.e.

s23n−2+3i 3n+1+3j ≡ vi j ∨ hi j
for 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n.

4. If the point (2, 2) within a tile is coloured in grey, then the tile may be of
type e, t or c only, i.e.

s33n−2+3i 3n+1+3j ≡ ei j ∨ ti j ∨ ci j
for 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n.

All the remaining substitutions can be easily resolved in the same manner, and
thus all Sperner variables can be equivalently expressed in terms of Pigeon-Hole
variables (recall that the variables ti j , ei j , hi j , vi j and ci j are just short-hand
notation for certain formulae over the Pigeon-Hole variables pi j).

The final step is to show that the new refutation obtained in this way is a
correct cdF refutation, and that it is not much bigger than the original one. All
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axiom schemata as well as all derivation rules in Frege systems are closed under
substitution. Thus, the only potential problems are the clauses of Spernern. It
is straightforward, though rather tedious, task to verify that these clauses have
been transformed by the substitution into formulae that have trivial cdF proofs
from the PHPn+1

n clauses. Thus, the new refutation is indeed a correct cdF
refutation of the negation of the Pigeon-Hole principle. Moreover, every variable
of the original refutation have been substituted by a formula of at most O (n)
Pigeon-Hole variables. Thus, the size of the new refutation is at most nS where S
is the size of the original refutation. This completes the proof that our reduction
preserves cdF refutations, and, together with the well-known result that every
cdF refutation of PHPn+1

n is of size exponential in n, gives the main result of
the paper.

Proposition 1. Every cdF refutation of Spernern is of size exponential in n.

Finally, we turn our attention to

The Query Complexity of the Sperner Lemma. We shall reprove the optimal
deterministic query complexity lower bound from [7], and conjecture that the
same randomised lower bound holds.

Our proof is via the reduction from the Pigeon-Hole Principle: it is clear
that an Ω (q (n)) lower bound for PHPn+1

n translates into an Ω (q (n) /n) lower
bound for Spernern (as each Sperner variable is represented by a formula of at
most O ((n)) Pigeon-Hole variables).

We first prove an optimal Pigeon-Hole lower bound.

Lemma 1. Every deterministic algorithm that solves the search problem for
PHPn+1

n has to make at least n2/8 queries.

Proof. We shall present an adversary argument. The idea behind it is that the
adversary keeps pigeons/holes free, i.e. unassigned to a hole/pigeon, as long as
possible, and can survive as long as there are “few” busy, i.e. committed to a
hole/pigeon, pigeons/holes.

The adversary’s strategy is simple: for each pigeon or hole, the adversary
answers “no” to the first n/2 different queries regarding this pigeon/hole and a
free hole/pigeon. After the last such query the adversary makes the pigeon/hole
in question busy by assigning it to a free hole/pigeon. We claim that this is always
possible provided that the number of the busy pigeons and holes altogether is
smaller than n/2. Indeed, assume w.l.o.g. that the item in question is a pigeon.
There are exactly n/2 holes forbidden for that pigeon by the negative answers
plus fewer that n/2 holes forbidden because they have already been made busy.
Thus there is at least one hole that can be assigned to the pigeon in question.

To conclude the argument, assume the adversary gives up when the number
of busy items, pigeons and holes, reaches n/2. The algorithm has made at least
n/2 queries for each of these items, and in the worst case every “final” query (i.e.
the one that makes an item busy) makes two items busy at the same time - both
the pigeon and the hole mentioned by the query, so that at this stage, at least
n2/8 queries have been made in total. �
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Combined with the initial observation, this results gives the following corollary.

Corollary 1. Every deterministic algorithm that solves the search problem for
Spernern has to make Ω (n) queries.

Under the plausible conjecture that the randomised query complexity of Pigeon-
Hole contradiction can be lower bounded by Ω

(
n2
)
, we can conjecture that the

randomised and the deterministic query complexities of the Sperner Lemma are
the same.

Conjecture 1. Every randomised algorithm that solves the search problem for
Spernern has to make Ω (n) queries.

As far as the quantum query complexity is concerned, we do not believe that a
lower bound can be achieved through our reduction, the reason being that it is
very likely that the quantum query complexity of the Pigeon-Hole Principle is
as low as O (n) (it is believable that it is even o (n)).

4 Conclusion

We have shown a reduction from the Pigeon-Hole Principle to the classical
Sperner Lemma. The reduction proves that the Sperner Lemma is hard for
Constant-Depth Frege. It also gives an optimal deterministic query lower bound
for the corresponding search problem. We have conjectured that an optimal ran-
domised query lower bound can be proven in the same way: the open question,
which we would need to resolve, is to prove a quadratic randomised query lower
bound for the Pigeon-Hole contradiction.
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Many years ago, I wrote [7]:

It is truly remarkable (Gödel . . . speaks of a kind of miracle) that it has
proved possible to give a precise mathematical characterization of the
class of processes that can be carried out by purely machanical means.
It is in fact the possibility of such a characterization that underlies the
ubiquitous applicability of digital computers. In addition it has made it
possible to prove the algorithmic unsolvability of important problems,
has provided a key tool in mathematical logic, has made available an
array of fundamental models in theoretical computer science, and has
been the basis of a rich new branch of mathemtics.

A few years later I wrote [8]:

The subject . . . is Alan Turing’s discovery of the universal (or all-purpose)
digital computer as a mathematical abstraction. . . . We will try to show
how this very abstract work helped to lead Turing and John von Neu-
mann to the modern concept of the electronic computer.

In the 1980s when those words were written, the notion that the work by
the logicians Church, Post, and Turing had a significant relationship with the
coming of the modern computer was by no means generally accepted. What was
innovative about the novel vacuum tube computers being built in the late 1940s
was still generally thought to be captured in the phrase “the stored program
concept”. Much easier to think of this revolutionary paradign shift in terms
of the use of a piece of hardware than to credit Turing’s abstract pencil-and-
paper “universal” machines as playing the key role. However by the late 1990s
a consensus had developed that the Church-Turing Thesis is indeed the basis
of modern computing practice. Statements could be found characterizing it as a
natural law, without proper care to distinguish between the infinitary nature of
the work of the logicians and the necessarily finite character of physical comput-
ers. Even the weekly news magazine Time in its celebration of the outstanding
thinkers of the twentieth century proclaimed in their March 29, 1999 issue:

. . . the fact remains that everyone who taps at a keyboard, opening a
spreadsheet or a word-processing program, is working on an incarnation
of a Turing machine. . .

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 125–132, 2006.
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Virtually all computers today from $10 million supercomputers to
the tiny chips that power cell phones and Furbies, have one thing in
common: they are all “von Neumann machines,” variations on the basic
computer architecture that John von Neumann, building on the work of
Alan Turing, laid out in the 1940s.

Despite all of this, computer scientists have had to struggle with the all-
too-evident fact that from a practical point of view, Turing computability does
not suffice. Von Neumann’s awareness from the very beginning of not only the
significance of Turing universality but also of the crucial need for attention in
computer design to limitations of space and time comes out clearly in the report
[3]:

It is easy to see by formal-logical methods that there exist codes that are
in abstracto adequate to control and cause the execution of any sequence
of operations which are individually available in the machine and which
are, in their entirety, conceivable by the problem planner. The really
decisive considerations from the present point of view, in selecting a code,
are of a more practical nature: simplicity of the equipment demanded by
the code, and the clarity of its application to the actually important
problems together with the speed of its handling those problems.

Steve Cook’s ground-breaking work of 1971 establishing the NP-completeness of
the satisfiability problem, and the independent discovery of the same phenom-
enon by Leonid Levin, opened a Pandora’s box of NP-complete problems for
which no generally feasible algorithms are known, and for which, it is believed,
none exist. With these problems Turing computability doesn’t help because, in
each case, the number of steps required by the best algorithms available grows
exponentially with the length of the input, making their use in practice prob-
lematical. How strange that despite this clear evidence that computbility alone
does not suffice for practical purposes, a movement has developed under the
banner of “hypercomputation” proposing the practicality of computing the non-
computable. In a related direction, it has been proposed that in our very skulls
resides the ability to transcend the computable. It is in this context, that this talk
will survey the history of and evidence for Turing computability as a theoretical
and practical upper limit to what can be computed.

1 The Birth of Computability Theory

This is a fascinating story of how various researchers approaching from different
directions all arrived at the same destination. Emil Post working in isolation and
battling his bipolar demons arrived at his notion of normal set already in the
1920s. After Alonzo Church’s ambitious logical system was proved inconsistent
by his students Kleene and Rosser, he saw how to extract from it a consistent
subsystem, the λ-calculus. From this, Church and Kleene arrived at their notion
of λ-definability, which Church daringly proposed as a precise equivalent of the
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intuitive notion of calculability. Kurt Gödel in lectures 1n 1934 suggested that
this same intuitive notion would be captured by permitting functions to be spec-
ified by recursive definitions of the most general sort and even suggested one way
this could be realized. Finally, Alan Turing in England, knowing none of this,
came up with his own formulation of computability in terms of abstract ma-
chines limited to the most elemental operations but permitted unlimited space.
Remarkably all these notions turned out to be equivalent.1

2 Computability and Computers

I quote from what I have written elsewhere [9]:

. . . there is no doubt that, from the beginning the logicians developing
the theoretical foundations of computing were thinking also in terms of
physical mechanism. Thus, as early as 1937, Alonzo Church reviewing
Turing’s classic paper wrote [4]:

[Turing] proposes as a criterion that an infinite sequence of digits
0 and 1 be ’computable’ that it shall be possible to devise a
computing machine, occupying a finite space and with working
parts of finite size, which will write down the sequence to any
desired number of terms if allowed to run for a sufficiently long
time. As a matter of convenience, certain further restrictions are
imposed on the character of the machine, but these are of such
a nature as obviously to cause no loss of generality . . .

Turing himself speaking to the London Mathematical Society in 1947
said [24]:

Some years ago I was researching what now may be described
as an investigation of the theoretical possibilities and limitations
of digital computing machines. I considered a type of machine
which had a central mechanism, and an infinite memory which
was contained on an infinite tape. This type of machine seemed to
be sufficiently general. One of my conclusions was that the idea of
’rule of thumb’ process and ’machine process’ were synonymous.

Referring to the machine he had designed for the British National Physics
Laboratory, Turing went on to say:

Machines such as the ACE (Automatic Computing Engine) may
be regarded as practical versions of this same type of machine.

Of course one should not forget that the infinite memory of Turing’s model
can not be realized in the physical world we inhabit. It is certainly impressive to
observe the enormous increase in storage capability in readily available comput-
ers over the years making more and more of the promise of universality enjoyed
by Turing’s abstract devices available to all of us. But nevertheless it all remains

1 I tell the story in some detail in my [7] and provide additional references. My account
is not entirely fair to Church; for a better account of his contribution see [21].
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finite. Elsewhere I’ve emphasized the paradigm shift in our understanding of
computation already implicit in Turing’s theoretical work [11, 12]:

Before Turing the . . . supposition was that . . . the three categories, ma-
chine, program, and data, were entirely separate entities. The machine
was a physical object . . . hardware. The program was the plan for doing
a computation . . . The data was the numerical input. Turing’s universal
machine showed that the distinctness of these three categories is an illu-
sion. A Turing machine is initially envisioned as a machine . . . , hardware.
But its code . . . functions as a program, detailing the instructions to the
universal machine . . . Finally, the universal machine in its step-by-step
actions sees the . . . machine code as just more data to be worked on.
This fluidity . . . is fundamental to contemporary computer practice. A
program . . . is data to the . . . compiler.

One can see this interplay manifested in the recent quite non-theoretical book
[14], for example in pp. 6–11.

3 Trial and Error Computability as Hypercomputation

Consider a computation which produces output from time to time and which is
guaranteed to eventually produce the correct desired output, but with no bound
on the time required for this to occur. However once the correct output has been
produced any subsequent output will simply repeat this correct result. Someone
who wishes to know the correct answer would have no way to know at any given
time whether the latest output is the correct output. This situation was analyzed
by E.M. Gold and by Hilary Putnam [15, 19]. If the computation is to determine
whether or not a natural number n as input belongs to some set S, then it
turns out that sets for which such “trial and error” computation is available are
exactly those in the Δ0

2 class in the arithmetic hierarchy. These are exactly the
sets that are computable relative to a 0′ oracle, that is to an oracle that provides
correct answers to queries concerning whether a given Turing machine (say with
an initially empty tape) will eventally halt.

All of this has been well understood for decades. But now Mark Burgin in
his [2] proposes that this kind of computation should be regarded as a “super-
recursive algorithm”. This book is in the series Monographs in Computer Science
with distinguished editors. Yet it is hard to make any sense of the author’s claims
that these Δ0

2 sets should be regarded as computable in some extended sense.
It is generally understood that in order for a computational result to be useful
one must be able to at least recognize that it is indeed the result sought. Indeed
Burgin goes much further, ascending the full arithmetic hierarchy and insisting
that for all the sets in that hierarchy, “super-recursive algorithms” are available.2

2 Burgin’s book discusses a very large number of abstract models of computation
and their interrelationships. The present criticism is not about the mathematical
discussion of these matters but only about the misleading claims regarding physical
systems of the present and future.



The Church-Turing Thesis 129

4 “Hypercomputation” Via Real Numbers as Oracle

The term “hypercomputation” was coined by Jack Copeland3 with particular
reference to Turing’s notion of computation with an oracle. He seems to believe
(or have believed) that Turing intended this abstract theoretical discussion as an
implied proposal to construct an actual non-Turing computable oracle, declaring
that the search was on for such. His hint at the physical form such an oracle
might take suggested that the information would be presented as the successive
digits of an infinite-precision real number. In another direction Hava Siegelmann
proposed computation by a model of computation using neural nets with infinite-
precision real numbers again playing a key role. In both cases (as I pointed out
in detail in my [9]), the claimed non-computability was nothing more than that
of the real numbers provided at the beginning.

5 The Human Mind as Hypercomputer

How nice to think that we can have a hypercomputer without having to work out
how to make one. Each and every one of us has one between our own ears! In their
book of over 300 pages [1], Selmer Bringsjord and Michael Zenzen make exactly
this claim. How finite brains are to manifest the necessarily infinite capability
implied by the word “hypercomputer” is never made clear.

Without making such outlandish claims, the illustrious mathematician and
physicist Roger Penrose has joined those who have attempted to harness Gödel’s
incompleteness theorem to demonstrate that the human mind transcends the ca-
pability of any conceivable computer [17, 18]. The argument is that any computer
programmed to generate theorems will be subject to the incompleteness theo-
rem, so that there will be some proposition (indeed of a rather simple form) left
undecided by that computer. Since, it is claimed, we can “see” that that very
proposition is true, we cannot be equivalent to such a computer. The fallacy (in
essence pointed out long ago by Turing) is that all we can really “see” is that
if the computer program is consistent, that is will never generate two mutually
contradictory assertions, then the proposition in question is true. Moreover, the
computer program will generate this same implication, being quite able to prove
that if it itself is consistent then that proposition is indeed true. So any claim
that we do better than the computer boils down to claiming that we can “see”
the consistency of the systems with which we work. But this claim is highly
dubious. The list of logicians who have seriously proposed systems of logic that
subsequently turned out to be inconsistent reads like an honor role.4 Indeed the
distinguished mathematician and computer scientist Jack Schwartz has recently
even proposed as a serious possibility that the Peano postulates themselves might
be inconsistent [20].

3 For references to the writings of Copeland, Siegelmann, and Turing relevant to this
section, see [9].

4 It includes Frege, Church, Rosser, and Quine.
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6 “Hypercomputation” Via Quantum Mechanics

Finally, a few words about the effort of Tien Kieu to use the Quantum Adiabatic
Theorem, a well-known and important result in quantum mechanics, to provide
a computational solution fo a problem known to be Turing non-computable.
The problem in question is Hilbert’s tenth problem which may be expressed as
follows:

Find an algorithm which given a polynomial equation in any number of
unknowns with integer coefficients will determine whether or not that
equation has a solution in positive integers.

Kieu’s proposed solution [16] has been thoroughly criticized by people who un-
derstand quantum mechanics much better than I do,5 and I don’t propose to
say a great deal about it. But there is one point that I do want to make be-
cause it illustrates how blithely the hypercomputationists manage to be blind
to the significance of infinity. Kieu suggests that one way his method could be
used to determine whether the given equation has a solution is to observe, when
the process concludes, a tuple of positive integers, the “occupation numbers”.
These are then to be substituted into the given equation. Either they satisfy the
equation, in which case we know there is a solution, or they do not, in which
case Kieu assures us, the equation has no solutions. Now, evidently there are
equations that have positive integer solutions, but for which the least such so-
lution is enormous, for example so large, that to write the numbers in decimal
notation would require a space larger than the diameter of our galaxy! In what
sense could such numbers be read off a piece of equipment occupying a small
part of our small planet? And how can we suppose that it would be feasible to
substitute numbers of such magnitude into an equation and to carry out the
arithmetic needed to determine whether they satisfy the equation?

7 A Hypercomputational Physics?

Despite all of the above, it would be foolhardy to claim that no future device
will be able to compute the noncomputable. Indeed, it hardly needed the current
“hypercomputation” movement to call this to our attention. In 1958 I wrote [5]:

For how can we can we ever exclude the possibility of our being pre-
sented, some day . . . with a . . . device or “oracle” that “computes” a
noncomputable function?

However, on what basis could it be claimed that some device is indeed a “hy-
percomputer”? What would be required is an appropriate physical theory, a
theory that can be certified as being absolutely correct, unlike any existing the-
ory, which physicists see as only an approximation to reality. Furthermore the
theory would have to predict the value of some dimensionless uncomputable real
5 See for example [22].
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number to infinite precision. Finally, the device would have to follow exactly the
requirements of the supposed theory. Needless to say, nothing like this is even
remotely on the horizon.

Elsewhere I wrote [10]:

The two pillars of contemporary physics are quantum mechanics and
relativity theory. So it was inevitable that relativity theory would be
brought to bear on solving the unsolvable. In [13] Etesi and Nemeti
argue that conditions in the vicinity of certain kinds of black holes in the
context of the equations of general relativity indeed permit an infinite
time span to occur that will appear as finite to a suitable observer.
Assuming that such an observer can feed problems to a device subject
to this compression of an infinite time span, such a device could indeed
solve the unsolvable without recourse to Kieu’s miracle of an infinite
computation in a finite time period. Of course, even assuming that all
this really does correspond to the actual universe in which we live, there
is still the question of whether an actual device to take advantage of
this phenomenon is possible. But the theoretical question is certainly of
interest.
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Abstract. The centenary of Kurt Gödel (1906–78) is an appropriate
occasion on which to assess his profound, yet indirect, influence on the
development of computer science. His contributions to and attitudes to-
ward that field are discussed, and are compared with those of other pi-
oneer figures such as Alonzo Church, Emil Post, Alan Turing, and John
von Neumann, in order better to understand why Gödel’s role was no
greater than it was.

Kurt Gödel’s impact on the development of computer science was at once semi-
nal and indirect. His (first) incompleteness theorem, published in 1931 and later
recast by Alan Turing in the guise of the Halting Problem, established bounds on
what is and is not computable (and more recently, has been invoked to demon-
strate that there can be no perfect virus checker [5]). In proving that theorem,
Gödel gave a precise definition of the class of functions now called primitive
recursive, which he employed in a way that, as Martin Davis ([4], 120) has re-
marked, “looks very much like a computer program” and anticipated “many of
the issues that those designing [and using] programming languages” would later
face. Furthermore, he introduced the fundamental technique of arithmetization
of syntax (“Gödel-numbering”) — the first explicit instance in which one mathe-
matical data type (that of syntax) was represented by another (that of numbers)
for the purpose of computation.

During the years 1932–33, before the enunciation of Church’s Thesis, Gödel
published two papers on decision problems for formulas of the predicate calcu-
lus, in one of which he established both that the validity of prenex formulas in
one prefix class is a decidable question, and that for an arbitrary formula, the
decision problem for validity is reducible to that of formulas in another such
prefix class. Then in 1934, in a series of lectures at the Institute for Advanced
Study, he went on to define the notion of general recursive function — one of
several definitions that were later proved to be equivalent and adduced as evi-
dence for Church’s Thesis.1 Nevertheless, Gödel was a bystander in the further
development of recursion theory. He came to accept Church’s Thesis only in the
wake of Turing’s characterization of abstract computing machines, and despite
1 Gödel’s definition was based on a suggestion of Jacques Herbrand, which Herbrand

communicated to Gödel shortly before his own untimely death in a mountaineering
accident. See [15] for a detailed analysis of that correspondence.
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his presence at the Institute for Advanced Study — where von Neumann and
others developed one of the earliest digital computing machines — he was never
involved in the physical realization of computers (nor, as Turing and von Neu-
mann were, with their applications to problems in ballistics, cryptography, or
the development of nuclear weapons).

Similarly, in 1936, in his short note [7], Gödel stated an instance of what,
thirty years afterward, would be called a “speed-up” theorem — a topic that
subsequently became a major focus of research in computational complexity the-
ory. But he gave no proof of the result he stated there and did not pursue the
idea further. In 1956, however, he raised a related issue in a letter to von Neu-
mann2 (then terminally ill and unable to reply) — a question closely related to
the P = NP problem that is today the central problem in theoretical computer
science.3

During his early years in Princeton Gödel was in contact with several of the
pioneers of recursion theory, including Stephen C. Kleene, J. Barkley Rosser,
and Alonzo Church, and he also had correspondence with Emil Post, who had
come close to anticipating the incompleteness theorem twenty years before Gödel
and whose approach to recursion theory foreshadowed the later development of
automata theory. Regrettably, however, after Gödel’s emigration in 1940 there
is little documentary evidence to indicate how extensive his interaction was with
those, such as Church and von Neumann, who lived nearby.

Turing, too, was in Princeton during the years 1936–38, working on his doc-
torate. But Gödel was away then, incapacitated by an episode of depression, and
by the time he recovered Turing had returned to Britain and become involved
with the ultra-secret cryptographic work at Bletchley Park. That, and Turing’s
untimely death in 1954, is no doubt the reason the two never met. Surprisingly,
however — especially in view of their shared interest in the question whether
the capabilities of the human mind exceed those of any machine — they seem
never to have corresponded either.

In that regard, the contrast between Gödel’s views and those of Post and
Turing is stark. For whereas Post sought to establish the existence of absolutely
unsolvable problems, in his Gibbs Lecture to the American Mathematical Society
in 1951 Gödel maintained that the incompleteness theorems imply either that
“the human mind . . . infinitely surpasses the powers of any finite machine” or
that “there exist absolutely unsolvable Diophantine problems”. (He did not fall
into the error, first advanced by J.R. Lucas and subsequently by Roger Penrose,
of asserting that the incompleteness theorems definitively refute mechanism; but
it is clear that he believed the first alternative in the above disjunction to be the
correct one.) And though, in a note he added in 1963 to the English translation
of his incompleteness paper, Gödel conceded that Turing’s work had provided “a
precise and unquestionably adequate definition of the general notion of formal

2 Published in [13], 372–375.
3 See [14]. The claims Gödel made in his 1936 paper and in his letter to von Neumann

attracted notice only posthumously. They were first verified by Samuel Buss in the
1990s. See in particular [1].
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system” — systems in which “reasoning . . . , in principle, can be completely
replaced by mechanical devices” — he later maintained4 that Turing had erred
in arguing that “mental procedures cannot go beyond mechanical procedures.”
Specifically, Gödel claimed that Turing had overlooked that the human mind
“in its use, is not static but constantly developing.” He argued that though at
each stage of its development “the number and precision of the abstract terms at
our disposal may be finite”, in the course of time both might “converge toward
infinity”, whence so might the “number of distinguishable states of mind” that
Turing had invoked in his analysis.

That criticism of Turing, however, seems quite unfounded. For between the
years 1948 and 1952 Turing had written and lectured on several occasions5 on the
question whether machines can be said to think. He had proposed a criterion —
the so-called “Turing test” — for judging whether or not they do, had cogently
rebutted many of the arguments adduced to show that they cannot (including
those based on the incompleteness theorems), and had stressed the possibility
of designing machines that would, like the human mind, be capable of learning.

Overall, then, how ought Gödel’s role in the development of computer science
to be assessed? Certainly, he introduced many crucial theoretical ideas; and his
prescience, concerning such matters as the representation of data types and the
significance of questions related to the P = NP problem, is truly remarkable.6

He did not contribute to the further development of many of those ideas, but
that is in accord with his other mathematical work (in set theory, for example):
He was a path-breaker, eager to move on to new conquests while leaving follow-
up work to others; and his orientation was predominantly philosophical rather
than practical.

Indeed, in many respects Gödel was quite otherworldly, and some of his pro-
nouncements seem remarkably naive — such as his statement, in the Gibbs
Lecture, that if there are absolutely undecidable propositions, then mathemat-
ics must not be a creation of the human mind, because a “creator necessarily
knows all properties of his creatures, [which] can’t have any others than those
he has given them”. (To be sure, in the very next paragraph he admitted that
“we build machines and [yet] cannot predict their behavior in every detail.” But
he claimed that that was because “we don’t create . . . machines out of nothing,
but build them out of some given material.” [??]). One is reminded of an ob-
jection to the idea of machine intelligence that Turing considered in his 1948
report “Intelligent Machinery” ([3], pp. 411–412): To claim that “in so far as a
machine can show intelligence, [that must] be regarded as nothing but a reflec-
tion of the intelligence of its creator”, is, Turing says, like claiming that “credit
4 In a note ([9]) first published posthumously in vol. III of his Collected Works.
5 See chapters 9–14 in [3].
6 To appreciate just how remarkable, compare Gödel’s idea of arithmetizing syntax

with the statement by computer pioneer Howard Aiken (in 1956!) that “If it should
turn out that the basic logic of a machine designed for the numerical solution of
differential equations coincides with [that] of a machine intended to make bills for
a department store, [that would be] the most amazing coincidence I have ever en-
countered.” (Quoted in [2], p. 43.)
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for the discoveries of a pupil should be given to his teacher”. “In such a case”,
he counters, “the teacher [sh]ould be pleased with the success of his methods of
education” but “[sh]ould not claim the results themselves unless he . . . actually
communicated them to his pupil.”

Gödel died in 1978, on the eve of the microcomputer revolution, so we are
left to wonder what he might have thought of that development. No doubt he
would have welcomed computers as tools for mathematical experimentation,
which might lead to the formulation of new conjectures and extend our mathe-
matical intuition. But I doubt he would have wavered in his belief that the power
of the human mind surpasses that of any machine, and that we possess the abil-
ity to solve any mathematical problem we are capable of posing — a belief he
shared with David Hilbert, despite his own incompleteness results, which had
shown Hilbert’s formalist program for securing the foundations of mathematics
to be unrealizable.
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Abstract. A theoretical approach to a novel design method for special
purpose processors for computable integral transforms and related oper-
ations is presented. The method is based on algebraic processor models
and Type-2 Theory of Effectivity and aims for specification formalization
and calculation reliability together with implementation feasibility. The
convolution operation is presented as a case of study.
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1 Introduction

Advances in Theoretical Computer Science provide new opportunities to deal
with problems in other Computer Science fields. Nevertheless, when trying to
apply them some feasibility barriers can appear. Scientific and engineering com-
puting raise increasing reliability demands according to complexity growth of
mathematical and physical modeling [11]. In this context, Computable Analysis
deals with the computability and complexity issues so that to guarantee soft-
ware development reliability [5]. Research work concerned with correctness in
VLSI designs [9][10] has produced remarkable formal approaches for specifying
and verifying processors using algebraic models [3][4][6]. In the field of Com-
puter Arithmetic, the precision features of IEEE 754 floating point arithmetic
limit the hardware support possibilities for Scientific Computing applications
[8]. In this context, we recall the advances achieved in online-arithmetic for vari-
able precision numerical calculations [2]. With respect to technology trends, we
remark the sustained on-chip memory increase and the recent development of
hybrid chips. This approach consists of a conventional CPU with reconfigurable
hardware, allowing ad-hoc implementation of end user operations with the low
cost advantages stemming from high scale manufacturing processes [1].

From the point of view of Computer Architecture, correctness and computabil-
ity criteria are conventionally considered hardly applicable issues due to the lim-
ited utility of mathematical processor models and the inherent limited nature
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of physical hardware resources, respectively. Nevertheless, we consider that the
current technology achievements provide new opportunities to introduce par-
adigms of correctness and computability in hardware support design for high
performance scientific calculation tasks.

This research is focused on hardware support design for numerical integral
transforms and related calculations in Lp (R). We focus our interest in the con-
volution operation as it appears in a wide range of scientific calculations. In this
paper we present a novel method for special purpose processor design. A speci-
fication of a processor for L1 (R) function convolution is developed as a case of
study. The method embeds two paradigms: The Fox-Harman-Tucker algebraic
processor model [4][6] and Type Two Theory of Effectivity (TTE) [11]. The
conceptual sketch of the method (Figure 1) gathers the main decision processes
(ovals), outputs and inputs (squares), transitions (solid lines) and feedbacks (dot
line arrows).

Fig. 1. Application of algebraic models and TTE in the design process of a special
purpose processor

An informal description of the calculation problem (S0) feeds the problem
formalization stage (S1), which provides a mathematical expression of the calcu-
lation, the requirements and restrictions for the hardware support and a set of
test scenarios. The computability analysis process (S2) is input with the mathe-
matical expression and the precision requirements. It outputs algorithms based
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on computable representations and complexity results. The processor specifica-
tion stage (S3) is fed up by the requirements and restrictions produced in S1 and
by the computable algorithms obtained in S2. This stage outputs a high level
processor specification for a TTE-computable calculation. The hardware imple-
mentation process (S4) takes as inputs the global restrictions and requirements
from S1 and the algebraic specification from S4 so that to produce a hardware
prototype. The final stage (S5) is devoted to the evaluation and verification of
the processor specification and the prototype. The verification can be carried
out using specific tools for each of the design levels introduced. Finally, the
performance of the prototype can be evaluated according to the test scenarios
proposed. A feedback to stages S2, S3 and S4 can be obtained by evaluating the
prototype.

This method aims for obtaining the benefits which stem from the specifica-
tion of the processor using formal methods (the algebraic model) and from the
calculation reliability introduced by a TTE approach, which is suitable for defin-
ing variable precision schemes. The paper is organized in the following sections:
after this introduction, the problem formalization for the design of the convolu-
tion processor is developed in Section 2; the computability analysis is carried out
in Section 3 and the processor algebraic specification is developed in Section 4.
Finally, Section 5 summarizes the conclusions drawn from this paper. The com-
plexity analysis of the convolution algorithm is omitted due space constraints.
The algebraic verification and the hardware implementation evaluation are out
of the scope of this paper.

2 Formalizing the Problem

The formalization of the specialized processor for function convolution calcula-
tion begins with a precise definition of the operations and mathematical objects
involved. Next, a list of requirements and restrictions to be considered along
the design process is developed. Finally, the mathematical expression of the cal-
culation together with the system requirements and restrictions would help in
describing the test scenarios for evaluating the prototype.

2.1 The Convolution Operation

The convolution operation between two functions outputs a function which ac-
cumulates the product of one of the input functions with a flipped and shifted
version of the other input function. We define it as in [12]:

h (x) = f ∗ g (x) =
∫

Rd

f (x− y) g (y) dy =
∫

Rd

f (y) g (x− y) dy. (1)

Particularly, we consider the convolution in the separable Banach space L1 (R)
of Lebesgue-measurable integrable functions on R with values in C with the norm
‖f‖ equal to

∫ |f (x)| dλ (x) and λ denoting the Lebesgue measure.
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2.2 Requirements and Restrictions

We propose the following requirements and restrictions to be considered through-
out the design process of the processor: heterogeneous data sources such as those
obtained from symbolic calculation programs and real world data series; scal-
ability features for calculation parallelization; variable precision capabilities to
support a wide range of calculation precision requirements; finally, calculation
time restrictions and result quality management.

3 Analyzing Computability Issues

We recall the interest of introducing computability criteria so that to preserve re-
liability in numerical calculations. Among the whole approaches to Computable
Analysis, TTE resembles to be one of the most accepted theories [11]. We remark
two motivating facts: first, the TTE computability concept is based on tangible
representations for computable objects via concrete naming systems and real-
izations; second, data features and data flow design are considered some of the
keystones in computer architecture specification.

The process of analyzing computability given a mathematical expression pro-
vides a collection of algorithms based on effective representations. The level of
abstraction of the representation objects and arithmetic operations involved has
to be suitable for hardware implementation. Furthermore, depending on the rep-
resentation features, a problem complexity analysis could be carried out.

3.1 Computable Representations for L1 (R) Spaces

Previous work in TTE computability on Lp (R) spaces, distributions and convo-
lution operation can be found in [7][11][12]. In these research works the TTE-
computability is introduced by effective and computable metric spaces or limit
spaces and achieved by approximations by infinite fast converging sequences of
rational step functions or truncated polynomials.

Due to the nature of source functions and considering arithmetic implemen-
tation feasibility, rational step functions (or simple functions) are chosen as the
basis for our representation. Let RSF := {∑n

i=0 χ(ai,bi)ci : ai ≤ bi| n ∈ N,
ai, bi ∈ Q, ci ∈ Q2} be the set of step functions in R with rational values defined
by characteristic functions χ(ai,bi) over intervals with rational endpoints ai and
bi. The set RSF is a countable dense subset of the space L1 (R) as every inte-
grable measurable function can be approximated by measurable step functions
in the norm |·| and every measurable subset of R can be approximated from
above by open sets with respect to the Lebesgue measure [7].

Rational Step Function Representation. Let Σ = {1, 0, 1} be a finite set.
Let Σ∗ and Σw denote the sets of finite and infinite sequences over Σ, re-
spectively. We introduce the normalized representation νnsd to codify names of
rational numbers with exponent e ∈ Z and mantissa m ∈ Q in νsd [11, Def. 3.1.2.
and 7.2.4]. This aims for simplifying the arithmetic operators.
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νexp
sd :⊂ Σ∗ −→ Z,

dom (νexp
sd ) :=

⎧
⎨

⎩

all an . . . a0 ∈ Σ∗ for n ≥ 0,
ai ∈ Σ for i ≤ n,
an �= 0, if n ≥ 0 and anan−1 /∈ {11, 11

}
, if n ≥ 1,

νexp
sd (an . . . a0) := ρsd (an . . . a00w) .
νman
sd :⊂ Σ∗ −→ Q,
dom (νman

sd ) := {u•v | u = 0, v ∈ Σ∗, u•v0w ∈ dom (ρsd)} ,
νman
sd (u•v) := ρsd (u•v0w) .

(2)

νnsd :⊂ Σ∗ −→ Q,
dom (νnsd) := {expman| exp ∈ dom (νexp

sd ) , man ∈ dom (νman
sd )} ,

νnsd (expman) := νsd (exp ·man) .
(3)

The following representation for rational step functions is proposed:

ανnsd

RSF :⊂ Σ∗ −→ RSF,
dom (ανnsd

RSF ) := {nrlh {(ab) (cRcI)1 . . . (ab) (cRcI)n} |
n ∈ dom (νN) and r, l, h, a, b, cR, cI ∈ dom (νnsd)} ,
ανnsd

RSF (nrlhs) = 〈nrlh {s1 . . . sn}〉 =
ι (n) ι (r) ι (l) ι (h) ι (ι {ι (s1) . . . ι (sn)}) ,with si = (ab) (cRcI)1 ,

(4)

where νN is a standard TTE binary notation for natural numbers [11, Def. 3.1.2].
The representation codifies names of rational step functions by the following
word pairing: n is the number of steps of a given rational step function; r is the
partition size for the function range related to the Lebesgue integral, l and h
are the lower an upper rational numbers which define the domain of the rational
step function and, finally, (ab) is the step domain interval and its corresponding
step value (cR, cI) ∈ Q2.

L1 (R) Function Representation. Define the representation αL1(R) of the
functions f ∈ L1 (R) as a sequence of rational step functions:

αL1(R) :⊂ Σw −→ L1 (R)
dom

(
αL1(R)

)
:= {p0p1 . . . pi . . . ∈ Σw | pi ∈ dom (ανnsd

RSF ) , i ∈ N} . (5)

Let p ∈ dom
(
αL1(R)

)
with p = p0p1 . . . , pi ∈ dom (ανnsd

RSF ) , i = 0, 1, . . .. The
sequence p = p0p1 . . . must fulfil the convergence condition ||f − si||L1(R) ≤ 2−i,
where f = αL1(R)(p) and si = ανnsd

RSF (pi) (see [11, Ex. 8.1.8]).
The next algorithm for αL1(R) representation is proposed:

1. Let f1, f2 ∈ L1 (R) and p1, p2 = λ (initialization to empty word).
2. Choose an initial partition size for the function range step r ∈ Q. Then,

obtain the corresponding function domain partitions.
3. Construct rational step functions s1,s2 for f1,f2 according to ανnsd

RSF features.
An approximation in Q2 with k significative digits is obtained for each step.

4. Rearrange the rational step functions s1,s2 achieving a ”reverse compatible
partition scheme” for f1,f2 in order to ease the calculation of the convolution.
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5. Check the convergence condition for the sequence of rational step functions
p1s1 and p2s2. If the condition is fulfilled, update p1 and p2 by concatenat-
ing s1 and s2 to the corresponding sequence. If not, perform new interval
splitting into halves with r = r

2 together with an increment k = k + -k ,
according to the precision requirements established. If r and k exceed the
values established, then stop; else, go to step 3.

Representations for discrete functions can be obtained in a similar way, con-
sidering value interpolation where necessary.

All the operations involved in the algorithm proposed for building the source
functions are TTE computable: minimum, rational number k−digit truncating
and rational number division and addition.

Convolution Between Rational Step Functions. The resulting sequence
of rational step functions obtained from the convolution operation has conver-
gence features due to the nature of the source representations. A TTE effective
representation p = p0, p1, ... ∈ dom

(
αL1(R)

)
will be achieved by checking the con-

vergence condition ||f − si||L1(R) ≤ 2−i, with f = αL1(R)(p) and si = ανnsd

RSF (pi).
The convolution algorithm:

f = f1f2, ... ∈ Σw, g = g1g2, ... ∈ Σw, fi, gi ∈ dom (ανnsd

RSF )
∀fi ∧ gi, fi ∈ f, gi ∈ g, i = 1, 2, ...
hi = fi ∗ gi.

(6)

The following inner operations are codified and concatenated for each rational
step function convolution result:

h[i] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi � n = fi � n+ gi � n− 1,
hi � r = fi � r,
hi � l = fi � l, hi � h = (fi � h− fi � l) + (gi � h− gi � l) ,

hi � (abcRcI)j

⎧
⎨

⎩

hi � (a)j = fi � (a)k ,
hi � (b)j = fi � (b)k ,
hi � (cRcI)j =

∑j
k=0 fi � (cRcI)k · gi � (cRcI)[j−k] ,

j = 1, ..., hi � n.

(7)

The abstractions embedded in the function names, which are, namely the
number of steps n, range step size r, lower interval limit l, upper interval limit
h and step values a, b, cR, cI are accessed with the operator ”�”. This operator,
which is not formally developed due to space constraints, extracts the corre-
sponding abstractions within the RSF name. Remark that the arithmetic oper-
ations ”+”, ”−” and ”·” are computable with respect to the νsd representation.

4 Specifying the Convolution Processor

The first part of this section introduces a functional specification of the processor.
Next, an algebraic specification at programmer’s level is presented. The last part
deals with a proposal for filling the implementation gap between TTE and the
algebraic processor model by means of a set of memory mapping functions.
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4.1 Functional Specification

The processor consists of five main modules: the system bus interface, the control
unit, the processor memory and the RSF arithmetic unit. The system bus inter-
face provides external control and scalability management for multiple processing
units. The control unit has an instruction decoder which feeds a microinstruction
encoder. This module translates the high abstraction level processor instructions
into simpler machine instructions, which are associated to the datapath and the
control signals of the bus. The control unit manages the arithmetic logic unit
(ALU) and the register banks. It also interfaces the memory module an the RSF
arithmetic unit. The memory module is split in two memory areas: the program
area and the data memory area. The RSF arithmetic unit provides support for
online arithmetic operations for parts of the computable RSF representations,
attending to RSF word function name stride, pipes, precision, interval step and
available calculation time provided during the processor configuration stage.

The instruction set of the processor consists of five instructions conceived for
external interfacing throughout the processor program memory:

– Status request(): Idle∨Busy∨Error(1). Provides the status of the processor.
– Configuration request(): (pNum, wStride, nPipes, lPrec, hPrec, tAvail, tOP,

addH, addF, addG)∨Error (2,..,11). Provides information about the config-
uration of the processor: pNum is the processor number; wStride is the RSF
stride used for coordinating a calculation carried out by multiple processing
units; nPipes is the number of arithmetic pipes ;lPrec and hPrec are the
lower and higher precision bounds; tAvail is the available calculation time;
tOP is the single operation time for a given precision; addH, addF and addG
keep the memory base address for the source functions f and g and the result
function h. Returns the number of operations done when halted.

– Configuration set(pNum, wStride, nPipes, lPrec, hPrec, tAvail, tOP, addH,
addF, addG): Ack∨Error (12,. . . ,21). Processor configuration instruction.

– Halt(): Ack∨OPs∨Error(22). This is an instruction with priority for stop-
ping the processor. It returns the number of operations done.

– Convolution(): Ack∨OPs∨Error (23,...,55). Returns the number of opera-
tions done when the operation is halted.

According to our estimations based on an algorithmic approach, a program
counter PC and four banks of registers are needed:

– Configuration Registers (CR): PN (processor number), WS (word stride),
NP (arithmetic pipes), LP and HP (precision bounds), TA (calculation
time available) and TO (operation time).

– Base-Address Registers (BA): AH ←addH, AF ←addF, AG←addG.
– Status Registers (SR): CI for the current instruction, OR for result storage,
RA result storage address, OC for operation counter.

– Arithmetic Registers (AR). Provide arithmetic support (32 registers).
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4.2 Algebraic Specification. Programmer’s Level

By introducing an algebraic model for the processor specification formal behavior
methods over time and data representation as well as operations can be isolated.
In this section, an algebraic specification of the processor at programmer’s level
is developed following [6]. The instruction delay is chosen as abstract system
clock T . The next subsection develops the state and the next-state algebras.

The State and Next-State Algebras. The processor state consists of the pro-
gram counter PC, the register banks CR, BA, SR, AR and the memory system.
The program memory PM and the data memory DM are modeled as a mapping
of a subset of the natural numbers into the binary
numbers: PM,DM :⊆ N × B2, N ⊆ dom (νN) and B2 ⊆ dom (νb,2). PM also
holds the instructions execution results. The state of the machine is defined by
Cc = PC × CR ×BA× SR×AR ×Mem, with Mem = PC −→ PM ∪DM.

There are 5 inputs with the corresponding outputs:

IIn = {Stat req(), Conf req(), Conf set(nPs, ...), Halt(), Conv()}
IOut = {Idle ∨Busy ∨ Error(1), ..., Ack ∨OPs ∨ Error(23, ..., 55) (8)

Therefore, input is defined as In = IIn × PC and output as Out = IOut ×
SR.CI ×Mem. The state algebra can be expressed as:

Algebra Convolution Processor State
Sets T,Cc, In,Out, [T −→ In]
Operations CC : T × Cc× [T −→ In] −→ Cc×Out
End Algebra
CC is defined as:

CC1 (0, g, i) = g,
CC1 (t+ 1, g, i) = cc (CC1 (t, g, i) , i (t)) ,
CC2 (0, g, i) = out (CC1 (t, g, i)) ,

(9)

where cc : Cc× In −→ Cc is the next-state function, and out : Cc −→ Out is
the output function. Hence, the next-state algebra is defined as:

Algebra Convolution Processor Next-State
Sets T,Cc, In,Out, [T −→ In]
Constants 0 : T
Operations t+ 1 : T −→ T

cc : Cc× In −→ Cc
out : Cc −→ Out
eval : T × [T −→ In] −→ In

End Algebra
The stream evaluation function eval : T × [T −→ In] −→ In, is defined by

primitive recursive functions over the next-state algebra.

4.3 Data Memory Organization

The implementation in memory of source and result functions can be done by
mapping every abstraction of a function name p ∈ dom

(
αL1(R)

)
into a memory

designed as an address space M :⊆ N×B2, N ⊆ dom (νN) and B2 ⊆ dom (νb,2).
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Fig. 2. Data memory mapping of a RSF representation

A realistic memory organization with flexibility criteria suggests the intro-
duction of indirect addressing in the mapping process (see Fig. 2). This way,
we introduce a set of mapping functions according to the different abstractions
within the function name p ∈ dom

(
αL1(R)

)
. Their formal definition is omitted

due to space constraints.
pheadName : maps the starting function representation address.
paddrF : maps the amount of RSFs and their corresponding addresses.
paddrRSF : maps the number of steps and the address for the step size, the

lower and upper intervals of a RSF and the step addresses.
pheadStep : maps the addresses for the step values.
paddrRangeStep,paddrLInt,paddrHInt: map the number of addresses and initial

addresses for exponent and mantissa of range step and interval bounds.
paddrA,paddrB,paddrCr,paddrCi: map the number of addresses and initial ad-

dresses for exponent and mantissa of step data (domain and value in Q2).
pRangeStep,plInterval,phInterval,pa,pb, pCr,pCi: map the values of the step size,

lower interval, upper interval and the step using a conversion type from the
normalized signed digit representation into positive and negative string parts in
νN so that to use online arithmetic operators (see [2, Ch. 9]).

5 Conclusions

A novel theoretical approach for special purpose processor design based on Type
Two Theory of Effectivity and the Fox-Harman-Tucker algebraic processor spec-
ification model has been presented. The TTE approach, which is based on a
Type-2 Turing Machine computability model, provides criteria about the man-
agement of the calculation precision according to realistic limited memory re-
sources, as the computable representations involved in the calculation embed
precision features. In addition, the representation is based on signed digit val-
ues which are suitable for specific hardware support based on online arithmetic
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operators. The algebraic model of the processor provides a formal framework not
only for describing and verifying the processor but also for filling the gap within
the TTE model and a feasible implementation of a special processor. The rela-
tionship between TTE and algebraic processor model has being established by a
partial mapping of the TTE representation into a conventional memory modeled
as an space of memory addresses indexed by a finite subset of natural numbers.
As a case of study, a formal specification of a processor for TTE computable
convolution operation in L1 (R) has been proposed.

As future work, the development of the whole specification process, including
the abstract circuit level and the verification sketch, is being developed. We
expect to obtain a formal specification of an hybrid general purpose processor
embedding FPGA capabilities. With respect to the hardware implementation,
a VHDL model of the Rational Step Function Arithmetic Unit based on the
datatypes developed in this research is being carried out.
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10. Möller, B. and Tucker, J. V. (editors): Prospects for hardware foundations. LNCS,

Vol. 1546, (1998)
11. Weihrauch, K.: Computable Analysis. Springer-Verlag, (2000)
12. Zhong, N. and Weihrauch, K.: Computability Theory of Generalized Functions,

Journal of the ACM, Vol. 50, (2003) 469–505



Turing Universality in Dynamical Systems

Jean-Charles Delvenne
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Abstract. A computer is classically formalized as a universal Turing
machine. However over the years a lot of research has focused on the com-
putational properties of dynamical systems other than Turing machines,
such cellular automata, artificial neural networks, mirrors systems, etc.

In this talk we review some of the definitions that have been proposed
for Turing universality of various systems, and the attempts to under-
stand the relation between dynamical and computational properties of a
system.

1 What Is a Dynamical System?

A dynamical system is intuitively anything that evolves in time. In this talk we
mainly consider deterministic, discrete-time systems, given by an evolution map
f : X → X , where X is the state space, or configuration space. A state x is
transformed into f(x), then f(f(x)), and so on.

Examples include Turing machines, cellular automata, subshifts, piecewise
affine maps, piecewise polynomial maps and neural networks.

We may also be interested in continuous-time systems, usually defined by a
differential equation on (a part of) Rn.

Here we do not consider quantum universal systems; see for instance [7].

2 What Is Universality?

We are interested to solve decision problems on integers, e.g., primality, by means
of a dynamical system.

Informally, a universal dynamical system is a system with the same comput-
ing power as a universal Turing machine. Thus, a universal system can be used
to (semi-)solve the same decision problems as a universal Turing machine.

Note that in this talk we are only interested in solving decision problems on
integers, while computable analysis deals with computable functions and decision
problems on the reals (e.g., checking invertibility of a real-valued matrix). See
for instance [23, 3, 19, 17] on computable analysis.

Also, we do not consider systems with super-Turing capabilities, as done for
instance in [20, 4].
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Note that here we do not define universality as the ability to ‘simulate any
other system’. See for instance [18] for such a notion of universality in the case
of cellular automata.

3 Point-to-Point and Point-to-Set Universality

The most remarkable feature of a universal Turing machine is r.e.-completeness
of its halting problem. In fact, Davis [5] considered this property as the very
definition of universality for a Turing machine.

Following that idea, we can say that a system f : X → X is universal
if its point-to-point or point-to-set reachability problem is r.e.-complete. The
reachability problem goes as follows: we are given two points x and y (‘point-
to-point’) or a point x and a set Y (‘point-to-set’), and the question is whether
there is a t such that f t(x) = y or f t(x) ∈ Y .

Such a definition is meaningful only if we restrict ourselves to countable
families of points x, y and sets Y .

In cellular automata, point-to-point reachability with almost periodic config-
urations (made of a same pattern indefinitely repeated except for finitely many
cells) is usually considered. For instance the automaton 110 and the Game of
Life are universal according to this definition. Why almost periodic configura-
tions and not a wider, or smaller, countable family of points? This is discussed
in [21].

For systems in Rn, points with rational coordinates and sets defined by poly-
nomial inequalities with rational coefficients (e.g., polyhedra or euclidian balls)
are usually considered. The choice of rational numbers seems to be guided by
simplicity only.

Let us give some examples of universal systems according to this definition.

– A piecewise-affine continuous map in dimension 2 [9]. This map is defined
by a finite set of affine maps of rational coefficients, on domains delimited
by lines with rational coefficients.

– Artificial neural networks for several kinds of saturation functions [20].
– A closed-form analytic map in dimension 1 [10].

We can define in a very similar way universal systems in continuous time.
Examples of such systems are:

– A piecewise-constant derivative system in dimension 3 [2]. The state space
is partitioned on finitely domains delimited by hyperplanes with rational
coefficients, and the vector field is constant with a rational value on every
domain.

– A ray of light between a set of mirrors [14].

A variant to the choice of rational points is proposed in [16]: the system is
endowed with a special point, call it 0, and two functions f0 and f1. Then the
initial condition f0f0f1f0(0), say, encodes the binary word 0010. So instead of
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choosing a countable family of initial conditions, we can choose an initial point
and two functions.

3.1 Set-to-Set Universality

Following step by step Turing’s original argumentation to build his machines,
another definition of universality is elaborated in [6], that holds for symbolic
system. Symbolic systems are those whose states are sequences of symbols, such
as Turing machines, cellular automata and subshifts.

The basic ingredient is to consider a set-to-set reachability problem. Sets
are chosen as cylinders, i.e., sets of configurations characterized by the value
of finitely many cells. The system is said to be universal if the existence of a
trajectory going from one given cylinder to another is r.e.-complete to decide.
Actually, variants of reachability are considered as well, such as the existence
of a trajectory from given cylinder to another cylinder, then reaching a third
given cylinder, or more generally any property that can be observed by a finite
automaton.

This definition avoids the somewhat arbitrary choice of a countable family
of initial states.

3.2 Robust Computation

Is universality preserved when the dynamics is perturbed by some noise?
In the point-to-point or point-to-set universality, the least uncertainty on the

initial condition can a priori completely destroy the computation. In fact, ensur-
ing that a physical system is, e.g., in a rational state is obviously an impossible
task in practice. The set-to-set universality is less sensitive to perturbation on
the initial state. In any case, the question remains if a noise is applied that would
slightly perturb every step of the computation.

It has been shown that many reachability problems become decidable when
perturbation is added to the dynamics; see for instance [1, 12, 8].

4 A Universal System: What Does It Look Like?

What is the link between the dynamics of a system and its computational capa-
bilities?

Wolfram proposed a loose classification of 1-D cellular automata based on
the patterns present in the space-time diagram of the automaton; see [24]. He
then conjectured that the universal automata are in the so-called ‘fourth class’,
associated to the most complex patterns.

Langton [11] advocated the idea of the ‘edge of chaos’, according to which
a universal cellular automaton is likely to be neither globally stable (all points
converging to one single configuration) nor chaotic. See also [13] for a discussion.
Other authors argue that a universal system may be chaotic; see [20].

However it seems difficult to prove any non-trivial result of this kind with
the point-to-point definition of universality. Moreover a countable set of points
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can be ‘hidden’ in a very small part of the state space (nowhere dense, with zero
measure for instance), so the link between this set and the global dynamics is
unclear in general.

The set-to-set definition of universality for symbolic systems is more treatable
from this respect. In particular, it can be proved [6] that a universal system
according to this definition has at least one proper closed subsystem, must have
a sensitive point and can be Devaney-chaotic.

5 Decidability vs. Universality

System theorists are often interested by another kind of problem. We consider
a countable family of systems. One must check whether a given system of the
family has some fixed dynamical property. Note the difference with universality,
where we consider a family of points/subsets in a single dynamical system.

For instance, it was proved [22] that global stability (all trajectories uniformly
converge to 0) is undecidable for saturated linear systems with rational entries
in dimension 4. A saturated linear system is a map x )→ σAx, where A is
a linear map (with rational entries) and σ is the saturation function applied
componentwise: σ(x) = x if x ∈ [−1, 1], σ(x) = 1 if x > 1 and σ(x) = −1 if
x < −1.

6 Conclusion: What Is a Computer?

The search for universal computation in dynamical systems has lead to a great
diversity of results associated to a great variety of definitions. The emergence
of natural computing and quantum computing makes it only more crucial to
understand what exactly we mean by computer.

A desirable achievement would thus be to relate definitions and results in a
common general framework. This could perhaps lead to a precise understanding
of how computational capabilities emerge from the purely dynamical properties
of a system.

A motivation can be the characterization of physical systems able of compu-
tation. For instance, we can ask whether a gravitational N -body system [14], or
a fluid governed by Navier-Stokes equations [15], is universal.
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Abstract. Kučera and Gács independently showed that every infinite
sequence is Turing reducible to a Martin-Löf random sequence. We ex-
tend this result to show that every infinite sequence S is Turing reducible
to a Martin-Löf random sequence R such that the asymptotic number
of bits of R needed to compute n bits of S, divided by n, is precisely
the constructive dimension of S. We show that this is the optimal ratio
of query bits to computed bits achievable with Turing reductions. As an
application of this result, we give a new characterization of constructive
dimension in terms of Turing reduction compression ratios.

Keywords: Constructive dimension, Kolmogorov complexity, Turing
reduction, compression, martingale, random sequence.

1 Introduction

An (infinite, binary) sequence S is Turing reducible to a sequence R, written
S ≤T R, if there is an algorithm M that can compute S, given oracle access to
R. Any computable sequence is trivially Turing reducible to any other sequence.
Thus, if S ≤T R, then intuitively we can consider R to contain the uncomputable
information that M needs to compute S.

Informally, a sequence is Martin-Löf random [Mar66] if it has no structure that
can be detected by any algorithm. Kučera [Kuč85, Kuč89] and Gács [Gác86] inde-
pendently obtained the surprising result that every sequence is Turing reducible
to a Martin-Löf random sequence. Thus, it is possible to store information about
an arbitrary sequence S into another sequence R, while ensuring that the stor-
age of this information imparts no detectable structure on R. In the words of
Gács, “it permits us to view even very pathological sequences as the result of the
combination of two relatively well-understood processes: the completely chaotic
outcome of coin-tossing, and a transducer algorithm.”

Gács additionally demonstrated that his reduction does not “waste bits of R.”
Viewing R as a compressed representation of S, the asymptotic number of bits
of R needed to compute n bits of S, divided by n, is essentially the compression
� This research was funded in part by grant number 9972653 from the National Science

Foundation as part of their Integrative Graduate Education and Research Trainee-
ship (IGERT) program.
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ratio of the reduction. Gács showed that his reduction achieves a compression
ratio of 1; only n+o(n) bits of R are required to compute n bits of S. Merkle and
Mihailović [MM04] have provided a simpler proof of this result using martingales,
which are strategies for gambling on successive bits of a sequence.

Lutz [Lut03b] defined the (constructive) dimension dim(S) of a sequence S as
an effective version of Hausdorff dimension (the most widely-used fractal dimen-
sion; see [Hau19, Fal90]). Constructive dimension is a measure of the “density of
computably enumerable information” in a sequence. Lutz defined dimension in
terms of constructive gales, a generalization of martingales. Mayordomo [May02]
proved that for all sequences S, dim(S) = lim inf

n→∞
K(S�n)

n , where K(S  n) is the

Kolmogorov complexity of the nth prefix of S.
Athreya et. al. [AHLM04], also using gales, defined the (constructive) strong

dimension Dim(S) of a sequence S as an effective version of packing dimen-
sion (see [Tri82, Sul84, Fal90]), another type of fractal dimension and a dual
of Hausdorff dimension. They proved the analogous characterization Dim(S) =
lim sup
n→∞

K(S�n)
n . Since Kolmogorov complexity is a lower bound on the algorithmic

compression of a finite string, dim(S) and Dim(S) can respectively be consid-
ered to measure the best- and worst-case compression ratios achievable on finite
prefixes of S.

Consider the following example. It is well known that K, the characteristic
sequence of the halting language, has dimension and strong dimension 0 [Bar68].
The binary representation of Chaitin’s halting probability Ω =

∑
M halts 2−|M|

(where M ranges over all halting programs and |M | is M ’s description length)
is an algorithmically random sequence [Cha75]. It is known that K ≤T Ω (see
[LV97]). Furthermore, only the first n bits of Ω are required to compute the
first 2n bits of K, so the asymptotic compression ratio of this reduction is 0.
Ω can be considered an optimally compressed representation of K, and it is no
coincidence that the compression ratio of 0 achieved by the reduction is precisely
the dimension of K.

We generalize this phenomenon to arbitrary sequences, extending the result
of Kučera and Gács by pushing the compression ratio of the reduction down
to its optimal lower bound. Compression can be measured by considering both
the best- and worst-case limits of compression, corresponding respectively to
measuring the limit inferior and the limit superior of the compression ratio on
longer and longer prefixes of S. We show that, for every sequence S, there is
a sequence R such that S ≤T R, where the best-case compression ratio of the
reduction is the dimension of S, and the worst-case compression ratio is the
strong dimension of S. Furthermore, we show that the sequence R can be chosen
to be Martin-Löf random, although this part is achieved easily by simply invoking
the construction of Gács in a black-box fashion. The condition that R is random
is introduced chiefly to show that our main result is a strictly stronger statement
than the result of Kučera and Gács, but the compression is the primary result.
Our result also extends a compression result of Ryabko [Rya86], discussed in
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section 3, although it is not a strict improvement, since Ryabko considered two-
way reductions (Turing equivalence) rather than one-way reductions.

One application of this result is a new characterization of constructive di-
mension as the optimal compression ratio achievable on a sequence with Turing
reductions. This compression characterization differs from Mayordomo’s Kol-
mogorov complexity characterization in that the compressed version of a prefix
of S does not change drastically from one prefix to the next, as it would in the
case of Kolmogorov complexity. While the theory of Kolmogorov complexity as-
signs to each finite string an optimally compact representation of that string –
its shortest program – this does not easily allow us to compactly represent an
infinite sequence with another infinite sequence. This contrasts, for example, the
notions of finite-state compression [Huf59] or Lempel-Ziv compression [ZL78],
which are monotonic: for all strings x and y, x � y (x is a prefix of y) implies
that C(x) � C(y), where C(x) is the compressed version of x. Monotonicity en-
ables these compression algorithms to encode and decode an infinite sequence –
or in the real world, a data stream of unknown length – online, without needing
to reach the end of the data before starting. However, if we let π(x) and π(y)
respectively be shortest programs for x and y, then x � y does not imply that
π(x) � π(y). In fact, it may be the case that π(x) is longer than π(y), or that
π(x) and π(y) do not even share any prefixes in common.

Our characterization of sequence compression via Turing reductions, coupled
with the fact that the optimal compression ratio is always achievable by a sin-
gle oracle sequence and reduction machine, gives a way to associate with each
sequence S another sequence R that is an optimally compressed representation
of S. As in the case of Kolmogorov complexity, the compression direction is in
general uncomputable; it is not always the case that R ≤T S.

2 Preliminaries

2.1 Notation

All logarithms are base 2. We write R, Q, Z, and N for the set of all real numbers,
rational numbers, integers, and non-negative integers, respectively. For A ⊆ R,
A+ denotes A ∩ (0,∞).
{0, 1}∗ is the set of all finite, binary strings. The length of a string x ∈ {0, 1}∗

is denoted by |x|. λ denotes the empty string. Let s0, s1, s2, . . . ∈ {0, 1}∗ denote
the standard enumeration of binary strings s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . ..
For k ∈ N, {0, 1}k denotes the set of all strings x ∈ {0, 1}∗ such that |x| = k.
The Cantor space C = {0, 1}∞ is the set of all infinite, binary sequences. For
x ∈ {0, 1}∗ and y ∈ {0, 1}∗ ∪C, xy denotes the concatenation of x and y, and
x � y denotes that x is a prefix of y. For S ∈ {0, 1}∗ ∪C and i, j ∈ N, we write
S[i] to denote the ith bit of S, with S[0] being the leftmost bit, we write S[i . . j]
to denote the substring consisting of the ith through jth bits of S (inclusive),
with S[i . . j] = λ if i > j, and we write S  i to denote S[0 . . i− 1].
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2.2 Reductions and Compression

Let M be a Turing machine and S ∈ C. We say M computes S if, on input
n ∈ N, M outputs the string S  n.

We define an oracle Turing machine (OTM ) to be a Turing machine M that
can make constant-time queries to an oracle sequence, and we let OTM denote
the set of all oracle Turing machines. For R ∈ C, we say M operates with oracle
R if, whenever M makes a query to index n ∈ N, the bit R[n] is returned.

Let S,R ∈ C and M ∈ OTM. We say S is Turing reducible to R via M , and
we write S ≤T R via M , if M computes S with oracle R. In this case, define
M(R) = S. We say S is Turing reducible to R, and we write S ≤T R, if there
exists M ∈ OTM such that S ≤T R via M .

Since we do not consider space or time bounds with Turing reductions, we
may assume without loss of generality that an oracle Turing machine queries
each bit of the oracle sequence at most once, caching the bit for potential future
queries.

In order to view Turing reductions as decompression algorithms, we must
define how to measure the amount of compression achieved. Let S,R ∈ C and
M ∈ OTM such that S ≤T R via M . Define #R

S (M,n) to be the query usage
of M on S  n with oracle R, the number of bits of R queried by M when
computing S  n. Let S,R ∈ C and M ∈ OTM such that S ≤T R via M . Define

ρ−M (S,R) = lim inf
n→∞

#R
S (M,n)
n

,

ρ+
M (S,R) = lim sup

n→∞
#R
S (M,n)
n

.

ρ−M (S,R) and ρ+
M (S,R) are respectively the best- and worst-case compression

ratios as M decompresses R into S. Note that 0 ≤ ρ−M (S,R) ≤ ρ+
M (S,R) ≤ ∞.

Let S ∈ C. The lower and upper compression ratios of S are respectively defined

ρ−(S) = min
R∈C

M∈OTM

{
ρ−M (S,R)

∣
∣ S ≤T R via M

}
,

ρ+(S) = min
R∈C

M∈OTM

{
ρ+
M (S,R)

∣
∣ S ≤T R via M

}
.

Note that 0 ≤ ρ−(S) ≤ ρ+(S) ≤ 1. As we will see, by Lemma 4.1 and Theorem
4.2, the two minima above exist. In fact, there is a single OTM M that achieves
the minimum compression ratio in each case.

2.3 Constructive Dimension

See [Lut03a, Lut03b, AHLM04, Lut05] for a more comprehensive account of the
theory of constructive dimension and other effective dimensions.

1. An s-gale is a function d : {0, 1}∗ → [0,∞) such that, for all w ∈ {0, 1}∗,
d(w) = 2−s[d(w0) + d(w1)].

2. A martingale is a 1-gale.
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Intuitively, a martingale is a strategy for gambling in the following game. The
gambler starts with some initial amount of capital (money) d(λ), and it reads
an infinite sequence S of bits. d(w) represents the capital the gambler has after
reading the prefix w � S. Based on w, the gambler bets some fraction of its
capital that the next bit will be 0 and the remainder of its capital that the next
bit will be 1. The capital bet on the bit that appears next is doubled, and the
remaining capital is lost. The condition d(w) = d(w0)+d(w1)

2 ensures fairness: the
martingale’s expected capital after seeing the next bit, given that it has already
seen the string w, is equal to its current capital. The fairness condition and an
easy induction lead to the following observation.

Observation 2.1. Let k ∈ N and let d : {0, 1}∗ → [0,∞) be a martingale. Then
∑

u∈{0,1}k

d(u) = 2kd(λ).

An s-gale is a martingale in which the capital bet on the bit that occurred is
multiplied by 2s, as opposed to simply 2, after each bit. The parameter s may
be regarded as the unfairness of the betting environment ; the lower the value of
s, the faster money is taken away from the gambler. Let d : {0, 1}∗ → [0,∞) be
a martingale and let s ∈ [0,∞). Define the s-gale induced by d, denoted d(s), for
all w ∈ {0, 1}∗ by

d(s)(w) = 2(s−1)|w|d(w).

If a gambler’s martingale is given by d, then, for all s ∈ [0,∞), its s-gale is d(s).
Let S ∈ C, s ∈ [0,∞), and let d : {0, 1}∗ → [0,∞) be an s-gale. d succeeds on

S, and we write S ∈ S∞[d], if

lim sup
n→∞

d(S  n) = ∞.

d strongly succeeds on S, and we write S ∈ S∞
str[d], if

lim inf
n→∞ d(S  n) = ∞.

An s-gale succeeds on S if, for every amount of capital C, it eventually makes
capital at least C. An s-gale strongly succeeds on S if, for every amount of
capital C, it eventually makes capital at least C and stays above C forever.

Let d : {0, 1}∗ → [0,∞) be an s-gale. We say that d is constructive (a.k.a.
lower semicomputable, subcomputable) if there is a computable function d̂ :
{0, 1}∗ × N → Q such that, for all w ∈ {0, 1}∗ and t ∈ N,

1. d̂(w, t) ≤ d̂(w, t + 1) < d(w), and
2. lim

t→∞ d̂(w, t) = d(w).

Let R ∈ C. We say that R is Martin-Löf random, and we write R ∈ RAND,
if there is no constructive martingale d such that R ∈ S∞[d]. This definition of
Martin-Löf randomness, due to Schnorr [Sch71], is equivalent to Martin-Löf’s
traditional definition (see [Mar66, LV97]).

The following well-known theorem (see [MM04]) says that there is a single
constructive martingale that strongly succeeds on every S �∈ RAND.
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Theorem 2.2. [MM04] There is a constructive martingale d such that S∞
str[d] =

RANDc.

Let d̂:{0, 1}∗×N → Q be the computable function testifying that d is construc-
tive.

The following theorem, due independently to Hitchcock and Fenner, states
that d(s) is “optimal” for the class of constructive t-gales whenever s > t.

Theorem 2.3. [Hit03, Fen02] Let s > t ∈ R+, and let d be a constructive t-gale.
Then S∞[d] ⊆ S∞[d(s)] and S∞

str[d] ⊆ S∞
str[d(s)].

By Theorem 2.3, the following definition of constructive dimension is equivalent
to the definitions given in [Lut03b, AHLM04]. Let X ⊆ C. The constructive
dimension and the constructive strong dimension of X are respectively defined

cdim(X) = inf{s ∈ [0,∞) | X ⊆ S∞[d(s)]},
cDim(X) = inf{s ∈ [0,∞) | X ⊆ S∞

str[d
(s)]}.

Let S ∈ C. The dimension and the strong dimension of S are respectively defined

dim(S) = cdim({S}),
Dim(S) = cDim({S}).

Intuitively, the (strong) dimension of S is the most unfair betting environment
s in which the optimal constructive gambler d (strongly) succeeds on S. The
following theorem – the first part due to Mayordomo and the second to Athreya
et. al. – gives a useful characterization of the dimension of a sequence in terms
of Kolmogorov complexity, and it justifies the intuition that dimension measures
the density of computably enumerable information in a sequence.

Theorem 2.4. [May02, AHLM04] For all S ∈ C,

dim(S) = lim inf
n→∞

K(S  n)
n

, and Dim(S) = lim sup
n→∞

K(S  n)
n

.

One of the most important properties of constructive dimension is that of
absolute stability, shown by Lutz [Lut03b], which allows us to reason equivalently
about the constructive dimension of individual sequences and sets of sequences:

Theorem 2.5. [Lut03b] For all X ⊆ C,

cdim(X) = sup
S∈X

dim(S), and cDim(X) = sup
S∈X

Dim(S).

3 Previous Work

The next theorem says that every sequence is Turing reducible to a random
sequence. Part 1 is due independently to Kučera and Gács, and part 2 is due to
Gács.
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Theorem 3.1. [Kuč85, Kuč89, Gác86] There is an OTM M such that, for all
S ∈ C, there is a sequence R ∈ RAND such that

1. S ≤T R via M .
2. ρ+

M (S,R) = 1.

Let X ⊆ C. Define the code cost of X by

cT(X) = inf
Me,Md∈OTM

{

sup
S∈X

ρ−Md
(S,Me(S))

∣
∣
∣
∣ (∀S ∈ X) Md(Me(S)) = S

}

.

cT(X) is the optimal lower compression ratio achievable with reversible Turing
reductions on sequences in X . The next theorem is due to Ryabko [Rya86].

Theorem 3.2. [Rya86] For every X ⊆ C, cT(X) = cdim(X).

Theorem 3.2 achieves weaker compression results than the main results of this
paper, Theorems 4.2 and 4.3. Theorem 3.2 does not include ρ+ or cDim, and it
requires optimizing over all OTMs. However, unlike Theorem 4.2, in which only
the decompression is computable, the compression achieved in Theorem 3.2 is
computable, by the definition of cT.

4 Results

We now state the new results.
An OTM that computes a sequence S, together with a finite number of oracle

bits that it queries, is a program to produce a prefix of S. Thus, the query
usage of the Turing machine on that prefix cannot be far below the Kolmogorov
complexity of the prefix. This is formalized in the following lemma, which bounds
the compression ratio below by dimension.

Lemma 4.1. Let S,R ∈ C and M ∈ OTM such that S ≤T R via M . Then

ρ−M (S,R) ≥ dim(S), and ρ+
M (S,R) ≥ Dim(S).

The next theorem is the main result of this paper. It shows that the compression
lower bounds of Lemma 4.1 are achievable, and that a single OTM M suffices
to carry out the reduction, no matter which sequence S is being computed.
Furthermore, the oracle sequence R to which S reduces can be made Martin-Löf
random.

Theorem 4.2. There is an OTM M such that, for all S ∈ C, there is a sequence
R ∈ RAND such that

1. S ≤T R via M .
2. ρ−M (S,R) = dim(S).
3. ρ+

M (S,R) = Dim(S).

Finally, these results give a new characterization of constructive dimension.
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Theorem 4.3. For every sequence S ∈ C,

dim(S) = ρ−(S), and Dim(S) = ρ+(S),

and, for all X ⊆ C,

cdim(X) = sup
S∈X

ρ−(S), and cDim(X) = sup
S∈X

ρ+(S).

Proof. Immediate from Lemma 4.1 and Theorems 4.2 and 2.5.  !

5 Conclusion

We have shown that every infinite sequence is Turing reducible to a Martin-
Löf random infinite sequence with the optimal compression ratio possible. Since
this optimal ratio is the constructive dimension of the sequence, this gives a
new characterization of constructive dimension in terms of Turing reduction
compression ratios.

The Turing reductions of Theorems 3.1, 3.2, and 4.2 satisfy the stronger prop-
erties of the weak truth-table reduction (see [Soa87]), which is a Turing reduction
in which the query usage of the reduction machine M on input n is bounded by
a computable function of n. For example, 2n+O(1) suffices. Thus, constructive
dimension could also be defined in terms of weak truth-table reductions.

As noted in the introduction, for the sequences S and R in Theorems 3.1
and 4.2, it is not necessarily the case that R ≤T S. In other words, though the
decompression is computable, it is not computably reversible in all cases. For
instance, if S is computable, then R �≤T S, since no sequence R ∈ RAND is
computable. For this reason, Theorem 4.2 does not imply Theorem 3.2, which
allows for the reduction to be computably reversed, subject to the trade-off that
the compression requirements are weakened.

The compression of Theorem 4.2 may not be computable even if we drop the
requirement that the oracle sequence be random. If the sequence S in Theorem
4.2 satisfies dim(S) > 0 and Dim(S) > 0, then for all P ∈ C (not necessarily
random) and M ∈ OTM satisfying S ≤T P via M , ρ−M (S, P ) = dim(S), and
ρ+
M (S, P ) = Dim(S), it follows that dim(P ) = Dim(P ) = 1. This implies that

the reversibility of decompression – whether P ≤T S – is related to an open
question posed by Miller and Nies when considering Reimann and Terwijn’s
question concerning the ability to compute a random sequence from a sequence
of positive dimension. Question 10.2 of [MN05] asks whether it is always possible,
using an oracle sequence S of positive dimension, to compute a sequence P with
dimension greater than that of S.
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Abstract. In Abstract geometrical computation for black hole compu-
tation (MCU ’04, LNCS 3354), the author provides a setting based on
rational numbers, abstract geometrical computation, with super-Turing
capability. In the present paper, we prove the Turing computing capa-
bility of reversible conservative abstract geometrical computation. Re-
versibility allows backtracking as well as saving energy; it corresponds
here to the local reversibility of collisions. Conservativeness corresponds
to the preservation of another energy measure ensuring that the num-
ber of signals remains bounded. We first consider 2-counter automata
enhanced with a stack to keep track of the computation. Then we built
a simulation by reversible conservative rational signal machines.

Keywords: Abstract geometrical computation, Conservativeness, Ra-
tional numbers, Reversibility, Turing-computability, 2-counter automata.

1 Introduction

Reversible computing is a very important issue because it allows on the one
hand to backtrack a phenomenon to its source and on the other hand to save en-
ergy. Let us note that quantum computing relies on reversible operations. There
are general studies on reversible computation [LTV98] as well as many model
dependent results: on Turing machines [Lec63, Ben73, Ben88] and 2-counter
machines [Mor96] (we do not use these), on logic gates [FT82, Tof80], and
last but not least, on reversible Cellular automata on both finite configurations
[Mor92, Mor95, Dub95] and infinite ones [DL95, DL97, DL02, Kar96, Tof77] as
well as decidability results [Čul87, Kar90, Kar94] and a survey [TM90].

Abstract geometrical computation (AGC) [DL05b, DL05c] comes from the
common use in the literature on cellular automata (CA) of Euclidean lines to
model discrete lines in space-time diagrams of CA (i.e. colorings of Z× N with
states as on the left of Fig. 1) to access dynamics or to design. The main char-
acteristics of CA, as well as abstract geometrical computation, are: parallelism,
synchrony, uniformity and locality of updating. Discrete lines are often observed
and idealized as on Fig. 1. They can be the keys to understanding the dynamics
like in [Ila01, pp. 87–94] or [BNR91, JSS02]. They can also be the tool to design

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 163–172, 2006.
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CA for precise purposes like Turing machine simulation [LN90]. These discrete
line systems have also been studied on their own [MT99, DM02].

Space (Z)

T
im

e
(N

)

T
im

e
(R

+
)

Space (R)

Fig. 1. Space-time diagram of a cellular automaton and its signal machine counterpart

Abstract geometrical computation considers Euclidean lines. The support of
space and time is R. Computations are produced by signal machines which are
defined by finite sets of meta-signals and of collision rules. Signals are atomic
information that correspond to meta-signals and move at constant speed thus
generating Euclidean line segments on space-time diagrams. Collision rules are
pairs (incoming meta-signals, outgoing meta-signals) that define a mapping over
sets of meta-signals. They define what happens when signals meet. A configura-
tion is a mapping from R to meta-signals, collision rules and two special values:
void (i.e. nothing there) and accumulations (amounting for black holes). The
time scale being R+, there is no such thing as a “next configuration”. The fol-
lowing configurations are defined by the uniform movement of signals. In the
configurations following a collision, incoming signals are replaced by outgoing
signals according to a collision rule.

Zeno like acceleration and accumulation can be brought out as on Fig. 2 of
Sect. 2. Accumulations can lead to an unbounded burst of signals producing
infinitely many signals in finite time (as in the right of Fig. 2). To avoid this,
a conservativeness condition is imposed: a positive energy is defined for every
meta-signal, the sum of the energies must be preserved by each rule. Thus no
energy creation is possible; the number of signals is bounded.

To our knowledge, AGC is the only computing model that is a dynamical
system with continuous time and space but finitely many local values. The closest
model we know of is the Mondrian automata of Jacopini and Sontacchi [JS90]
which is also reversible. Their space-time diagrams are mappings from Rn to a
finite set of colors representing bounded finite polyhedra. Another close model is
the piecewise-constant derivative system [AM95, Bou99]: Rn is partitioned into
finitely many polygonal regions, trajectories are defined by a constant derivative
on each region and form sequences of (Euclidean) line segments.

In this paper, space and time are restricted to rational numbers. This is possi-
ble since all the operations used preserve rationality. All quantifiers and intervals
are over Q, not R.



Abstract Geometrical Computation 165

The Turing computing capability of conservative signal machines is proved
in [DL05a, DL05b] by simulating any 2-counter automaton since Turing ma-
chines and 2-counter automata compute exactly the same functions. To build
a reversible version of the simulation, we have to cope with the inherent irre-
versibility of counter automaton (the result of Morita [Mor96] is not used here
because it does not fit well with our approach): branching (there is no way to
guess the previous instruction) and subtracting (0 comes from both 0 and 1).

To cope with this we add stacks to store information for reversibility. A stack
over an alphabet {1, 2, . . . , l} is encoded by a rational number σ such that: 1

l+2
encodes the empty stack, otherwise 1

l+1<σ<1. After pushing a value v on a stack
σ the new stack is v+σ

l+1 . The top of the stack is .(l+1)σ/ and (l+1)σ−.(l+1)σ/
encodes the rest of the stack. This more or less corresponds to a base l+1 decimal
number manipulation as can be found in e.g. [Bou99].

This simple memory scheme can be implemented inside a reversible conser-
vative rational signal machine. We then finish the simulation by adapting the
construction from [DL05b, DL05a] by adding the storing of current line number
before passing to the next and of the previous value of a counter whenever it
reaches 0.

The definition of signal machines can be found in Sect. 2. Section 3 deals with
2-counter automata and their enhancement with stacks. Section 4 shows how the
stacks are implemented. In Sect. 5, the different pieces are gathered in order to
achieve the simulation. Section 6 gives a short conclusion.

2 Abstract Geometrical Computations

Abstract geometrical computations are defined by the following machines:

Definition 1. A rational signal machine is defined by (M,S,R) where
M (meta-signals) is a finite set, S ( speeds) a mapping from M to Q and R
( collision rules) a partial mapping from the subsets of M of cardinality at least
2 into the subsets of M (speeds must differ in both domain and range).

Each instance of a meta-signal is a signal. The mapping S assigns rational speeds
to meta-signals. They correspond the slopes of the segments in space-time dia-
grams. The collision rules, denoted ρ−→ρ+, define what happens when two or
more signals meet.

The extended value set, V , is the union of M and R plus two symbols: one for
void, 0, and one for an accumulation (or black hole) ❊. A configuration, c, is a
total mapping from Q to V such that the set { x ∈ Q | c(x) �= 0} is finite.

A signal corresponding to a meta-signal μ at a position x, i.e. c(x) = μ, is
moving uniformly with constant speed S(μ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. These correspond to
condition 2 in Def. 2. At a ρ−→ρ+ collision signals corresponding to the meta-
signals in ρ− (resp. ρ+) must end (resp. start); no other signal should be present
(condition 3). A black hole corresponds to an accumulation of collisions and
disappears without a trace (condition 4).
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(x, t)

J−(x, t)

Fig. 2. Light-cone, a simple accumulation and three unwanted phenomena

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .

Definition 2. The space-time diagram issued from an initial configuration c0
and lasting for T , is a mapping c from [0, T ] to configurations (i.e. a mapping
from Q× [0, T ] to V ) such that, ∀(x, t) ∈ Q× [0, T ] :

1. ∀t∈[0, T ], { x ∈ Q | ct(x) �= 0} is finite,
2. if ct(x)=μ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf ), ct′(x+ S(μ)(t′ − t)) = μ ,
– ti = 0 or cti(xi) ∈ R and μ ∈ (cti(xi))+ where xi = x+ S(μ)(ti − t) ,
– tf = T or ctf (xf ) ∈ R and μ ∈ (ctf (xf ))− where xf = x+S(μ)(tf − t) ;

3. if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε]∩ [0, T ], ∀x′∈[x−ε, x+ε],
– ct′(x′) ∈ ρ−∪ρ+ ∪ {0},
– ∀μ∈M , ct′(x′)=μ ⇒

∨
{
μ ∈ ρ− and t′ < t and x′ = x+ S(μ)(t′ − t)) ,
μ ∈ ρ+ and t < t′ and x′ = x+ S(μ)(t′ − t)) ;

4. if ct(x) = ❊ then
– ∃ε > 0, ∀(x′, t′) /∈ J−(x, t), ( |x−x′|<ε and |t−t′|<ε ) ⇒ ct′(x) = 0 ,
– ∀ε > 0, { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x′) ∈ R } is infinite.

In the illustrations of space-time diagrams, time increases upwards.

2.1 Conservativeness

The three space-time diagrams on the right of Fig. 2 provide examples un-
compatible with Def. 2 at the time of accumulation. In each case, the number of
signals is bursting to infinity and black holes are not isolated. To prevent this,
the following restriction is imposed.

Definition 3. A signal machine is conservative iff there exists an energy from
meta-signals to positive integers, E : M → N∗, such that the total energy of the
system, i.e. the sum of the energies of all present signals, is constant.

One can check easily that the total energy is constant iff for each rule the sum
of the energies of incoming meta-signals and the sum of outgoing ones are equal.
It follows automatically that given a conservative signal machine and an initial
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configuration, the number of signals in any following configuration, as well as
the number of accumulations, is bounded (by the total energy divided by the
least atomic energy). A simple sub-case of conservativeness is when all the meta-
signals have the same energy and the numbers of in and out meta-signals are
always equal.

2.2 Reversibility

A dynamical systems is said to be reversible when from any configuration it
is possible to generate all the previous configurations. Moreover, the inverse
dynamical system should be of the same nature.

Concerning signal machines, the “inversion” of an isolated signal is the same
signal with opposite speed. Regarding collision, one has to guess its position and
the in-coming signals from the out-going ones. Collisions resulting in nothing are
impossible to guess going backward, and they cannot be conservative. Collisions
resulting in only one signal are also impossible to predict. Reversibility holds if
and only if the (partial mapping) M is one-to-one and always yields 2 or more
out-going meta-signals. The inverse signal machine is the same with the rules
reversed.

Definition 4. A signal machine is reversible if and only if R is one-to-one and
maps only on sets of cardinality at least 2.

Let us point out this is true as long as there is no accumulation! The way an
accumulation disappears is like a (second order) collision resulting in nothing.
Moreover if its location could be guessed, there are infinitely many way to scale
it since there is no absolute scale for space nor time.

3 2-Counter Automaton with Stack

A 2-counter automaton is a finite automaton coupled with two counters, A and
B. The possible actions on any counter are add/subtract 1 and branch if non-
zero. Such an automaton can be described with a six-operations assembly lan-
guage with branching labels as on the left part of Fig. 6 (see [Min67] for more
on 2-counter automata). The configuration of a 2-counter automaton is defined
by (n, a, b) (the line number and the values of the counters).

Two-counter automaton are intrinsically irreversible: subtracting 1 yields 0
for both values 0 and 1 and before a labeled instruction the instruction can be
the one on the previous line or a branching to this label.

To achieve reversibility two stacks are added: one, Σi, records the instruction
number (i.e. it records the values of the instruction counter) and another one,
Σz, record the previous value (0 or 1) of any counter that holds zero after a
subtraction. We write x.Σ to indicate pushing x on S or that x is the top of the
stack. The dynamics is described on Fig. 3 for instructions on A. The ones for
B are similar. Discarding the stacks, one gets the usual dynamics. The inverse
dynamics is automatic (as long as the sequence was generated legally, otherwise
things like undoing adding 1 from a zero counter might happen).
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Instruction at line n Associated action

A ++ ( n, a, b, Σi, Σz ) � (n + 1, a + 1, b, n.Σi, Σz )
A -- ( n, a + 2, b, Σi, Σz ) � (n + 1, a + 1, b, n.Σi, Σz )
A -- ( n, 1, b, Σi, Σz ) � (n + 1, 0, b, n.Σi, 1.Σz )
A -- ( n, 0, b, Σi, Σz ) � (n + 1, 0, b, n.Σi, 0.Σz )
IF A != 0 m ( n, 0, b, Σi, Σz ) � (n + 1, 0, b, n.Σi, Σz )
IF A != 0 m ( n, a + 1, b, Σi, Σz ) � ( m, a + 1, b, n.Σi, Σz )

Fig. 3. Dynamics of a 2-counter automata with memory stacks

4 Stack Implementation

Since we are dealing with rational numbers, it is very easy to implement
an unbounded stack of natural numbers 1 to l in the following way: 1

l+2 encodes
the empty stack. Let σ be a rational number encoding of a stack (0<σ<1). After
pushing a value v on top of a stack σ, the new stack is v+σ

l+1 . This ensures that, as
soon as the stack is not empty, 1

l+1<σ<1 and distinct from i
l+1 , i ∈ {1, 2, . . . , l}.

The top of the stack .(l+1)σ/ and rest of the stack is (l+1)σ − .(l+1)σ/.
To implement this in a signal machine, a scale is defined (because the space is

continuous and scaleless) and then the push operation is implemented. We are
not interested in the pop and test of emptiness because our 2-counter simulation
only pushes values. The pop corresponds to the inverse of push and is thus
implicitly built.

The rational σ is encoded with a zero-speed signal mem. The scale is defined
with zero-speed signals mark0, mark1,. . . , markl. They are regularly positioned,
never move and defined positions 0, 1, . . . , l. Thus the normal position of mem
is between mark0 and mark1. To push v, mem is translated by v (lower part of
Fig. 4). Then this position is scaled by 1

l+1 (upper part of Fig. 4) to get σ+v
l+1 .

The process starts at the arrival of ←−−−storev.
Translating is very easy:−−→mem and−−−→storev are parallel. Their distance encodes σ.

Their movement stops when the first one, −−−→storev, reaches markv. The signal catch
is then issued to stop −−→mem as in the middle of Fig. 4. This collision is distance
v away from the original position of mem. This is ensured by the definition of
speeds (we leave to the reader to verify this linear equation system based on the
speeds given in Fig. 4). When this point is reached, a scaling remains to be done.
Scaling by 1

l+1 , to go from σ+v to σ+v
l+1 , fix has to travel (σ+v)− σ+v

l+1 = (σ+v) l
l+1

units, and ←−−mem and −−→mem have to travel (σ+v) + σ+v
l+1 = (σ+v) l+2

l+1 units. Thus
if the speeds of ←−−mem and −−→mem have the same absolute value then the speed of
fix must be l

l+2 times the one of ←−−mem (notice in Fig. 4 that −2 = −3 4
4+2 ).

If the stack is empty, then backward collision between ←−−mem and fix happens
between mark0 and mark1. So that there is a (backward) collision between −−→mem
(regenerated from mark0 and ←−−mem) and catch. There no such a rule, it can be
defined to have, for example, mem fixed and catch exiting on the left.

It is easy to check that the rules are invertible.
Let us note that, with slight modifications, ←−−−storev and ack could come from/be

sent left or right. It is also possible to carry extra information (like a next line
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Meta-signal Speed

marki 0←−−
mem −3
mem 0−−→
mem 3←−−−
storei −3−−−→
storei 3
catch 1
fix −2
ack 3

Rules

{mem,
←−−−
storev} → {←−−

mem,
−−−→
storev}

{mark0,
←−−
mem} → {mark0,

−−→
mem}

{−−−→
storev , markv} → {markv, catch}
{−−→
mem, catch} → {←−−

mem, fix}
{−−→
mem, fix} → {mem, ack}

{marki,
←−−−storev} → {←−−−storev , marki}

v < i, {−−−→storev, marki} → {marki,
−−−→storev}

{−−→mem, marki} → {marki,−−→mem}
{marki, ←−−mem} → {←−−mem, marki}

{marki, fix} → {fix, marki}
{ack, marki} → {marki, ack}

Fig. 4. Implementation the stack for l = 4 and push(3)

number) through the storing process. This is done by having a special set of←−−−storei,
−−−→storei, catch, fix, and ack for each possible piece of information.

5 Reversible Computation

The idea is to use the construction provided in [DL05b] to simulate any 2-counter
automaton with a conserving signal machine (which cannot be detailed here).
Figure 5 shows how the counters are encoded using two fixed signals zero and
one as a scale. A signal amounting for the current line zigzags between these
signals. Figure 6 presents the code of a simple 2-counter automaton and some
simulations. When a simulation stops, a signal stop appears and bounces between
zero and one. In the reversible version, it exits the configuration on the right.

z
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a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Fig. 5. Encoding positions of counters

Figure 7 show how everything is interconnected. Before going to the next
configuration, the number of the just carried out instruction is stored on the
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A != 0 notZ
A++

glob B != 0 loop
A != 0 fin

loopB--
A++
A != 0 glob

notZ A--
B++

fin stop

�

a=0 b=0

�

a=1 b=0

�

a=0 b=1

�

a=2 b=0

Fig. 6. A 2-counter automaton and its simulations for three different initial values

a=0 b=0 a=1 b=0

a=0 b=1 a=2 b=0

Fig. 7. The reversible simulations for same automaton and values
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left while recording the next instruction number. Each time there is a subtract
1 generating a 0, the previous value of the counter is stored on the right (cases
(1, 0) and (0, 1)) whatever counter is concerned.

6 Conclusion

As far as there is no accumulation, reversible conservative rational abstract geo-
metrical computation has exactly the same computing capability as Turing ma-
chines (because rational numbers can be implemented exactly).

Two-counter automaton are exponentially slower than Turing machines. This
is not important since we are only interested in computational issues. Never-
theless, it is easy to simulate reversibly (but without conservativeness) Turing
machine in such a way that the number of collisions is proportional to the number
of TM iterations. It would be interesting to do so to study the complexity.

It is possible to apply the iterated shrinking construction of [DL05b, DL05a]
which preserves reversibility so that the black hole models can now be embedded
in a reversible setting. We do not do it here for lack of room on one side and
on the other side this would provoke an accumulation which is clearly not a
reversible phenomena.
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Abstract. LJQ is a focused sequent calculus for intuitionistic logic, with
a simple restriction on the first premisss of the usual left introduction
rule for implication. We discuss its history (going back to about 1950,
or beyond), present the underlying theory and its applications both to
terminating proof-search calculi and to call-by-value reduction in lambda
calculus.

Keywords: Sequent calculus, purification, call-by-value semantics,
focused, depth-bounded, guarded logic.

1 Introduction

Proof systems for intuitionistic logic close to natural deduction are well-known
to be related to computation. For example, ordinary typed λ-calculus, with beta-
reduction, is the classic model of computation for typed functional programmes
with call-by-name (CBN) semantics; likewise, a system of uniform proofs for
Horn logic is a coherent explanation of proof search in pure Prolog, as argued
by (e.g.) [23]. The focused calculus LJT of Herbelin [17] (with antecedents in
work [20], [3] by Joinet et al) is an intuitionistic sequent calculus equivalent
to natural deduction (in the sense that its cut-free proofs are in a natural 1-1
correspondence with normal deductions); it also has a well-developed theory of
proof-reduction with strong normalisation [17], [10], [12]. It can thus be seen to
fulfil both these important roles, in being a basis both for proof search (where
the proofs are of interest in themselves [9]) and for functional program evaluation
with CBN-semantics. Work by the second author [21], [22] is developing the first
of these ideas for a wide range of type theories.

The purpose of the present paper is to consider a different focused calcu-
lus LJQ, as named by Herbelin [16] and with similar antecedents [20], [3]. We
present some aspects of its history and its applications both in structural proof
theory and in λ-calculus, with connections in the first instance to automated
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Santo for his unpublished [14] and to Jörg Hudelmaier for a copy of his thesis [18].
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reasoning and in the second to call-by-value programming language semantics.
Fuller details will appear elsewhere.

Vorob’ev [34] (detailing ideas published in 1952) showed (Theorem 3) that, in
a minor variant of Gentzen’s calculus LJ for intuitionistic logic, one may, without
losing completeness, restrict instances of the left rule L⊃ for implication to those
in which, if the antecedent A of the principal formula A⊃B is atomic, then the
first premiss is an axiom. Independently, Hudelmaier [18] showed that one could
further restrict this rule to those instances where the first premiss was either
an axiom or the conclusion of a right rule; the result was proved in his [18] and
described in [19] as folklore. The same result is mentioned by Herbelin in [16]
as the completeness of a certain calculus LJQ, described simply as LJ with the
last-mentioned restriction.

It is convenient to formalise such restrictions in terms of a sequent calculus
LJQ′ with two forms of sequent; letting Γ range over multisets of formulae, we
have the ordinary sequent Γ ⇒ A to express the deducibility of the formula A
from assumptions Γ , and the focused sequent Γ → A to impose the restriction
that the last step in the deduction is by an axiom or a right rule (i.e. with the
succedent formula principal). A natural deduction interpretation is straightfor-
ward. Note that the focused sequent p∨ q → p∨ q is not derivable; the last step
of its derivation can only be a right-introduction step.

The rules of the calculus are then as presented below, in Sect. 2. We use the
name LJQ′ rather than LJQ both to indicate the explicit focusing (use of two
kinds of sequent) and the extra focusing (in the premisses of right rules for ∨ and
∧). In later sections, when we consider a term calculus to represent derivations,
we revert to the generic name LJQ for this kind of calculus.

For example, the rule L⊃′ has, as conclusion and second premiss, ordinary se-
quents, but as first premiss a focused sequent, capturing the restriction on proofs
discussed by Hudelmaier (given that the focused sequents are exactly the axioms
or the conclusions of right introduction rules). However, further restrictions are
allowed: our right rules for disjunction and conjunction also have focused pre-
misses. This represents a strengthening of Hudelmaier’s folklore result.

LJQ as described in [16] originates in linear logic, in work byDanos et al [3] with-
out mention of disjunction and conjunction. This in turn goes back to the thesis
[20] of Joinet. Focusing itself is a technique pioneered by Andreoli [1] (but one of
the points of our paper is a demonstration of its origins in much earlier work).

Such calculi are of interest not just because of the restricted proof search
imposed by the focusing but because the completeness of LJQ (or of LJQ′)
has as an easy corollary the completeness of more specialised “depth-bounded”
calculi (as devised e.g. by [34], [18], [5]) in which proof search has limited (e.g.
linear) depth (a.k.a. “height”); [33] gives a convenient account of the G4ip
calculus, as it is there called.

These focused calculi are complementary to other focused calculi like Herbe-
lin’s LJT, as studied in [16], [17], [24], [32], [33], [9], [10], [12].

The present extended abstract outlines the theory (Sect. 2), presents some
variations (Sect. 3), summarises some applications (Sect. 4), presents the
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calculus with term annotations (Sect. 5) (including a strongly normalising reduc-
tion system for LJQ and a preservation theorem relating LJQ to Moggi’s cal-
culus λC) and summarises some related work (joint with Delia Kesner: Sect. 6).

2 LJQ′

Basic syntactic conventions are as in [33]; in particular, P is a metavariable for
“proposition variables” and Γ indicates a multiset of formulae. The symbols p
and q are distinct proposition variables. The rules of LJQ′ are as given below
in Fig. 1.

L⊥
Γ, ⊥ ⇒ A

Γ → A
Der

Γ ⇒ A

Ax
Γ , P → P

Γ , A⊃B → A Γ , B ⇒ C
L⊃′

Γ, A⊃B ⇒ C

A, Γ ⇒ B
R⊃′

Γ → A⊃B

Γ, A ⇒ C Γ , B ⇒ C
L∨′

Γ , A ∨ B ⇒ C

Γ → Ai
R∨′

Γ → A0 ∨ A1

Γ , A,B ⇒ C
L∧′

Γ , A ∧ B ⇒ C

Γ → A Γ → B
R∧′

Γ → A ∧ B

Fig. 1. Rules of LJQ′

Expressed in terms of our notation, the right rule for conjunction in the cal-
culus LJQ of [16] would be

Γ ⇒ A Γ ⇒ B

Γ → A ∧B
and similarly for disjunction; the definition of “pure” derivations in [18] could be
expressed in similar terms. The rule Der is named after the dereliction rule in
linear logic; the latter rule has (used from conclusion to premiss) a similar effect,
enabling a transition between a sequent where a certain formula is optional to
one where it is required. The restriction to proposition variables P in Ax has
the effect that the natural deduction interpretations of derivations are in long
normal form. Use of arbitrary axioms Γ ,A → A would give a different notion of
derivability, e.g. p∨ q → p∨ q would be derivable. A formula is irreducible when
it is of the form P or B⊃C. To save space, proofs omit treatment of absurdity,
conjunction and disjunction; details will appear in the full paper. Results as
stated apply to the full calculus.

Lemma 1. All sequents of the following form are derivable:

1. Γ ,A,A⊃B ⇒ B;
2. Γ ,A → A for irreducible A;
3. Γ ,A ⇒ A.
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Proof: The three parts are handled by a simultaneous induction on the sizes of
A⊃B, A and A respectively. Each part is allowed to depend on its predecessor
(up to the same size) and on itself and its successors (at smaller sizes). �

The condition “for irreducible A” is needed once absurdity, disjunction and con-
junction are included in the language; if we omit them all, then the condition
can be omitted. Weakening rules, some Inversion rules and Contraction rules
are routinely shown to be admissible.

Theorem 1. The following Cut rules are admissible:

Γ → A A, Γ ′ → B
C1

Γ, Γ ′ → B

Γ → A A, Γ ′ ⇒ B
C2

Γ , Γ ′ ⇒ B

Γ ⇒ A A,Γ ′ ⇒ B
C3

Γ , Γ ′ ⇒ B

Proof: Simultaneous induction on cut rank (size of cut formula A, height of first
derivation d1, height of second derivation d2), with case analysis. �

Note that p → p and p, p⊃q ⇒ q and q → q and q ⇒ q are all derivable but that
p, p⊃q → q is not derivable, hence the rules

Γ → A A,Γ ′ ⇒ B

Γ, Γ ′ → B

Γ ⇒ A A,Γ ′ → B

Γ, Γ ′ → B

Γ ⇒ A A,Γ ′ ⇒ B

Γ, Γ ′ → B

are not admissible.

Corollary 1. The following rules are admissible:

Γ ⇒ A A,Γ ′ → B
C4

Γ , Γ ′ ⇒ B

Γ → A A,Γ ′ → B
C5

Γ , Γ ′ ⇒ B

Proof: Using Der. �

Corollary 2. The following rules are admissible:

Γ,A ⇒ B
R⊃

Γ ⇒ A⊃B
Γ,A⊃B ⇒ A Γ,B ⇒ C

L⊃
Γ,A⊃B ⇒ C

Proof: The first is derivable using R⊃′ and Der. The second can be achieved,
using Lemma 1 for the premiss A,A⊃B ⇒ B, as

Γ,A⊃B ⇒ A

. . .

A,A⊃B ⇒ B Γ,B ⇒ C
C3

A,A⊃B,Γ ⇒ C
C3

Γ ,A⊃B,Γ ,A⊃B ⇒ C
Contr

Γ ,A⊃B ⇒ C

�

It follows from Corollary 2 and Lemma 1 (3) that this calculus LJQ′ is as strong
as G3ip. Since a derivation therein becomes a G3ip derivation if we ignore the
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distinction between the two kinds of sequent (and remove instances of Der), the
two calculi are equivalent.

3 Variations

Several variations (and combinations of the variations) on the above are possible.
The first is to include the principal formula A⊃B in the antecedent of the

second premiss of L⊃′. This is preferable when we come to consider a term
calculus, in Sect. 5 below; from the point of view of derivability it makes no
difference.

The second removes the focusing from the premisses of the rules R∧ and R∨
(this gives us the calculus LJQ of Herbelin [16]). Completeness of the calculus
so modified is an immediate corollary of the completeness of LJQ′, since the
focused versions (as we have presented them) are derivable using the unfocused
versions and the Der rule.

The third is a multi-succedent version LJQ* (a variant of this appears in
[16], page 78). We use two kinds of sequent as before; but this time, because of
the need for a multiple succedent, we have a semi-colon to separate the focused
formula (the stoup) from the rest of the succedent. The rules of LJQ* are as in
Fig. 2 (− indicates an empty multi-set).

L⊥∗
Γ, ⊥ ⇒ Δ

Γ → A; Δ
Der∗

Γ ⇒ A, Δ
Ax∗

Γ, P → P ; Δ

Γ, A⊃B → A; − Γ , B ⇒ Δ
L⊃∗

Γ , A⊃B ⇒ Δ

A, Γ ⇒ B
R⊃∗

Γ → A⊃B; Δ

Γ, A ⇒ Δ Γ, B ⇒ Δ
L∨∗

Γ, A ∨ B ⇒ Δ

Γ ⇒ A, B, Δ
R∨∗

Γ → A ∨ B; Δ

Γ, A, B ⇒ Δ
L∧∗

Γ, A ∧ B ⇒ Δ

Γ → A;Δ Γ → B; Δ
R∧∗

Γ → A ∧ B; Δ

Fig. 2. Rules of the multi-succedent calculus LJQ*

The crucial Cut rules are

Γ → A;Δ A,Γ ′ → B;Δ′
C1

Γ , Γ ′ → B;Δ,Δ′
Γ → A;Δ A,Γ ′ ⇒ Δ′

C2
Γ, Γ ′ ⇒ Δ,Δ′

Γ ⇒ Δ,A A, Γ ′ ⇒ Δ′
C3

Γ , Γ ′ ⇒ Δ,Δ′

and these are admissible by a routine argument similar to that already given.
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4 Applications

4.1 Completeness of G4ip

The calculus G4ip was introduced by Hudelmaier [18], who gives a completeness
proof that is essentially the following. For brevity we omit consideration of ab-
surdity, conjunction and disjunction. Formulae are weighted as follows: w(P ) = 0
and w(A⊃B) = 1 + w(A) + w(B). Sequents Γ ⇒ A are then ordered using the
multi-set ordering (on the multiset Γ ,A); in effect, this allows us to refer to the
weight of a sequent. The rules are as follows.

Ax.
P, Γ ⇒ P

A, Γ ⇒ B
R⊃

Γ ⇒ A⊃B
P,B, Γ ⇒ E

L0⊃
P, P⊃B,Γ ⇒ E

D⊃B,C, Γ ⇒ D B,Γ ⇒ E
L⊃⊃

(C⊃D)⊃B,Γ ⇒ E

Note that every inference has as its conclusion a sequent with greater weight
than each premiss; so root-first proof search is terminating, in a depth bounded
by the weight of the sequent being proved.

Proposition 1 (Completeness of G4ip)
1. If Γ → E is derivable in LJQ′, then Γ ⇒ E is derivable in G4ip.
2. If Γ ⇒ E is derivable in LJQ′, then Γ ⇒ E is derivable in G4ip.

Proof: By simultaneous induction on the sequent weight, using case analysis on
the last step of the derivation. For (1), the last step is either an axiom (in which
case we are done) or an R⊃′ inference, where the inductive hypothesis (2) can
be used. For (2), the last step is either a dereliction, in which case (1) (for the
same weight) is used, or an L⊃′ inference with principal formula A⊃B. In the
latter case, if A is an atom P , then the first premiss is an axiom, with P in Γ ;
the inductive hypothesis (2) applied to the second premiss followed by an L0⊃-
inference provides the required G4ip derivation. Otherwise, with A = C⊃D and
Γ = (C⊃D)⊃B,Γ ′, the premisses are Γ ′, (C⊃D)⊃B → C⊃D and Γ ′, B ⇒ E.
The inductive hypothesis (2) provides a G4ip derivation of Γ ′, B ⇒ E. The first
premiss must be the conclusion from Γ ′, (C⊃D)⊃B,C ⇒ D, whose derivabil-
ity in LJQ′ easily implies that of the less weighty sequent Γ ′, D⊃B,C ⇒ D.
The induction hypothesis (2) provides a G4ip derivation of this, and an L⊃⊃
inference provides a G4ip derivation of Γ ′, (C⊃D)⊃B ⇒ E. �

An almost identical argument, using LJQ* from Section 3, demonstrates the
completeness of the multi-succedent version of G4ip in [5].

4.2 Completeness of Dragalin’s GHPC

Dragalin [4] presented a multi-succedent sequent calculus GHPC for intuition-
istic predicate logic, with the feature that the first premiss of the left rule for
implication was single-succedent. This feature also appears in LJQ* in Section
3. An easy argument based on the completeness of the calculus LJQ* shows the
completeness of GHPC; every inference (except by Der) in LJQ* becomes an
inference in GHPC, and Der can be simulated by Weakening in GHPC.
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4.3 Calculi for (Intuitionistic) Guarded Logic

Guarded first-order classical logic is of interest for its ability to interpret modal
logics. The “guarded” restriction on formulae is that universal quantifiers are
allowed only in the form ∀x(P⊃A), where x is a list of variables, P is an atom,
A is a formula with FV (A) ⊆ FV (P ) and all the variables bound by the quan-
tifier are free in P , i.e. guarded by the atom P ; there is a similar restriction on
existential quantifiers. No function symbols are allowed. In such a situation, the
free variables in P (and hence in A) are a combination of those in x and possibly
others. So, we indicate by Pxy (resp. Axy) an atom (resp. formula) all of whose
free variables are in x,y and by Pzy (resp. Azy) the result of substituting z for
x therein. The notation (∀x :Pxy)Axy then abbreviates ∀x(Pxy⊃Axy).

It is of interest to see whether this specialised form of quantification leads to
a specialised inference rule. We treat this in the intuitionistic case; full details
of this (treating also the existential quantifier) and the classical case are given
in [11], including cut-admissibility proofs. The relevant inference rules are

Pzy, Γ , (∀x :Pxy)Axy, Azy ⇒ B
L∀′

Pzy, Γ , (∀x :Pxy)Axy ⇒ B

Γ,Pzy ⇒ Azy
R∀′

Γ ⇒ (∀x :Pxy)Axy

where the variables z are fresh (i.e. disjoint from the free variables of Γ,Axy)
in the R∀′ rule. We regard the atom Pzy in the conclusion of the L∀′ rule as a
key that unlocks the guard on Axy.

The first of these may be considered to be the composition of a standard L∀
rule and a L⊃ rule, as in

Ax
Pzy, Γ , (∀x :Pxy)Axy, P zy⊃Azy ⇒ Pzy Pzy, Γ , (∀x :Pxy)Axy, Azy ⇒ B

L⊃
Pzy, Γ , (∀x :Pxy)Axy, Pzy⊃Azy ⇒ B

L∀
Pzy, Γ , (∀x :Pxy)Axy ⇒ B

with the same restriction as in LJQ that the first premiss of the L⊃ inference
have its succedent principal. Since this succedent is (by the guarded restriction)
an atom Pzy, that means it must occur in the antecedent, as indicated. Thus,
the LJQ restriction occurs also in this context, of intuitionistic guarded logic.

4.4 Negri’s Conservativity Theorem

Negri [26] showed conservativity of the intuitionistic propositional theory of
apartness over the theory of equality defined as the negation of apartness. The
first complete proof used the calculus G3ip as basic; this was simplified in [27]
once the completeness of the calculus G4ip (extended with rules for apartness)
was demonstrated (in [8]). The use of G4ip was explained in [27] as “allowing
a better control on derivations”. In retrospect, it appears1 that the use of the
LJQ calculus would have sufficed.
1 Personal communication from Sara Negri (Summer 2004).
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5 LJQ with Terms

In this section we describe LJQ as the typing system of a term syntax, which
we then use to establish a connection between LJQ and the call-by-value λ-
calculus λC of Moggi [25]. For brevity, we consider in this section implication
only, and the main distinction between LJQ and LJQ’ can therefore be ignored;
so, hereafter we just use the name LJQ.

5.1 A Term Calculus for LJQ

This term syntax is described as follows:

V, V ′ ::= x | λx.M | C1(V, x.V ′)
M,N,P ::= ↑ V | x(V, y.N) | C2(V, x.N) | C3(M,x.N)

The terms Ci(−,−.−) are explicit substitutions, to be distinguished from the
meta-notation M{x = N} standing for “M with x replaced by N”. Binding
occurrences of variables are those immediately followed by “.”. A term without
any occurrence of a Ci is said to be cut-free. Values are cut-free terms of the
form V .

The typing rules, shown in Fig. 3, are naturally derived from Fig. 1. Note that
the rules Ax and R⊃′ with focused conclusions are those that type values. There
are three changes, all more appropriate for the consideration of proof-terms.

The first change allows Ax to have an arbitrary formula as principal; by
Lemma 1 this is acceptable in the implicational case.

The second change is that L⊃′ now allows the use of the formula A⊃B in the
proof of its second premiss, thus widening the space of proofs(-terms), as in Sect.
3. For instance, when establishing a connection with λ-calculus, this enables the
proper representation of Church numerals; otherwise they would all (except 0)
be mapped to the same proof-term.

Ax
Γ , x : A → x : A

Γ → V : A
Der

Γ ⇒ ↑ V : A

Γ, x : A ⇒ M : B
R⊃′

Γ → λx.M : A⊃B

Γ, x :A⊃B → V :A Γ , x :A⊃B, y :B ⇒ N :C
L⊃′

Γ , x : A⊃B ⇒ x(V, y.N) : C

Γ → V :A Γ , x :A → V ′ :B
C1

Γ → C1(V, x.V ′) : B

Γ → V : A Γ, x : A ⇒ N : B
C2

Γ ⇒ C2(V, x.N) : B

Γ ⇒ M : A Γ, x : A ⇒ N : B
C3

Γ ⇒ C3(M, x.N) : B

Fig. 3. LJQ with terms
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The third change is that we include the cut rules as primitive; in contrast
to those earlier, they are context-sharing (i.e. additive) rather than context-
splitting (i.e. multiplicative or context-independent). This removes the need to
formulate the admissibility of Contraction separately from the admissibility of
cuts, the former being an easy sub-case of the latter.

(B) C3(↑ λx.M, y.y(V, z.P )) −→ C3(C3(↑ V , x.M), z.P )
if y /∈ FV (V ) ∪ FV (P )

C3(↑ x, y.N) −→ N{y = x}
C3(M, y.↑ y) −→ M

C3(z(V, y.P ), x.N) −→ z(V, y.C3(P, x.N))
C3(C3(↑ V ′, y.y(V, z.P )), x.N) −→ C3(↑ V ′, y.y(V, z.C3(P, x.N)))

if y /∈ FV (V ) ∪ FV (P )
C3(C3(M, y.P ), x.N) −→ C3(M, y.C3(P, x.N))

if the redex is not one of the previous rule
C3(↑ λy.M, x.N) −→ C2(λy.M,x.N)

if N is not an x-covalue (see below)
C1(V, x.x) −→ V
C1(V, x.y) −→ y
C1(V, x.λy.M) −→ λy.C2(V, x.M)
C2(V, x.↑ V ′) −→ ↑ C1(V, x.V ′)
C2(V, x.x(V ′, z.P )) −→ C3(↑ V , x.x(C1(V, x.V ′), z.C2(V, x.P )))
C2(V, x.x′(V ′, z.P )) −→ x′(C1(V ′, x.V ), z.C2(V, x.P ))
C2(V, x.(C3(M, y.P ))) −→ C3(C2(V, x.M), y.C2(V, x.P ))

η λx.y(x, z.z) −→ y

N is an x-covalue iff N = ↑ x or N is of the form x(V, z.P ) with x �∈ FV (V ) ∪ FV (P )

Fig. 4. LJQ-reductions

The reduction rules for the calculus are shown in Fig. 4. This reduction system
has the following properties:

1. It reduces any term that is not cut-free;
2. It satisfies the Subject Reduction property;
3. It is confluent;
4. It is Strongly Normalising;
5. A fortiori, it is Weakly Normalising.

As a corollary of 1, 2 and 5, we have the admissibility of Cut. It is interesting
to see in the proof of Subject Reduction how these reductions transform the proof
derivations and to compare them to those used in the proof of Theorem 1—details
will be in the full paper. Apart from the differences between the inference rules
already mentioned, there are also differences between the proof-transformations.
The reduction system here is more subtle, because we are now interested not only
in its weak normalisation but also in its strong normalisation and its connection
with call-by-value λ-calculus.
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The main reduction rule (B), breaking a cut on an implication into cuts on its
direct sub-formulae, is now done with C3 rather than with C2. The reason is that
we use C3 to encode each β-redex of λ-calculus and C2 to simulate the evaluation
of its substitutions. Just as in λ-calculus, where substitutions can be pushed
through β-redexes, so may C2 be pushed through C3, by use of the penultimate
rule of Fig. 4 (which is not needed if the only concern is cut-admissibility).

Similarly, the last rule, (η), which has nothing to do with cut-elimination, is
needed to account for η-conversion in (call-by-value) λ-calculus. It is interesting
to see its meaning in proof theory: it generates an axiom on an implication, given
a proof on the same sequent built from axioms on each of its direct sub-formulae,
and then left and right introductions of the implication. In fact, recursive appli-
cation of the reverse transform is precisely what is used to prove that one can
safely restrict LJQ (in the implicational case) to atomic axioms.

5.2 Connection with Call-by-Value λ-Calculus

We will now be precise about what we call CBV λ-calculus. In [30], Plotkin
introduces λV , a calculus whose terms are exactly those of Church’s λ-calculus
and whose reduction rule, called βV , is merely β-reduction restricted to the
case where the argument is a value, i.e. a variable (typed by an axiom) or an
abstraction (typed by implication introduction).

However, the equational theory produced by βV -conversion is shown [30] to be
incomplete with respect to some canonical call-by-value semantics called Con-
tinuation Passing Style. Therefore, λV was later extended [25] to λC with a
let . = . . . in . . .-construct (like our Cut-constructs for LJQ) and additional
reduction rules; [31] shows, in effect, that the equational theory matches the
CBV-semantics. Terms of λC are defined as follows:

M,N,P ::= x | λx.M |M N | let x = M in N

We use V as a meta-variable ranging only over values. The reduction rules of
λC are as follows:

(λx.M) V −→ M{x = V }
let x = V in M −→ M{x = V }
M N −→ let x = M in (x N) (M not a value)
V N −→ let y = N in (V y) (N not a value)
let x = M in x −→ M
let y = (let x = M in N) in P −→ let x = M in (let y = N in P )

The reduction ηV can usefully be added: λx.(V x) −→ηV V if x �∈ FV (V )
In the presence of βV , the following rule has the same effect:

λx.(y x) −→ηV y if x �= y

We define the translation .� from LJQ-terms to λC by induction on the struc-
ture of terms:
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x� = x

(λx.M)� = λx.M �

(↑ V )� = V �

(x(V, y.M))� = let y = x V � in M �

(C3(N, x.M))� = let x = N � in M �

(C2(V, x.M))� = M �{x = V �}
(C1(V, x.V ′))� = V ′�{x = V �}

We define the translation .� from λC to LJQ by a similar induction, using an
auxiliary translation .� from values to values (a measure shows that the defini-
tions are well-founded).

x� = x

(λx.M)� = λx.M �

V � = ↑ V �

(let y = x V in P )� = x(V �, y.P �)
(let y = (λx.M) V in P )� = C3(λx.M �, z.z(V �, y.P �))
(let z = V N in P )� = (let y = N in (let z = V y in P ))�

if N is not a value
(let z = M N in P )� = (let x = M in (let z = x N in P ))�

if M is not a value
(let z = (let x = M in N) in P )� = (let x = M in (let z = N in P ))�

(let y = V in P )� = C3(V �, y.P �)
(M N)� = (let y = M N in y)�

Notice that if M is a C1/C2-free term of LJQ, M �� = M and that for any term
M of λC , M←→∗ M ��. Now we can state (using −→∗ for the reflexive transitive
closure of −→ , etc) the following:

Theorem 2 (Preservation Theorem)

1. For any terms M and N of λC , if M −→ N then M �−→∗ N �.
2. For any terms M and N of LJQ, M←→∗ N iff M �←→∗ N �.

Hence, if a term M of LJQ is given the CBV-semantics of M �, LJQ inherits
from λC a semantics that captures exactly its equational theory.

Ongoing work includes refining the connection above and generalising it to a
framework that would also account for the call-by-name discipline, by using a
calculus introduced by Esṕırito Santo [14].

6 G4ip with Terms

Bringing some of the above ideas together, we can regard G4ip itself as the
typing system for a term calculus. The associated reduction system for cuts
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also has the strong normalisation property. Details are in [6]. The main point of
interest is the avoidance of auxiliary operations (corresponding to admissibility
lemmas) in favour of uses of instances of the explicit substitution operation.

7 Conclusion

We have presented, proved complete and shown some applications of a strongly
focused calculus LJQ′, incorporating and extending the restrictions on deriva-
tions explicit in the calculus LJQ of Herbelin [16], implicit in the work on
“purification” in Hudelmaier [18] and with early traces in the work of Vorob’ev
[34]. These applications range from sequent calculi for automated proof search
to CBV-semantics of λ-calculus.
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Abstract. We introduce and study a version of Krivine’s machine which
provides a precise information about how much of its argument is needed
for performing a computation. This information is expressed as a term of
a resource lambda-calculus introduced by the authors in a recent article;
this calculus can be seen as a fragment of the differential lambda-calculus.
We use this machine to show that Taylor expansion of lambda-terms (an
operation mapping lambda-terms to generally infinite linear combina-
tions of resource lambda-terms) commutes with Böhm tree computation.

1 Introduction

After having introduced the differential lambda-calculus in [1], we studied in [2] a
subsystem of the differential lambda-calculus which turns out to be very similar
to resource oriented versions of the lambda-calculus previously introduced and
studied by various authors [3,4,5]: the resource lambda-calculus. It is a finitary
calculus in the sense that it enjoys strong normalization, even in the untyped
case.

Resource lambda-calculus as the target language of the complete Taylor expansion
of lambda-terms. Our viewpoint on this resource lambda-calculus is that it is
the sublanguage of the differential lambda-calculus where the complete1Taylor
expansions of ordinary lambda-terms can be written.

Indeed, the only notion of application available in this resource calculus con-
sists in taking a term s (of type A → B if the calculus is typed) and a finite
number of terms s1, . . . , sn (of type A) and applying s to the multiset consist-
ing of the terms si, written multiplicatively s1 . . . sn. This application is written
〈s〉 (s1 . . . sn). In differential calculus, this operation would correspond to taking
the nth derivative of s at 0, which is a symmetric n-linear map, and applying
this derivative to the tuple (s1, . . . , sn).

Defining a beta-reduction in this calculus (as in the original differential
lambda-calculus) requires the possibility of adding terms, because the analogue
� This work has been supported by the ACI project GEOCAL.
1 By complete, we mean that all applications in the lambda-terms are expanded.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 186–197, 2006.
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of substitution is a notion of formal partial derivative whose inductive defini-
tion is based on Leibniz rule2, and the expression 〈s〉 (s1 . . . sn) is linear in s,
s1, . . . , sn; the connection between algebraic linearity and this syntactical notion
of linearity is discussed in the introduction of [1]. The logical significance of this
derivative, and the linear logic analogue of this resource lambda-calculus are
discussed in [6], where differential interaction nets are introduced. The striking
fact is that this new structure appears in this linear logic setting as new opera-
tions associated to the exponentials, completely dual to the traditional structural
operations (weakening, contraction), and to dereliction.

In constrast, the usual lambda-calculus has a notion of application which is
linear in the function but not in the argument, for which we used the nota-
tion (M)N (parenthesis around the function, not around the argument). The
connection between these two applications is given by the Taylor formula.

Taylor expansion and normalization. In [2], we explained how to Taylor expand
arbitrary lambda-terms (of the usual lambda-calculus) as (generally infinite) lin-
ear combinations of resource lambda-terms with rational coefficients. We showed
moreover that, when normalizing the resource terms which occur in such a Tay-
lor expansion, one gets – generally infinitely many – finite linear combinations
of normal resource terms (with positive integers as coefficients) which do not
overlap; so it makes sense to sum up all these linear combinations. Moreover,
the numerical coefficients “behave well” during the reduction, in a sense which
is made precise in the corresponding statement, recalled as Theorem 1 in the
present paper.

1.1 Overview

We show that this sum s of normal resource terms obtained by normalizing the
Taylor expansion of a lambda-term M is simply the Taylor expansion of the
Böhm tree of M (the extension of Taylor expansion to Böhm trees is straight-
forward). Thanks to the results obtained in [2], this reduces to showing that a
normal resource term appears in s with a nonzero coefficient iff it appears with
a nonzero coefficient in the Taylor expansion of the Böhm tree of M . The “only
if” part of this equivalence is fairly straightforward, whereas the “if” part re-
quires the introduction of a version of Krivine’s machine which also provides an
appealing computational interpretation of the result.

Krivine’s machine. Usually, Krivine’s machine [7] is described as an abstract
environment machine which performs the weak linear head reduction on lambda-
terms: given a term M which is beta-equivalent to a variable x, starting from the
state (M, ∅, ∅) (empty environment and empty stack3), after a certain number of
steps, the machine will produce the result (x,E, ∅) where the resulting variable
x is not bound by the environment E.
2 In [6], it is shown that Leibniz rule is more pecisely related to the interaction between

derivation and contraction.
3 The stack is there as usual for pushing the arguments of applications.
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This computation can be understood as a special kind of reduction of lambda-
terms (mini-reduction, aka. linear head reduction [8,9]) which cannot be de-
scribed exactly as a beta-reduction because, at each reduction step, only the
leftmost occurrence of variable in the term is substituted. As an example, con-
sider the term M0 = (λx (x) (x) y)λz z. After one step of linear head reduction,
we get M1 = (λx (λz z) (x) y) λz z. Observe that the argument and the lambda
of the main redex are still there, and that the function still contains an occur-
rence of the variable x. Now the leftmost variable occurrence is z and the term
M1 reduces to M2 = (λx (λz (x) y) (x) y)λz z. The leftmost occurrence of vari-
able is x again and we get M3 = (λx (λz (λz z) y) (x) y)λz z which reduces to
M4 = (λx (λz (λz y) y) (x) y)λz z. We arrive to a term M4 whose redexes are all
K-redexes4 and reduces to the variable y.

This is exactly this kind of computation that Krivine’s machine performs,
with the restriction that one does not reduce under the lambda’s, in some sense
(whence the word “weak”). We extend Krivine’s machine in two directions5.

– First, we accept to reduce under lambda’s.
– Second, when Krivine’s machine arrives to a state (x,E,Π) where the envi-

ronment E does not bind x and Π is a non-empty stack, it classically stops
with an error. Here instead we continue the computation by running the ma-
chine on each element of Π . This corresponds, in the linear head reduction
process, to reducing within the arguments of the head variable when a head
normal form has been reached.

We call K this extended machine. When fed with a triple (M,E, ∅) where E does
not bind the free variables of M , this machine produces the Böhm tree of M (all
finite approximations being obtained in a finite number of steps).

A more informative version of the machine. Then we define a version K̂ of that
machine where a “tracing mechanism” is added. The idea is to count precisely
how many times the various parts of the term M have been used, starting from
the state (M, ∅, ∅), for reaching the state (x,E′, ∅) (when one knows that M
is equivalent to the variable x). This information is summarized as a resource
term which has the same shape as M (or, equivalently, appears in the Taylor
expansion of M with a nonzero coefficient). For example, in the example of M0,
the corresponding resource term is 〈λx 〈x〉 〈x〉 y〉 (λz z)2, which appears with
coefficient 1

2 in the Taylor expansion of M0.
But there is no reason for limiting our attention to lambda-terms equivalent

to a variable: when M reduces to a Böhm tree B, we just add a parameter to our
Krivine’s machine, which is a resource term u occurring in the Taylor expansion
of B. Then K̂(M, ∅, ∅, u) produces a resource term s which appears in the Taylor
expansion of M and, in some sense, counts how much of M the machine uses for

4 A K-redex is a redex (λx M)N such that x does not occur free in M . In M4, the
outermost redex is not a K-redex, but becomes a K-redex after reduction of the
internal K-redexes.

5 These extensions are fairly standard and are part of the folklore.
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producing u. This resource term s will depend on M and on u: the larger will
be u, the larger will be s.

This machine also gives us a proof for the “if” part of our main result (see
the beginning of this “Overview” section), because u appears with a nonzero
coefficient in the normal form of the resource term s produced by the machine.

2 Ordinary Notions

We use the word “ordinary” for qualifying the usual lambda-calculus (as opposed
to the resource lambda-calculus to be introduced later), and we adopt Krivine’s
notations: application of M to N is written (M)N , and (M)N1 . . .Np stands
for (((M)N1) . . .)Np.

Böhm trees. An elementary Böhm tree (EBT) is a normal term in the lambda-
calculus extended with the constant Ω subject to the following equations:
(Ω)M = Ω and λxΩ = Ω. In other words: Ω is an elementary Böhm tree and
if x, x1, . . . , xn are variables and B1, . . . , Bk are elementary Böhm trees, then
λx1 . . . xn (x)B1 . . . Bk is an elementary Böhm tree. The following clauses define
an order relation on EBTs:

– Ω ≤ B for all EBT B;
– λx1 . . . xn (x)B1 . . . Bk ≤ C if C = λx1 . . . xn (x)C1 . . . Ck with Bj ≤ Cj for

all j.

A (general) Böhm tree is now defined as an ideal of elementary Böhm trees, in
other word, it is a set B of EBTs which is downwards closed and directed (and
hence non-empty). We define now a family of functions from lambda-terms to
EBTs.

– BT0(M) = Ω;
– BTn+1(λx1 . . . xp (x)M1 . . .Mk) = λx1 . . . xp (x)BTn(M1) . . .BTn(Mk);
– BTn+1(λx1 . . . xp ((λy P )Q)M1 . . .Mk)

= BTn(λx1 . . . xp (P [Q/y])M1 . . .Mk)

It is straightforward to check that BTn(M) is a non decreasing sequence of EBTs.
Then the Böhm tree ofM is the downwards closure of the set {BTn(M) | n ∈ IN},
which is an ideal of EBTs.
Krivine’s abstract machine. If f : S → S′ is a partial function, a ∈ S and b ∈ S′,
we denote by fa�→b the partial function g : S → S′ which is defined like f but
for a, where it is defined and takes the value b.

By simultaneous induction, we define the two following concepts: a closure is
a pair Γ = (M,E) where M is a lambda-term and E is an environment such that
FV(M) ⊆ DomE and an environment is a finite partial function on variables,
taking closures or the distinguished symbol free as value. We use DomcE for
the subset of DomE whose elements are not mapped to free. We need also an
auxiliary concept: a stack is a finite list Π of closures.



190 T. Ehrhard and L. Regnier

We define a sequence of functions from states to EBTs.

– K0(Γ,Π) = Ω;
– Kn+1(x,E,Π) = Kn(E(x), Π) if x ∈ Domc(E);
– Kn+1(x,E,Π) = (x)Kn(Γ1, ∅) . . .Kn(Γk, ∅) where Π = (Γ1, . . . , Γn),

if E(x) = free;
– Kn+1(λxM,E, ∅) = λxKn(M,Ex �→free, ∅) (assuming that x /∈ Dom(E) and

that x does not appear free in any of the terms mentioned in E);
– Kn+1(λxM,E, Γ ::Π) = Kn(M,Ex �→Γ , Π) (with similar assumptions for x);
– Kn+1((M)N,E,Π) = Kn(M,E, (N,E) ::Π).

Observe that the definition is correct in the sense that, in all “recursive calls” of
the function K, the closures are well formed (the domain of their environment
contains the free variables of their term).

Let S = (Γ,Π) be a state. One checks easily that (Kn(S))n∈IN is a non
decreasing sequence of EBTs. We define K(S) as the downwards closure of the
set {Kn(S) | n ∈ IN}; this set is a Böhm tree.

We define another total function T, from closures to lambda-terms. Given a
closure Γ = (M,E), we set T(Γ ) = M [T(E(x))/x]x∈Domc E

. This is a definition
by induction on the height of closures, seen as finitely branching trees. We extend
this mapping to states: T(Γ, (Γ1, . . . , Γn)) = (T(Γ )) T(Γ1) . . .T(Γn).

The main, standard, property of Krivine’s machine is that K(S) = BT(T(S))
for any state S. This “soundness” result shows in particular that Krivine’s ma-
chine computes the Böhm tree of lambda-terms: BT(M) = K(M,E, ∅), where E
is any environment mapping all the free variables of M to the value free.

3 Resource Notions

Notations. Let E be a set. A multiset on E is a function m : E → IN. The
support supp(m) of m is the set of all a ∈ E such that m(a) �= 0. The multiset
m is finite if supp(m) is finite. The number m(a) is the multiplicity of a in m.
We denote by Mfin(E) the set of all finite multisets on E.

3.1 The Resource Lambda-Calculus

We give a short account of the resource lambda-calculus, as developped in [2].
We recall the syntax and terminology of [2]. As usual we are given a countable
set of variables.

Simple terms and poly-terms

– If x is a variable, then x is a simple term.
– If x is a variable and t is a simple term, then λx t is a simple term.
– If t is a simple term and T is a simple poly-term, then 〈t〉T is a simple term.
– A simple poly-term is a multiset of simple terms. We use multiplicative

notations for these multisets: 1 denotes the empty poly-term, if t is a simple
term, we use also t for denoting the simple poly-term whose only element is
t, and if S and T are simple poly-terms, we use ST for the multiset union
(sum) of S and T .
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We use the greek letters σ, τ . . . for simple terms or poly-terms when we do not
want to be specific. We use Δ for the set of all simple terms, Δ! for the set of
all simple poly-terms and Δ(!) for one of these two sets when we don’t want to
be specific.

Linear combinations and reduction. We use Q+ (the rig of non-negative rational
numbers) as set of scalars. If A is a set, we use Q+〈A〉 for the free Q+-module
generated by A. If α ∈ Q+〈A〉, we use Supp(α) for the set of all a ∈ A such that
αa �= 0. We use IN〈A〉 for the elements of Q+〈A〉 whose coefficients are integers.

A redex is a simple term of the shape r = 〈λx s〉S. It reduces to 0 ∈ IN〈Δ〉 if
the cardinality of the multiset S is distinct from the number of free occurrences
of x in s, and otherwise reduces to

∂x(s, S) =
∑

f∈Sd

s
[
s1, . . . , sd/xf(1), . . . , xf(d)

] ∈ IN〈Δ〉

where S = s1 . . . sd and x1, . . . , xd are the d free occurrences of x in s. In this
expression, Sd stands for the group of all permutations on the set {1, . . . , d}.

This notion of reduction extends to all simple (poly-)terms, using the fact that
all constructions of the syntax are linear. For instance, if s1, . . . , sn ∈ Δ and for
each i, si reduces to s′i ∈ IN〈Δ〉, then the simple poly-term s1 . . . sn reduces to∏n

i=1 s
′
i ∈ IN〈Δ!〉.

This notion of reduction is a relation � from Δ(!) to IN〈Δ(!)〉; it is extended
to a relation from Q+〈Δ(!)〉 to itself by linearity (the linear span of � in the
product space Q+〈Δ(!)〉 × Q+〈Δ(!)〉). This relation is confluent, and strongly
normalizing if we only consider integer coefficients. We use Δ0 for the set of all
normal simple terms, and NF for the normalization map IN〈Δ(!)〉 → IN〈Δ(!)

0 〉,
which is linear.

Taylor expansion of ordinary lambda-terms. Let us give an intuition of the re-
source lambda-calculus, explaining why it is related to the idea of Taylor ex-
pansion. Usually, when f is a sufficiently regular function from a vector space
E to a vector space F (finite dimensional spaces, or Banach spaces, typically),
at all point x ∈ E, f has nth derivatives for all n ∈ IN, and these deriva-
tives are maps f (n) : E × En → F with the same regularity as f and such
that f (n)(x, u1, . . . , un) = f (n)(x) · (u1, . . . , un) is n-linear and symmetric in
u1, . . . , un. When one is lucky, and usually locally only, the Taylor formula holds.
Around 0, it reads

f(x) =
∞∑

n=0

1
n!
f (n)(0) · (u, . . . , u)

If we want to Taylor-expand lambda-terms, which after all are functions, we need
to extend the language with explicit differentials, or more precisely a construction
of differential application of a term M to n terms N1, . . . , Nn, as we did in [1]
(a simplified version of that calculus is now available in [10]). The idea is that
if M represents a function f from E to F and if N1, . . . , Nn represent n vectors
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u1, . . . , un ∈ E, then this new construction DnM · (N1, . . . , Nn) will represent
the function from E to F which maps x to f (n)(x) · (u1, . . . , un), and therefore
this construction is linear and symmetric in the Ni’s.

The Taylor expansion of a single lambda-calculus application (M)N would
then read ∞∑

n=0

1
n!

(DnM · (N, . . . , N)) 0

If we want now to Taylor expand all the applications occurring in a lambda-
term, we see that the usual lambda-calculus application in its generality will
become useless: only application to 0 is needed. This is exactly the purpose
of the construction 〈s〉 s1 . . . sn of the resource lambda-calculus; with the nota-
tions of the differential lambda-calculus, the expression 〈s〉 s1 . . . sn stands for
(Dns · (s1, . . . , sn)) 0.

So the resource lambda-calculus is a “target language” for completely Taylor
expanding ordinary lambda-terms. The expansion of a term M will be an infinite
linear combination of resource terms, with rational coefficients (actually, inverses
of positive integers). Let us use M∗ for the complete Taylor expansion of M . By
what we said, this operation should obey (M)N∗ =

∑∞
n=0

1
n! 〈M∗〉 (N∗)n as well

as x∗ = x and (λxM)∗ = λxM∗. From these equations, we obtain, applying the
multinomial formula, that

M∗ =
∑

s∈T (M)

1
m(s)

s

where T (M) ⊆ Δ (the set of resource terms which have “the same shape” as
M) is defined inductively by T (x) = {x}, T (λxM) = {λx s | s ∈ T (M)} and
T ((M)N) = {〈s〉S | s ∈ T (M) and S ∈ Mfin(T (N))}. The positive number
m(σ) associated to each (poly-)term σ is called its multiplicity coefficient ; see
the definition and properties of these numbers in [2]. We can recall now the main
result proven in that paper.

Theorem 1. Let M be an ordinary lambda-term.

1. If s, s′ ∈ T (M) and s and s′ are not α-equivalent, then Supp(NF(s)) ∩
Supp(NF(s′)) = ∅.

2. If s ∈ T (M) and u ∈ Supp(NF(s)), then the coefficient NF(s)u of u in
NF(s) (remember that this coefficient must be a positive integer) is equal to
m(s)/m(u).

Proving this result involved a coherence relation on simple terms for the first
part, and some considerations on groups of permutations of simple term variables
for the second part.

Given an ordinary lambda-term M , it makes sense therefore to apply NF to
each of the simple terms occurring in its Taylor expansion, defining NF(M∗) =∑

s∈T (M)
1

m(s) NF(s). Indeed by Theorem 1, if u is a normal simple term, there
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is at most one s ∈ T (M) such that NF(s)u �= 0.Moreover, if such a simple term
s exists, the coefficient of u in the sum above is

NF(M∗)u =
1

m(s)
NF(s)u =

1
m(u)

by Theorem 1 again.
We want to prove that this sum is equal to BT(M)∗, the Taylor expansion of

the Böhm tree of M . To give a meaning to this notion, we need first to define
T (B) whenB is an EBT: the definition is the same as for ordinary lambda-terms,
with the additional clause that T (Ω) = ∅. For instance T ((x)Ω) = {〈x〉 1}.
Observe that B ≤ C ⇒ T (B) ⊆ T (C).

We generalize this notion to arbitrary Böhm trees: T (B) =
⋃
B∈B T (B) (this

is a directed union since B is an ideal). Of course, all these resource terms
are normal. Given a Böhm tree B, it makes sense finally to define its Taylor
expansion, as we did for ordinary lambda-terms: B∗ =

∑
b∈T (B)(1/m(b))b.

3.2 Resource Closures and Resource Stacks

We adapt now the concepts of closure and stack to the framework of the resource
lambda-calculus, introducing multi-set based versions thereof. We stick to our
multiplicative conventions for denoting multi-sets.

– A resource environment is a total function e on variables, taking resource
closures or the symbol free as values. We extend pointwise the multi-set
notations to resource environments, e.g. (ee′)(x) = e(x)e′(x) (equal to free
when one of these two values is equal to free). For an environment e, we
require moreover e(x) = 1 for almost all variables x, where 1 is the unit
resource closure (see below the definition of resource closures).
If x is a variable and c is a resource closure, we denote by [x )→ c] the resource
environment which takes the value 1 for all variables but for x, for which it
takes the value c. If e is a resource environment, e \ x denotes the resource
environment which takes the same values as e but for x where it takes the
value free. We use Domc e for the (co-finite) set of all variables where e does
not take the value free.

– A resource closure is a pair c = (T, e) where T is a simple resource poly-term
and e is a resource environment, or is the special unit closure 1. Intuitively,
this special closure is “equal” to any closure of the shape (1, e) where e maps
all variables to free, to the unit closure 1 or to any closure of the shape we
are now describing.
Poly-term multiplication is extended to closures in the obvious way: the unit
closure 1 is neutral, and (T, e)(T ′, e′) = (TT ′, ee′).
A resource closure (T, e) will be said to be elementary if the multi-set T
has exactly one element. All resource closures are product (in many different
ways, usually) of elementary resource closures. We use the letters c, c′, . . .
for general resource closures and γ, γ′ . . . for elementary resource closures.
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Finally, a resource stack π is a finite sequence of resource closures.
A resource state is a triple (t, e, π) where t is a simple resource term, e is a

resource environment and π is a resource stack. In such a resource state, the pair
(t, e) will be considered as an elementary resource closure.

By mutual induction, we define T (E) and T (Γ ), the set of all resource environ-
ments and resource closures of shape E (ordinary environment) and Γ (ordinary
closure) respectively:

– T (E) is the set of all resource environments e such that
• if E(x) = free, then e(x) = free;
• otherwise and if E(x) is defined, then e(x) ∈ T (E(x));
• if E(x) is undefined, then e(x) = 1.

– If Γ = (M,E), then T (Γ ) = (Mfin(T (M))× T (E)) ∪ {1}.
This extends to standard stacks and resource stacks in the obvious way, defining
π ∈ T (Π). Last we set T (Γ,Π) = T (Γ )× T (Π).

As we did for the ordinary lambda-calculus, we associate to each resource
closure c a (generally not simple) resource poly-term TD(c) ∈ IN〈Δ!〉 by the
following inductive definition

TD(c) =

{
1 if c = 1
∂x1,...,xn(T,TD(e(x1)), . . . ,TD(e(xn))) if c = (T, e)

where x1, . . . , xn is any repetition-free sequence of variables which contains all
the variables of Domc e which are free in T or satisfy e(x) �= 1 (in particular,
this expression is equal to 0 if there exists a variable x not free in T and such
that e(x) �= 1).

Due to the basic properties of partial derivatives explained in [2], the expres-
sion above of TD(c) does not depend on the choice of the sequence of variables
x1, . . . , xn.

Observe that when c is elementary, TD(c) can be seen as a resource term.
Last, we extend this definition to resource states (γ, π) where π = (c1, . . . , ck)

is a resource stack (γ and the ci’s are therefore resource closures, and we know
moreover that γ is elementary), setting

TD(γ, π) = 〈· · · 〈TD(γ)〉TD(c1) · · ·〉TD(ck) ∈ IN〈Δ〉

4 A Resource Driven Krivine’s Machine

We define a new version K̂ of Krivine’s machine which, fed with an ordinary
closure Γ , an ordinary stack Π and a normal resource term u, will return a pair
(γ, π) ∈ T (Γ,Π) where γ is an elementary resource closure, or will be undefined.

We use the symbol “↑” for the result of the function when it is undefined. As
before, we define by induction on n an increasing sequence of partial functions
K̂n and we set K̂ =

⋃∞
n=0 K̂n.

The base case is trivial: K̂0(Γ,Π, t) = ↑, always.
The inductive step is by case on the shape of the first element of the closure

Γ = (M,E) (remember that we assume that FV(M) ⊆ DomE).
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– If M = x is a variable, we have two subcases.
• Assume first that x ∈ Domc(E). If K̂n(E(x), Π, u) = ↑,

then K̂n+1(Γ,Π, u) = ↑ and otherwise, let (γ, π) = K̂n(E(x), Π, u), then

K̂n+1(M,E,Π, u) = (x, e, π) where e(y) =

⎧
⎪⎨

⎪⎩

γ if y = x

free if E(y) = free
1 otherwise.

• Otherwise, we have x ∈ Dom(E) and E(x) = free. The stack Π is a
sequence (Γ1, . . . , Γk) of ordinary closures.
∗ If u = 〈· · · 〈x〉V1 · · ·〉Vk and for each j = 1, . . . , k and v ∈ supp(Vj),

there exists an elementary resource closure γj(v) such that
K̂n(Γj , ∅, v) = (γj(v), ∅), then

K̂n+1(M,E,Π, u) = (x, e, π) where e(y) =

{
free if E(y) = free
1 otherwise.

and where π = (c1, . . . , ck) with cj =
∏

v∈supp(Vj) γj(v)
Vj(v) (this

product has to be understood as a product of resource closures, in
the sense defined above — remember that Vj(v) is a positive integer,
the multiplicity of v in the multiset Vj).

∗ Otherwise, K̂n+1(M,E,Π, u) = ↑.
– Assume now that M = λxN . Without loss of generality, we can assume that
E(x) = ↑. Again, we have two subcases.
• Assume first that Π = ∅ is the empty stack.

If u = λx v and K̂n(N,Ex �→free, ∅, v) = (t, e, ∅) with e(x) = free, then

K̂n+1(M,E, ∅, u) = (λx t, ex �→1, ∅)
and otherwise, K̂n+1(M,E, ∅, u) = ↑.

• Assume next that Π = Γ ::Π ′. If K̂n(N,Ex �→Γ , Π
′, u) = (t, e, π′) with

e(x) �= free, then

K̂n+1(M,E,Π, u) = (λx t, ex �→1, e(x) ::π′)

and otherwise, K̂n+1(M,E, ∅, u) = ↑.
– Last assume that M = (P )Q. If K̂n(P,E, (Q,E) ::Π,u) = (t, e, (T, e′) ::π),

then
K̂n+1(M,E,Π, u) = (〈t〉T, ee′, π)

and otherwise, K̂n+1(M,E, ∅, u) = ↑.
The following lemmas summarize the main properties of this machine.

Lemma 1. Let Γ be an ordinary closure, Π be an ordinary stack and u be a
simple resource term.

If K̂(Γ,Π, u) is defined, then u is normal and K̂(Γ,Π, u) is a resource state
(γ, π) which belongs to T (Γ,Π).
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Lemma 2. Let Γ be an ordinary closure, Π be an ordinary stack and u be a
normal simple resource term.

For each n ∈ IN, we have the following equivalence:

u ∈ T (Kn(Γ,Π)) iff K̂n(Γ,Π, u) is defined

Lemma 3. Let Γ be an odinary closure, Π be an ordinary stack and u be a
normal simple resource term.

Let n ∈ IN. If K̂n(Γ,Π, u) = (γ, π), then u ∈ Supp(NF(TD(γ, π)))

5 Normal Form of the Taylor Expansion

Using the lemmas proven so far and some natural properties relating substitution
in ordinary and resource lambda-calculi, we can prove the main theorem of the
paper.

Theorem 2. Let M be an ordinary lambda-term and let u be a normal simple
resource term. Then u ∈ T (BT(M)) if and only if there exists s ∈ T (M) such
that u ∈ Supp(NF(s)). Moreover, when this simple term s exists, it is unique.

From this result and from Theorem 1, we can derive the announced commutation
property.

Corollary 1. Let M be an ordinary lambda-term. One has

BT(M)∗ = NF(M∗) =
∑

s∈T (M)

1
m(s)

NF(s)

6 Concluding Remarks

By Theorem 2, there exists a partial function E : Λ × Δ0 → Δ such that
E(M,u) is defined if and only if u ∈ T (BT(M)) and then takes as value the
unique simple term s ∈ T (M) such that u ∈ Supp(NF(s)). In the proof of that
theorem, one sees how this function E can be defined, using a modified ver-
sion of Krivine’s machine (an implementation of that machine is available at
http://iml.univ-mrs.fr/~regnier/taylor/).

When BT(M) is a variable #, the situation is particularly simple: we have
T (BT(M)) = {#} and E(M,#) is the unique s ∈ T (M) which has a non-zero
normal form, and the normal form of s must be m(s)#. In that particular case, it
is interesting to observe that the “size” of s (easy to define by a simple induction
on s) is the number of steps in the reduction of M to # by Krivine’s machine,
which seems to be a sensible measure of the complexity of the reduction of M .

The map S ◦ E : Λ×Δ0 → IN seems therefore to provide more generally a way
of measuring the complexity of the reduction of lambda-terms. The interesting
point is that this measure is associated to the algebraic property stated by
Theorems 2 and 1.
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Abstract. In [6], K. Weihrauch studied the computational properties of
the Urysohn Lemma and of the Urysohn-Tietze Lemma within the frame-
work of the TTE-theory of computation. He proved that with respect to
negative information both lemmas cannot in general define computable
single valued mappings. In this paper we reconsider the same problem
with respect to positive information. We show that in the case of posi-
tive information neither the Urysohn Lemma nor the Dieudonné version
of Urysohn-Tietze Lemma define computable functions. We analyze the
degree of the incomputability of such functions (or more precisely, of the
incomputability of some of their realizations in the Baire space) accord-
ing to the theory of effective Borel measurability. In particular, we show
that with respect to positive information both the Urysohn function and
the Dieudonné function are Σ0

2-computable and in some cases even Σ0

2-
complete.

Keywords: Computable Analysis, Borel Measurability, Urysohn
Lemma, Urysohn-Tietze Lemma.

1 Preliminaries

We assume that the reader is familiar with the basic concepts of computable
analysis as outlined in [5] and of effective Borel measurability as introduced
in [1] and [2]. For the reader’s convenience, we recall however in the following
some basic concepts and definitions. Notations and terminology that are not
standard will be explicitly introduced and carefully explained. As to the theory
of representations, we use the approach of [5], except that the Cantor space is
replaced by the Baire space, as in [1].

Definition 1. IN∗ (ININ) is the set of all finite (infinite) sequences of natural
numbers.
For y ∈ IN∗ ∪ ININ and n ∈ IN, the expression “n ∈ y” means that y lists n, thus
there are y0 ∈ IN∗ and y1 ∈ IN∗ ∪ ININ such that y = y0ny1.
Given any p ∈ ININ, “p[n]” denotes the initial segment of p of length n ∈ IN.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 199–208, 2006.
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For any given word w ∈ IN∗, let “wININ” denote the set {p ∈ ININ : w = p[m]},
where m = length(w). Recall that such set is an open ball in the Baire space.
Since any p ∈ ININ is a function p : IN → IN, the symbol “p(n)” denotes the n-th
number listed by p.

Definition 2 (Naming systems). Given a set S, a notation (a representa-
tion) γ of S is a surjective function γ :⊆ IN → S (γ :⊆ ININ → S).
A represented set is a pair (S, γ) where S is a set and γ is a representation of S.

For the sake of clarity, given a represented set (S, δ) and an element x ∈ S, we
may use x itself to label all its δ-names. Thus, px ∈ ININ is a δ-name of x, where
δ is clear from the context.

From now on the definitions and results refer to a generic computable complete
metric space M = (M,d,Q, ν

Q
) (see [5]), unless otherwise specified. For the sake

of generality, we assume that M �= ∅ and dom(νQ) = IN.
A will be the class of all the closed sets in the topology generated by d.
As a particular case, IR is the computable metric space (IR, d′,Q, ν

Q
), where d′

is the Euclidean metric and ν
Q

is a notation for the set of the rational numbers
which is given by some recursive enumeration of Q itself.

Definition 3. Let a computable metric space M = (M,d,Q, ν
Q
) be given. The

set of all balls B(q, α) with q ∈ Q and α ∈ Q+ is a base for the topology generated
by d. We call the elements of this set noted open balls of M. Each noted open ball
is uniquely determined by its center and its radius, thus one can define through
a pairing function a notation νM for this base. Let dom(νM) be the (whole) set
IN+, so that 0 denotes no ball (in this context 0 means “no information”).
The ball νM(n), for n > 0, will be denoted by “I

M

n ”.

Definition 4 (Standard representation). δM is the standard representation
of M associated with M: for p ∈ ININ, let

δM(p) = x ∈M ⇔ {n > 0 : n ∈ p} = {n : x ∈ I
M

n }.
As usual, ρ denotes the standard representation associated with IR, and in the se-
quel ININ will always be represented by the standard representation δ

B
associated

with the Baire computable metric space B.

Definition 5 (Effective Borel measurability). A function F :⊆ ININ → ININ

is called Σ0
k-computable, for k ≥ 1, if there is a computable function G :⊆

ININ → ININ mapping each δΣ0

1
(B)-name of any O ∈ Σ0

1 (B) to some δΣ0

k(B)-name
of a set V ∈ Σ0

k (B) such that F−1(O) = V ∩ dom(F )1.
Let represented sets (Si, δi), for i = 0, 1, and a function f :⊆ S1 → S0 be

given. Any function F :⊆ ININ → ININ is said to be a (δ1, δ0)-realization of f
when fδ1(p) = δ0F (p) for all p ∈ dom(fδ1). The function f is said to be Σ0

k-
computable with respect to representations (δ1, δ0) (written “Σ0

k-computable
w.r.t. (δ1, δ0)”), for k ≥ 1, if it has a Σ0

k-computable (δ1, δ0)-realization. Notice
that for k=1 the function f is (δ1, δ0)-computable as defined in [5].
1 For the representations δΣ0

1
(B)

, δΣ0

k
(B)

see [1].
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To prove that the function f is Σ0
k-computable with respect to the represen-

tations δ1, δ0 one can show, by Corollary 3.9 in [1] and Definition 5, that f
has some (δ1, δ0)-realization F such that F = F1 ◦ ... ◦ Fn for some n ∈ IN,
Fi :⊆ ININ → ININ is Σ0

ki
-computable for 1 ≤ i ≤ n and k = k1 + ...+ kn−n+ 1.

Definition 6 (Reducibility). Let F :⊆ ININ → ININ and G :⊆ ININ → ININ be
two given functions. F is (computably) reducible to G (written “F ≤c G”) if
there are two computable functions A :⊆ ININ → ININ and B :⊆ ININ → ININ such
that

F (p) = A(p,G ◦B(p))

for all p ∈ dom(F ).
Let represented sets (Si, δi), for 1 ≤ i ≤ 4, be given and let functions f :⊆

S1 → S2, g :⊆ S3 → S4 be given. The function f is said to be (computably)
reducible to g with respect to representations (δ1, δ2, δ3, δ4) (written “ f ≤c g
w.r.t. (δ1, δ2, δ3, δ4)”) if there are a (δ1, δ4, δ2)-computable function a :⊆ S1 ×
S4 → S2 and a (δ1, δ3)-computable function b :⊆ S1 → S3 such that

f(x) = a(x, g ◦ b(x))

for all x ∈ dom(f). Recall that for S1 = S2 = ININ we let δ1 = δ2 = δ
B

and
so we omit the reference to the representations δ1, δ2. Thus, we speak simply
of reducibility w.r.t. (δ3, δ4), because, by the first notion of reducibility, f can be
identified with some of its (δ

B
, δ

B
)-realizations. The same holds of S3 = S4 = ININ.

By applying Proposition 5.2 of [1] to Definition 6, we deduce that if f ≤c g
w.r.t. (δ1, δ2, δ3, δ4) and g is Σ0

k+1-computable w.r.t. (δ3, δ4), then f is Σ0
k+1-

computable w.r.t. (δ1, δ2).

Definition 7 (Completeness). For any k ∈ IN let Ck : ININ → ININ be the
function:

Ck(p)(n) =
{

0 if ∃nk∀nk−1∃nk−2...Qn1 : p〈n, nk, nk−1..., n1〉 �= 0
1 otherwise

where Qn1 = ∃n1 if k is odd, and Qn1 = ∀n1 else.
Given represented sets (Si, δi), for i = 0, 1, a function f :⊆ S1 → S0 is Σ0

k+1-
complete w.r.t. (δ1, δ0) if it is Σ0

k+1-computable w.r.t. (δ1, δ0) and Ck ≤c f w.r.t.
(δ1, δ0).

The rationale behind Definition 7 is the following fact, which is a consequence
of the application of Theorem 5.5 of [1] to Definition 6: given any function
g :⊆ S3 → S4, one has that g ≤c Ck w.r.t. (δ3, δ4) if and only if g is Σ0

k+1-
computable w.r.t. (δ3, δ4). Moreover, by Theorem 5.5 and Proposition 8.5 of [1],
for any k ∈ IN, the function Ck is Σ0

k+1-computable but not Σ0
k-computable.

Definition 8. Consider the set:

Fωω = {F :⊆ ININ → ININ : F is (B,B)-continuous and dom(F ) is a Gδ-set}.
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In the following, let η :⊆ ININ → Fωω be any standard representation of Fωω

(see [5]) satisfying the universal Turing machine (utm-) property, the parameters
(smn-) property, and the fact that any computable function F ∈ Fωω has some
computable η-name.

As usual, we write “ηp” as an abbreviation for ”η(p)”.2

2 Urysohn Lemma

We show that with respect to positive information there is a Σ0
2-computable

Urysohn function u mapping any pair of disjoint closed sets in a given metric
space to some continuous real function satisfying certain properties. The function
u is defined in terms of a map associating any given closed set A with some
continuous function o such that A = o−1[{0}]. We adapt proofs contained in [5]
and [6], using techniques from the effective Borel measurability theory. By these
techniques we also achieve some completeness results.

For closed sets, positive information consists in the following representation:

Definition 9. ψ+ is the representation of the class A of the closed subsets of
M defined in the following way: for p ∈ ININ let

ψ+(p) = A ∈ A ⇔ {n > 0 : n ∈ p} = {n : A ∩ IM

n �= ∅}.
The representation ψ+ is largely used in the literature, although denoted by
different symbols (e.g. by “δ<” in [3], while for the computable metric spaces IR
it coincides with “ψ<” in [5]). The next representation is very used as well, and
it is well-defined by the Main Theorem of [5]:

Definition 10. Let δMIR
be the representation of the set C(M) of all total con-

tinuous real functions f : M → IR defined as follows for all p ∈ dom(η):

δMIR
(p) = f ∈ C(M) ⇔ ηp ∈ Fωωis a (δM , ρ)-realization of f.

Lemma 1. There is a Σ0
2-computable function o : A → C(M) w.r.t. (ψ+, δMIR

)
mapping any closed set A ⊆ M to some continuous function o

A
: M → IR such

that A = o−1
A

[{0}].
Proof. For any non-empty closed set A let dA be the distance function of A:
d

A
(x) = inf{d(x, y) : y ∈ A} for all x ∈M . Let:

oA(x) =
{

min{1, d
A
(x)} if A �= ∅

1 otherwise.

One can define a computable function H :⊆ ININ × ININ → ININ which outputs a
list (of all the ν

Q
-names) of the rational upper bounds of o

A
(x), given as input

2 By using a pairing function in ININ, F ωω can be considered as a set of functions with
(finitely) many arguments. The utm- and the smn-property of η immediately extend
to this case.
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any ψ+-name of the set A and any δM -name of a point x ∈ M . To accomplish
this, just consider the following property which holds for all ε ∈ Q+:

o
A
(x) < ε⇔ ε > 1 ∨ (∃c ∈ Q,α ∈ Q+ : B(c, α) ∩A �= ∅ ∧ d(x, c) + α < ε

)
.

Similarly, it is easy to define a computable function G :⊆ ININ × ININ → ININ

which outputs all rational lower bounds of o
A
(x), given as input a list (of all the

νM-names) of the noted open balls not intersecting A and a δM-name of x. To
do this consider that for any ε ∈ Q+:

ε < o
A
(x) ⇔ ε < 1 ∧ (∃c ∈ Q,α ∈ Q+ : B(c, α) ∩A = ∅ ∧ α− d(x, c) > ε

)
.

There is a Σ0
2-computable function L mapping any given ψ+-name p

A
of A to

some enumeration L(p
A
) ∈ ININ of the set {n : I

M

n ∩ A = ∅} (possibly empty).
Put L(p

A
) = limB(Lj(pA

))j∈IN, where:

Lj(pA
)(n) =

{
n if n /∈ pA [j]
0 otherwise. (1)

The function limB is Σ0
2-computable by Proposition 9.1 of [1] and λp.(Lj(p))j∈IN

is computable. Therefore by Corollary 3.9 of [1], L is Σ0
2-computable.

Hence, there is a computable function ξ(p1, p2, p3) which outputs a ρ-name
of o

A
(x) on input (p

A
, L(p

A
), r

x
), where r

x
is any δM-name of x. By the smn-

property, there is a computable function S such that

η
S(p

A
,L(p

A
))
(rx) = ξ(pA , L(pA), rx).

S(pA , L(pA)) is a δMIR
-name of oA and the mapping λpA .S(pA , L(pA)) is Σ0

2-
computable by Corollary 3.9 of [1].  !
In general, a map o satisfying Lemma 1 is not necessarily Σ0

2-complete. For ex-
ample, for M = {x} (the singleton metric space), even if o cannot be (ψ+, δMIR

)-
continuous, it has a (ψ+, δMIR

)-realization mapping computable objects to com-
putable ones. This means, by the Invariance Theorem of [1], that C1 �≤c o.
Nevertheless, the next proposition shows that in some cases Σ0

2-completeness
obtains:

Proposition 1. For M = IR, it obtains C1 ≤c o w.r.t. (ψ+, δIRIR
).

Proof. We give the proof for IR, but the method can be applied to other com-
putable metric spaces with similar features. Let p ∈ ININ be given. Then consider
the closed set A ⊆ IR:

A = {n : ∃m (p〈n,m〉 �= 0)}.

Let G : ININ → ININ be any computable function such that ψ+(G(p)) = A. For
any n ∈ IN, one can directly check if there is an m such that p〈n,m〉 �= 0, and
if so, n ∈ A, whence o

A
(n) = 0. Otherwise, if such an m does not exist, then
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n /∈ A and o
A
(n) �= 0. It is sufficient in this case to compute a ρ-name of o

A
(n)

and verify that this is not a ρ-name of 0. More formally, if O is a (ψ+, δIRIR
)-

realization of o, OG(p) is a δ
IRIR

-name of oA ; given any δM-name rn of n, we
check computably (by the utm-property) whether ρ(η

OG(p)
(r

n
)) �= 0 (observe

that there is a computable sequence {r
n
}n∈IN of ρ-names such that ρ(r

n
) = n

for all n ∈ IN).  !
Theorem 1. There is a Σ0

2-computable function u :⊆ A × A → C(M) w.r.t.
(ψ+, ψ+, δMIR

), mapping every disjoint pair of closed subsets of M to some total
continuous function u

A,B
: M → IR such that u

A,B
(x) = 0 for x ∈ A, u

A,B
(x) = 1

for x ∈ B, and 0 < uA,B (x) < 1 otherwise.

Proof. For any closed set A let o
A

be defined as in the proof of Lemma 1.
Consider the function u

A,B
for A,B ∈ A:

u
A,B

=
o

A

o
A

+ o
B

.

Lemma 1 together with Corollary 3.9 and Proposition 3.8(3) of [1] give then the
result for u : (A,B) )→ u

A,B
.  !

Considering again the singleton metric space, one can show that in general the
function u of Theorem 1 is not Σ0

2-complete. Nevertheless, the following propo-
sition shows a case in which u is Σ0

2-complete:

Proposition 2. For M = IR, it obtains C1 ≤c u w.r.t. (ψ+, ψ+, δIRIR
).

Proof. Again, the proof is valid for other cases of metric spaces similar to IR.
Let p ∈ ININ be given. For any n ∈ IN define the closed sets An, Bn ⊆ IR:

An = {n+ 2−(k+2) : ∃m ≤ k (p〈n,m〉 �= 0)},
Bn = {n− 2−(k+2) : ∀m ≤ k (p〈n,m〉 = 0)}.

Then put A =
⋃
n∈INAn and B =

⋃
n∈INBn. Let G,G′ be two computable

functions such that ψ+(G(p)) = A, ψ+(G′(p)) = B. Let u
A,B

∈ C(M) be such
that u

A,B
[A] = {0}, u

A,B
[B] = {1}. Given n ∈ IN, if there is an m for which

p〈n,m〉 �= 0 then n ∈ A, whence u
A,B

(n) = 0. But if such an m does not exist,
then n ∈ B and u

A,B
(n) = 1.  !

3 Dieudonné’s Function for the Urysohn-Tietze Lemma

In [6], Weihrauch observes that Dieudonné’s approach to Urysohn-Tietze Lemma
is not computable with respect to negative information.

We analyze again Dieudonné’s solution, but for the case of positive informa-
tion, and by the tools of effective Borel measurability.

First, we give the concept of positive information for continuous partial real
functions according to [5] (the corresponding notion with respect to negative
information is fundamental in [6]):
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Definition 11. Let C
p

(M) be the set of all continuous partial real functions
f :⊆ M → IR with closed domain and let δ

p

MIR
be the representation of such set

defined in the following way:

δ
p

MIR
〈p, q〉 = f ⇔ ηp is a (δM , ρ)-realization of f and dom(f) = ψ+(q).

Lemma 2. Let f : M × A → IR be some continuous bounded real function,
with A ⊆ M closed, such that the function h = λx. inf{f(x, y) : y ∈ A} is
continuous. Then there is a function mapping f to h which is Σ0

2-computable
w.r.t.

(
δ

p

MMIR
, δMIR

)
.

Proof. By the sake of simplicity, consider 〈p, q
A
〉 as a δ

p

MMIR
-name of f when ηp is

a (δM , δM , ρ)-realization of f and ψ+(qA) = A. Let rx and ry be any δM -names of
points x ∈M , y ∈ A, respectively. Through (p, rx, ry) it is possible to compute a
ρ-name of f(x, y) using the utm-property. Obviously, α ∈ Q is bigger than h(x)
if and only if there exists some y ∈ A such that f(x, y) < α. Given then a list s
of all rational numbers bigger than h(x), a list t of all rational numbers smaller
than h(x) is obtained using limB similarly to (1), except that we need suitable
adjustment in order to take account of the case in which h(x) ∈ Q. Since the set
A may be uncountable and the function lim

B
is Σ0

2-computable, t may not be
computable on the given input3. Therefore the smn-property is bound to depend
also on such argument. But the information coded in t depends on x, whereas by
applying the smn-property we want to find a δMIR

-name of h which depends only
on 〈p, q

A
〉. Hence, what we actually do is that we compute an “oracle” K〈p, q

A
〉

for the function h which is defined on suitable initial segments of δM -names,
and such that ξ(K〈p, qA〉, rx) is a ρ-name of h(x), for some computable function
ξ(p1, p2).

By definition of computable metric space (see [5]), the set {u ∈ IN∗ : uININ ∩
dom(δM) �= ∅} is r.e.: let {u0, u1, u2, ...} be a 1-1 computable enumeration of
it. Similarly, let {wqA

0 , w
q

A
1 , w

q
A

2 , ...} be an enumeration, through q
A
, of the set

{w ∈ IN∗ : δM
[
wININ] ∩A �= ∅}.

For j ∈ IN let M be a machine which computes a function Kj such that
Kj〈p, qA

〉〈n,m〉 = 1 if M can prove in j steps that for all l ≤ j the least
upper bound of ρ

(
ηp
[
umININ × w

q
A

l ININ]) is smaller than ν
Q
(n). Otherwise

Kj〈p, qA
〉〈n,m〉 = 0. Then K(〈p, q

A
〉) = limB(Kj(〈p, qA

〉))j∈IN provides the de-
sired oracle.  !
Theorem 2. There is a Σ0

2-computable function t w.r.t.
(
δ

p

MIR
, δMIR

)
mapping

each partial continuous real function f :⊆ M → [1, 2] with closed domain and
min(f) = 1,max(f) = 2 to some continuous total extension g : M → [1, 2].

Proof. Let dom(f) = A. Consider the Dieudonné function f )→ g, where g is
defined by:

g(x) =

⎧
⎨

⎩

f(x) if x ∈ A
infy∈A{f(y)d(x, y)}

d
A
(x) otherwise.

3 Nevertheless, observe that s can be actually computed by considering some countable
dense set in A which is known by qA , see [3].
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The function g is a total extension of f and min(f) = min(g) = 1, max(f) =
max(g) = 2. Moreover, g is continuous, as proven by Dieudonné in [4]. Let 〈p, q

A
〉

be a δ
p

MIR
-name of f . We show that there is a Σ0

2-computable function mapping
〈p, q

A
〉 to some δMIR

-name of g. Let H be a function such that H〈p, q
A
〉 is a

δMIR
-name of the function λx. infy∈A{f(y)d(x, y)}, for x ∈ M . Lemma 2 gives

us a suitable Σ0
2-computable H (observe that a δMMIR

-name of the function
λ(x, y).f(y)d(x, y) can be computed using the utm-property).

By the proof of Lemma 1 we know that d
A
(x) is computable given q

A
and

some list (of all the νM-names) of the noted open balls not intersecting A. By the
same proof we know that there is a suitable Σ0

2-computable function L which
provides such a list given qA . The map λ〈p, qA〉.(H〈p, qA〉, L(qA)) is therefore
Σ0

2-computable.
We then define a Turing machine M(p1, p2, p3, p4), which, on the input

(〈p, q
A
〉, H〈p, q

A
〉, L(q

A
), rx),

computes a ρ-name of g(x), with rx a δM-name of x ∈ M . For the sake of
simplicity in the description of the algorithm, we show how to compute a list of
open rational intervals in IR with decreasing diameters and whose intersection
is the singleton {g(x)}. From this, it is easy to compute a ρ-name of g(x). To
define M we partly modify the original proof of the continuity of g given by
Dieudonné. Let

i(x) =
infy∈A{f(y)d(x, y)}

d
A
(x)

.

The intuitive idea is to apply always f to x, unless we realize at some stage
that x /∈ A. If so, the computation goes on applying i to x. The problem is to
handle the process carefully, so that if we realize at a certain stage that the wrong
function (i.e. f) has been applied to x, we are still in time to compute a name
of g(x) = i(x). This means that despite of having applied the wrong function,
we have listed on the output tape only names of balls containing i(x). If we
succeed, we do not need to know at the beginning of the computation whether
x ∈ A or not, in order to make a choice between f and i. Such a knowledge
may not be computably achievable with the information coded in the input and
it is (partially) dependent on x. On the contrary, we want to find, by the smn-
property, a possible name for a realization of the Dieudonné function, and this
must be independent from x.

We define M by induction on the number of stages. At stage 0 the machine
outputs nothing.

Stage s > 0) Suppose M has listed only ν
IR

-names of balls containing g(x).
Now M must write the name of a noted open ball B

IR ⊆ IR such that g(x) ∈ B
IR

and diam
(
B

IR

)
≤ 2−s. Let u be the initial segment of r

x
that has been consid-

ered until now by M. Suppose any ball mentioned in u intersects A. Therefore
we are sure that u is an initial segment of some δM-name of some point in A.
Then M applies, by the utm-property, ηp to r

x
until it finds some n ∈ rx, qA

such that f
[
I

M

n

]
⊆ I

IR

m ⊆ IR, where diam
(
I

IR

m

)
< 2−(s+2).
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If such a ball I
M

n exists, let I
M

n = B(c, α) for c ∈ Q,α ∈ Q+. Suppose M finds
also another noted open ball I

M

k = B(e, β) such that x ∈ I
M

k ⊆ I
M

n , I
M

k ∩A �= ∅,
and

α− d(c, e)− β > 4β.

If x ∈ A then both I
M

n and I
M

k exist. Now we see how to find a suitable ball B
IR

containing g(x) (independently on whether x ∈ A or not). Let C = A ∩ IM

n and
D = A − C. Since x ∈ I

M

k ⊆ I
M

n , I
M

k ∩ A �= ∅ and diam
(
I

M

k

)
= 2β, there is a

y ∈ C such that d(x, y) < 2β. But for any y ∈ D:

d(x, y) ≥ d(y, c)− d(c, e)− d(e, x) > α− d(c, e)− β > 4β.

Therefore:
d

A
(x) = d

C
(x) = inf

y∈C
{d(x, y)}. (2)

Moreover, for y ∈ C ∩ IM

k one has f(y)d(x, y) < 4β, whereas for y ∈ D it holds
f(y)d(x, y) > 4β. So

inf
y∈C

{f(y)d(x, y)} = inf
y∈A

{f(y)d(x, y)}. (3)

Recall that for any y, z ∈ C: |f(y) − f(z)| < 2−(s+2), thus f(z) − 2−(s+2) <
f(y) < f(z) + 2−(s+2). Therefore, chosen a z ∈ C, for any y ∈ C:

(
f(z)− 2−(s+2)

)
d(x, y) ≤ f(y)d(x, y) ≤

(
f(z) + 2−(s+2)

)
d(x, y),

hence (
f(z)− 2−(s+2)

)
inf
y∈C

{d(x, y)} ≤ inf
y∈C

{f(y)d(x, y)}

and
inf
y∈C

{f(y)d(x, y)} ≤
(
f(z) + 2−(s+2)

)
inf
y∈C

{d(x, y)}.

By (2), d
A
(x) = infy∈C{d(x, y)}, and so by (3) we conclude:

(
f(z)− 2−(s+2)

)
d

A
(x) ≤ inf

y∈A
{f(y)d(x, y)} ≤

(
f(z) + 2−(s+2)

)
d

A
(x), (4)

which proves that |g(x) − f(z)| ≤ 2−(s+2). Indeed if g(x) = f(x) then |g(x) −
f(z)| < 2−(s+2) by our hypothesis that f

[
I

M

n

]
⊆ I

IR

m and diam
(
I

IR

m

)
< 2−(s+2).

Otherwise, by (4):

f(z)− 2−(s+2) ≤ infy∈A{f(y)d(x, y)}
dA(x)

= g(x) ≤ f(z) + 2−(s+2).

Let γ ∈ Q be the center of I
IR

m . Then |γ − g(x)| ≤ |γ − f(z)|+ |f(z) − g(x)| <
2−(s+1). The machine M puts then B

IR

= B(γ, 2−(s+1)).
Suppose otherwise that either I

M

n or I
M

k is not defined. Then x /∈ A and M
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recognizes this, sooner or later, through L(q
A
). By induction hypothesis, any

ball mentioned in the output tape at stage s− 1 contains g(x). Using the com-
putability of ·

· , the value i(x) is computable via the utm-property applied to
(H〈p, q

A
〉, r

x
) and (q

A
, L(q

A
), r

x
). So M computes i(x) until it finds some ball

with diameter smaller than or equal to 2−s and writes its name on the output
tape.
M proceeds to compute i(x) similarly at any other stage u > s.
Let now ξ(p1, p2, p3, p4) be the function computed byM. By the smn-property

there is a computable function S such that

η
S(〈p,q

A
〉,H〈p,q

A
〉,L(q

A
))
(r

x
) = ξ(〈p, q

A
〉, H〈p, q

A
〉, L(q

A
), r

x
).

Then the function 〈p, q
A
〉 )→ S(〈p, q

A
〉, H〈p, q

A
〉, L(q

A
)) is Σ0

2-computable.  !
Moreover it obtains:

Proposition 3. The Dieudonné function t is not computable: in some cases it
is Σ0

2-complete (w.r.t .
(
δ

p

MIR
, δMIR

)
).

Proof. Consider the computable function f : IR × IR → IR such that f(x, y) =
|x − 1| + 1 for all x, y ∈ IR. This function f has a computable δ

IRIRIR
-name, say

r ∈ ININ. Let xn = (0;n), yn = (1;n), zn = (2;n) for all n ∈ IN and take a
computable function H : ININ → ININ such that for any p ∈ ININ:

ψ+(H(p)) = {xn, yn : n ∈ IN} ∪ {zn : ∃m(p〈n,m〉 �= 0)}.

Put ψ+(H(p)) = A. Then 〈r,H(p)〉 is a δ
p

IRIRIR
-name of f|A.

Consider the Dieudonné extension g of f|A. For any n ∈ IN, if there is an m such
that p〈n,m〉 �= 0 then g(zn) = f|A(zn) = f(zn) = 2. If there is no such m then
g(zn) = f|A(yn)d(yn, zn) = f(yn)d(yn, zn) = 1.  !
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Enumeration Reducibility with Polynomial
Time Bounds

Charles M. Harris

University of Leeds, Leeds LS2 9JT, England

Abstract. We introduce polynomial time enumeration reducibility (≤pe)
and we retrace Selman’s analysis of this reducibility and its relationship
with non deterministic polynomial time conjunctive reducibility. We dis-
cuss the basic properties of the degree structure induced by ≤pe over the
computable sets and we show how to construct meets and joins. We are
thus able to prove that this degree structure is dense and to show the
existence of two types of lattice embeddings therein.

1 Introduction

Polynomial time enumeration reducibility (≤pe) was defined by Selman in
[Sel78] as a variant of enumeration reducibility (≤e ) in terms of the non con-
structive formulation of the latter given in [Sel71]. Selman showed that ≤pe
differs from the constructive polynomial time bounded variant of enumeration
reducibility (≤NP

c ) introduced by Ladner et al. in [LLS75]. However Selman also
showed that ≤pe and ≤NP

c coincide over the class of sets computable in expo-
nential time. Now, ≤NP

c is an effective operator based reducibility in the sense
that there exists a computable enumeration of effective operators {Φn | n ∈ ω}
such that for any sets A and B, A≤NP

c B iff A = Φn(B), for some n ∈ ω. Ac-
cordingly the degree structure induced by this reducibility over the computable
sets is amenable—see1 [Cop97]—to many of the techniques used in the liter-
ature of the well known polynomial time bounded deterministic reducibilities.
The fundamental definition of ≤pe is however not effective operator based and
we possess no reformulation of this definition to suggest otherwise. Indeed, as the
reader will observe, an effective operator based definition of ≤pe would appear
highly implausible. Thus the study of its degree structure requires by definition
a different approach. The primary purpose of the present paper is to elaborate
on this point. In particular, we show that, with the use of results from [Sel78]
joins and meets can be constructed in a uniform manner and that, accordingly,
two results on lattice embeddings due to Ambos Spies [AS85b, AS87] apply in
the context of the ≤pe degrees. However, from a more general viewpoint, this
work also shows that there are two distinct and viable degree structures cor-
responding to the polynomial time bounded variants of enumeration reducibil-
ity. Moreover, the reader should note that the fact—as indicated above—that
these degree structures coincide over the class of exponential time sets raises the

1 Note that Copestake uses the pseudonym ≤P

e for ≤NP

c .

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 209–220, 2006.
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possibility of the existence of some structural property distinguishing the asso-
ciated degrees within the ≤pe degree structure2.

2 Background and Preliminaries

Basic Notation and Assumptions. Let Σ = {0, 1}. Our basic elements are
finite strings over Σ, the set of which we denote by Σ∗. s, t, x, . . . denote such
strings and |s| denotes the length of string s. Sets of strings are denoted by
A,B,C, . . . and classes of sets by A,B,C, . . . The complement of A in Σ∗ is de-
noted A and the cardinality of any set S is written ‖S ‖. st is the concatenation
of strings s and t, sA is the set { st | t ∈ A } and A ⊕ B is the set 0A ∪ 1B.
The semicharacteristic function of A is defined to be the function sA such that
Dom(sA) = A and sA(x) = 1 for all x ∈ A. The characteristic function of A is
written cA. We assume the standard length lexicographical ordering on strings
(≤L) and we assume the reader to be conversant with the identification of Σ∗

with ω induced by ≤L (so that, for example t = log s makes sense). For any
(total) functions f, g : ω → ω we say that f is O(g) if there exists a constant c
such that f(n) ≤ c ·g(n) for all n ∈ ω. We extend this notation in an obvious way
to time bounds. P denotes the class of polynomials in one variable. We assume
the fixed enumeration {pi(n) | i ∈ ω} in P to be defined by pi(n) = ni + i for
all i ∈ ω. We assume the reader to be already familiar with the basic notions of
(time related) complexity theory and with the (oracle) Turing machine model
used in the time bounded context. Accordingly, we use P (NP) to denote the
class of sets computable (acceptable non deterministically) in polynomial time
and EXP to denote the class of sets computable in exponential time. More
generally for any total function t : ω → ω, DTIME(t(n)) denotes the class of
sets computable in time O(t(n)). Note that we assume an effective enumeration
{Vi | i ∈ ω } of NP such that Vi is non deterministically computable in time
pi(n). We say that A is polynomial time many one reducible to B (A≤P

mB) if
A = f−1(B) for some total function f computable in polynomial time. We say
that (total) g is polynomial time constructible (p-constructible) if there exists
p(n) ∈ P such that g(s) is computable in p(|g(s)|) steps for all s ∈ Σ∗.

Coding Finite Sets and Pairs of Strings. We assume {Ds | s ∈ Σ∗ } to be
a polynomial time computable and invertible/decodable enumeration of all finite
subsets of Σ∗ (see for example the coding scheme in [Har06] Subsection 4.2.2).
Also, for any finite set D we define D+ and D− to be the sets { s | 0s ∈ D }
and { s | 1s ∈ D } respectively.

To keep notation succinct we use 〈 , 〉 to denote polynomial time computable
and invertible bijections (I) from Σ∗ × Σ∗ to Σ∗ and (II) from ω × Σ∗ to Σ∗

(where ω is identified with {0}∗). Note that the context always disambiguates
the meaning of this notation.

Enumeration Reducibility and Non Determinism. Assuming the identi-
fication of Σ∗ with ω mentioned above, let A,B be any subsets of Σ∗ and let
2 If NP = EXP this is trivial since NP is the zero degree in this structure.
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f, g be any partial functions from Σ∗ into Σ∗. We suppose the reader to be fa-
miliar with deterministic Turing reducibility ≤T between partial functions and
its non deterministic counterpart ≤NT (for the latter see for example [Coo04]
Section 11.1 or [Har06] Section 2.2.1). Accordingly, for any sets A,B we say
that A is Turing reducible to B (A≤TB) if cA≤T cB . We say that A is com-
putably enumerable in B (A c.e. in B) if there exists a partial function f≤TcB
such that A = Ran(f) or, equivalently, if sA ≤T cB , and we say that A is
computably enumerable (c.e.) if f is partial computable or, equivalently, if sA
is partial computable. We say that A is enumeration reducible to B (A≤eB) if
there exists a c.e. set W such that, for all s ∈ Σ∗,

s ∈ A iff (∃t ∈ Σ∗)[ 〈s, t〉 ∈W & Dt ⊆ B ] (2.1)

and we say that partial function f is enumeration reducible to partial function
g (f≤eg) if Graph(f)≤eGraph(g) . McEvoy showed in [McE84] that, f≤eg iff
f ≤NT g for any such functions f and g. It follows that A is enumeration re-
ducible to B iff sA≤NT sB. In contrast to this, we say that A is (setwise) non
deterministic Turing reducible to B (A≤N

TB) if sA≤NTcB . Now, a straightfor-
ward argument shows that f ≤T g iff f ≤NT g provided that Dom(g) is com-
putable3. This means that A c.e. in B iff A≤N

TB and, in particular, that the
class of c.e. sets comprises precisely those sets acceptable by a non determin-
istic Turing machine. This also means that Selman’s definition of enumeration
reducibility [Sel71] is tantamount to saying that A≤eB iff

(∀X ⊆ Σ∗)[B≤N
TX ⇒ A≤N

TX ] (2.2)

Turing Reducibilities and Polynomial Time Bounds. Let A and B be
any subsets of Σ∗. We suppose that the reader is conversant with the notion
of a polynomial time (p-time) bounded Turing machine (in which the underlying
program essentially contains a step counting polynomial clock). We say that a
Turing reduction is p-time bounded or, is (effected) in p-time if there is a p-time
bounded oracle Turing machine that witnesses the reduction. Accordingly we
say that A is p-time Turing reducible to B (A≤P

TB) if A≤TB (i.e. cA≤T cB)
in p-time. We say that A is (setwise) non deterministic p-time Turing reducible
to B (A≤NP

T B) if A≤N
TB (i.e. sA≤NT cB) in p-time. Moreover, using a stan-

dard result due to Cook [Coo71] and Karp [Kar72] we can stratify the latter in
terms of computation length and ≤P

T . Thus, given any q(n) ∈ P , we say that
A is size q(n) non deterministic p-time reducible to B (A≤NP

T,qB) if there exists
R≤P

TB such that for all x ∈ Σ∗, x ∈ A iff ∃w[ |w| ≤ q(|x|) & R(x,w) ]. We
say that A is non deterministic p-time conjunctive reducible to B (A≤NP

c B)
if sA≤NT sB in p-time. The reader will observe that the present definitions of
≤NP

T and ≤NP
c are straightforward reformulations of the definitions found in the

literature, for example in [LLS75]. Moreover, Ladner et al. and Selman essen-
tially showed that both reducibilities can be defined in terms of enumeration
3 See Theorem 2.4.5 and Corollary 2.4.6. of [Har06] or, for the case when g is total,

the intuitive argument in Section 11.1 (pages 174-5) of [Coo04].
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type operators4. Accordingly, using the notation defined above (see page 210),
we know that A≤NP

T B iff there is a polynomial p(n) and set V ∈ NP such that,
for all s ∈ Σ∗,

s ∈ A ⇔ (∃t ∈ Σ∗)
( |t| ≤ p(|s|) & 〈s, t〉 ∈ V & D+

t ⊆ B & D−
t ⊆ B

)
(2.3)

Likewise A≤NP
c B iff there is a polynomial p(n) and set V ∈ NP such that, for

all s ∈ Σ∗,

s ∈ A ⇔ (∃t ∈ Σ∗)
( |t| ≤ p(|s|) & 〈s, t〉 ∈ V & Dt ⊆ B

)
(2.4)

Moreover, we can define ≤NP
m , the non deterministic version of ≤P

m via (2.4) by
simply replacing the conjunct “Dt ⊆ B” by “t ∈ B”. We use Ψp,V to denote the
set of putative axioms induced by the polynomial p(n) and the set V ∈ NP in
the sense that

Ψp,V = { 〈s, t〉 | |t| ≤ p(|s|) & 〈s, t〉 ∈ V } (2.5)

and we refer to such sets as np-operators. It is important to note that that
Ψp,V ∈ NP for any polynomial p(n) and V ∈ NP. We assume a fixed effective
enumeration of np-operators {Φn | n ∈ ω } defined such that Φn = Ψpi,Vj for
n = 〈i, j〉. Notice that for any n ∈ ω and s, t ∈ Σ∗, if 〈s, t〉 ∈ Φn then |t| ≤ pn(|s|).
Of course, according to the above definitions, these operators can be used in three
different ways. We thus specify Ψp,V to be an np-T-operator if Ψp,V witnesses
(2.3) and we write A = ΨT

p,V (B) for this reduction. We specify np-c-operators
and np-m-operators in a similar manner and we use the notation A = Ψ c

p,V (B)
and A = Ψm

p,V (B) respectively in this case. When no ambiguity arises we drop
the superscripts. Accordingly, for r ∈ {T, c,m} we can view {Φn | n ∈ ω } as
an enumeration of np-r-operators such that A≤NP

r B iff A = Φn(B) for some
n ∈ ω.

Notational Conventions. Our notation is based on that found in [AS99]. Thus
for example we use REC to denote the class of computable sets and, for (R, s) ∈
{ (P,T), (NP, c) }, we use 〈RECR

s ,≤〉 to denote the degree structure induced
by ≤R

s . We also refer to the latter as the computable r-s-degrees. Likewise we
use aR

s , b
R
s , . . . to denote individual degrees and we drop super/subscripts if the

context is unambiguous.

3 Basic Properties of ≤pe

We noted in Section 2 that, for any A,B ⊆ Σ∗, A≤eB iff sA≤NTsB whereas
A≤NP

c B iff sA≤NT sB in p-time. Moreover, this analogy is borne out by the
operator orientated formulations of these reducibilities given by (2.1) and (2.4).
Therefore ≤NP

c can be seen as a polynomial time bounded variant of ≤e . How-
ever, as Selman showed in [Sel78], there exists another distinct polynomial time

4 See [LLS75] page 120, [Sel78] page 454 or [Har06] Lemmas 4.2.8-4.2.9.
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bounded variant of ≤e whose definition reflects the non constructive formula-
tion of the latter given by (2.2). Selman gave this variant the name polynomial
time enumeration reducibility (≤pe). We proceed below by introducing this re-
ducibility. We then follow Selman’s argument by defining a constructive version
(≤pe′ ) and by explaining the equivalence of the two. We present Selman’s re-
sults on the comparison of ≤NP

c with ≤pe and we discuss some of the basic
properties of the degree structure induced by ≤pe .

Definition 3.1 ([Sel78]). For any A,B ⊆ Σ∗, A is said to be polynomial time
enumeration reducible to B (A≤peB ) if

(∀X ⊆ Σ∗)[B≤NP
T X ⇒ A≤NP

T X ] (3.1)

The reader will observe the analogy that we mentioned above between this def-
inition and the non constructive definition of ≤e given by (2.2). We proceed by
defining approximations to ≤pe .

Definition 3.2 ([Sel78]). For any A,B ⊆ Σ∗, and polynomial q(n), A is said
to be q(n) time enumeration reducible to B (A≤q

pe B ) if

(∀X ⊆ Σ∗)[B≤NP
T,qX ⇒ A≤NP

T X ] (3.2)

It is obvious that ≤pe can be derived from the above approximations.

Lemma 3.1 ([Sel78]). ≤pe =
⋂

q∈P ≤q
pe .

In the constructive approach, in contrast, we begin by defining the appropriate
approximations. For the sake of succinctness we define the latter directly in terms
of np-operators.

Definition 3.3. For any A,B ⊆ Σ∗, and polynomial q(n), A is said to be con-
structive q(n) time enumeration reducible to B (A≤q

pe′ B ) if there exists an
np-operator Ψp,V (see (2.5)) and k ≥ 0 such that, for all s ∈ Σ∗,

s ∈ A ⇔ (∃t ∈ Σ∗)[ 〈s, t〉 ∈ Ψp,V & D+
t ⊆ B & D−

t ⊆ B

& ∀z( z ∈ D−
t ⇒ q(|z|) ≤ k · log |s| ) ]

Note that we also refer to this as a pe′-reduction for q(n) of A to B.

Note 3.1 ([Sel78]). Viewed as a non deterministic p-time Turing reduction,
A≤q

pe′B can be described as follows. Suppose that machine N witnesses A≤q
pe′

B. Then for any input s, if s ∈ A there exists an accepting computation ofNB(s)
such that all negative queries z in this computation satisfy q(|z|) ≤ k · log |s|.
Note that, for simplicity, we refer to such z as relevant negative queries.

Definition 3.4 ([Sel78]). For any sets A and B, A is said to be constructive
polynomial time enumeration reducible to B (A≤pe′ B ) if A≤q

pe′ B for every
polynomial q(n). In other words,

≤pe′ =
⋂

q∈P ≤q
pe′
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Note 3.2. For any polynomials p(n), q(n), set V ∈ NP and number k ≥ 0, we
define the set

Ψpe′
p,V,q,k = { 〈s, t〉 | 〈s, t〉 ∈ Ψp,V & ∀z( z ∈ D−

t ⇒ q(|z|) ≤ k · log |s| ) }

to be a pe′-operator for q(n) with index (p(n), V, k) and we note that Ψpe′
p,V,q,k

is obviously in NP. We assume a fixed computable enumeration {Φn | n ∈ ω }
of pe′-operators such that Φn = Ψpe′

pi,Vj ,pl,k
for n = 〈i, j, l, k〉. Accordingly it is

now easily seen that, for any fixed polynomial q(n) there exists an enumeration
{Φ̂n | n ∈ ω } of pe′-operators for q(n) such that, for any A,B ⊆ Σ∗, A≤q

pe′B

iff A = Φ̂n(B) for some n ∈ ω—i.e. that ≤q
pe′ is effective operator based.

The next step in Selman’s argument is to show that ≤q
pe ≡≤q

pe′ for all q(n) ∈
P . Note firstly that ≤q

pe ⊇ ≤q
pe′ is intuitively obvious. Indeed suppose that

A≤q
pe′ B and B≤NP

T,qX . Then by definition there exists binary R≤TX such
that, for all z ∈ Σ∗, z ∈ B iff ∃y [ |y| ≤ q(|z|) & R(z, y) ]. Thus the query
“z ∈ B?” can be deterministically computed with oracle R in O(2q(|z|)) steps.
However, for any input x ∈ Σ∗ any relevant negative query z in the reduction
A≤q

pe′ B satisfies q(|z|) ≤ k · log |x| for some fixed k ≥ 0. Thus A≤NP
T R via

an appropriate simulation derived from the original reduction A≤q
pe′ B since

all relevant negative queries can be deterministically computed relative to R
in time O(2k·log n) = O(nk). Since R≤P

TX it follows that A≤NP
T X . On the

other hand, in order to prove ≤q
pe ⊆ ≤q

pe′ it suffices to prove the contrapositive
�q

pe ⊇ �q
pe′ . This is our next result.

Lemma 3.2 ([Sel78]). For any A,B ⊆ Σ∗ and q(n) ∈ P, if A�q
pe′ B then

there exists C≤TA⊕B such that B≤NP
T,qC and A�NP

T C. (And so C witnesses
the fact that A�q

peB.)

Proof. See the proof of [Sel78] Theorem 10 or [Har06] Lemma 4.3.12.  !
The equivalence of ≤pe and ≤pe′ is now evident from the above results.

Theorem 3.1 ([Sel78]). ≤pe ≡ ≤pe′

Corollary 3.1. For any sets A and B if A�peB then there exists C≤TA⊕B
such that B≤NP

T C whereas A�NP
T C. In particular C is computable if A and

B are both computable.

Proof. If A�peB then, by Theorem 3.1 A�pe′B. Thus, by definition, A�q
pe′

B for some q(n) ∈ P . Therefore, by Lemma 3.2, there exists a set C≤TA ⊕ B
such that B≤NP

T C but A�NP
T C.  !

Note 3.3 (The pe-operator problem). We saw in Note 3.2 that the relation
≤q

pe′ is effective operator based for all q(n) ∈ P . However, despite Theorem 3.1,
if X≤peY all that we know is that, for all q(n) ∈ P there exists a pe′-operator
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Φ for q(n) such that A = Φ(B). This might mean, in the worst case, that we
need an infinite list of pe′-operators as witness to the single reduction X≤peY .
(Of course in practice there are many cases in which only a single operator is
required, for example if x ∈ X iff log logx ∈ Y for all x ∈ Σ∗ or whenever
X≤NP

c Y .)

Selman showed in Theorem 6 of [Sel78] that ≤pe is a maximal transitive
subrelation5 of ≤NP

T over Σ∗ and we can deduce from Selman’s argument and
Corollary 3.1 that this property also holds over REC. In contrast Ladner et al.
constructed in Lemma 4.3 of [LLS75] sets A,B,C ∈ DTIME(22n

) such that
A≤NP

T B≤NP
T C whereas A�NP

T C thus proving that ≤NP
T is not transitive6.

In particular for us this means that ≤pe is properly contained in ≤NP
T over

classes of relatively low time complexity. On the other hand it is easily seen
that ≤P

m ⊆≤NP
m ⊆≤NP

c and also that ≤NP
c ⊆≤pe (the latter by Theorem 3.1

since obviously ≤NP
c ⊆ ⋂

q∈P ≤q
pe′). On the other hand, in Theorem 11 of

[Sel78] Selman constructed sets A and B (in elementary time7) such that A≤pe
B (via the pe-reduction x ∈ A iff log logx ∈ B) whereas A�NP

c B . Thus
≤NP

c is properly contained in ≤pe . However Selman also showed that this is
not the case over EXP. Indeed, suppose that A≤peB and B ∈ EXP. Then
B ∈ DTIME(2q(n)) for some q(n) ∈ P . Now, it follows from the assumption
that A≤peB and Theorem 3.1 that A≤q

pe′B. Suppose that Φ is a pe′-operator
for q(n) witnessing this reduction. Then, by definition, for any 〈s, t〉 ∈ Φ we
know that (∀z ∈ D−

t )[ q(|z|) ≤ k · log |s| ] for some fixed k ≥ 0. Thus “z ∈ B ?”
can be computed in O(2k·log |s|) = O(|s|k) steps for all such z. It is therefore
straightforword to construct an np-c-operator Φ̂ witnessing A≤NP

c B (see the
proof of [Sel78] Theorem 12 or [Har06] Proposition 4.3.25). Furthermore, taking
into account that EXP is closed under ≤pe we obtain our next result.

Proposition 3.1 ([Sel78]). ≤NP
c and ≤pe coincide over EXP.

Let 〈RECpe,≤〉—which we also refer to as the computable pe-degrees—denote
the degree structure induced by ≤pe over REC. Then notice that Proposi-
tion 3.1 tells us that 〈RECNP

c ,≤〉 and 〈RECpe,≤〉 are identical over EXP.
Now, as mentioned earlier a number of results concerning 〈RECNP

c ,≤〉 were
proved by Copestake in [Cop97]. But what can we say about 〈RECpe,≤〉 ?
Well, firstly it is easily seen that the latter is an upper semilattice with NP
as zero degree (just as for 〈RECNP

c ,≤〉). Moreover, 〈RECpe,≤〉 is not a lattice
and is not distributive. (These properties are proved in Theorem 4.4.3 and Theo-
rem 4.4.5 of [Har06] using straightforward adaptations of similar arguments used
in [AS85a, AS99].) Also the computable pe-degrees display branching properties
5 Note that in [Sel71] Theorem 2.7 Selman had shown that ≤e is a maximal transitive

relation of the relation “c.e. in” or, in other words (as we saw in Section 2) ≤N

T.
6 In fact the construction is such that A≤P

TB≤peC and so it also follows—by tran-
sitivity of ≤P

T and ≤pe —that A�pe B and B �P

T C (see [Har06] Corollary 4.3.20).
Thus this proof also shows the separation of ≤P

T and ≤pe in both possible ways.
7 This is clear from Selman’s construction. See [Har06] Lemma 4.3.23 for an approxi-

mate time analysis.
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(see [Har06] Proposition 4.4.7) similar to those displayed by the computable p-
T-degrees. This brings us to the question of whether joins and meets can be
constructed in the pe-degrees in a manner similar to that developed for the
p-T-degrees, in particular by Ambos-Spies. Bearing in mind the “pe-operator
problem” stated above, this question requires a slight change of methodology. It
is also the principal subject of the work presented below.

4 Join and Meet Lemmas

In this Section we present two results taken from Ambos Spies’ work [AS85a,
AS85b, AS87] which we will adapt to the context of the pe-degrees. The reader
will notice that we do this directly in the case of the meet lemma below. The
join lemma on the other hand has more general scope and is adapted to the
present context in Section 5. We begin by a reminder of the notion of recursively
presentable class and related issues.

Notation. We use Pω to denote the class {X | X ⊆ ω & X ∈ P } under the
indentification of ω with the unary language {0}∗.
Definition 4.1. A class C of computable sets is recursively presentable (r.p.)
if C is empty or there exists a computable set U ⊆ ω×Σ∗ such that C = {Un |
n ∈ ω }, where Un =def { s | 〈n, s〉 ∈ U }. Note that C≤P

mU for all C ∈ C and
observe that we call U a universal set for C. A class D is closed under finite
variants (c.f.v.) if, for all sets A and B, if A ∈ D and B ∗= A then B ∈ D also.

Our next result is proved by modifying the proof of Lemma 2.1(c) in [AS85b].

Lemma 4.1. Let C and D be r.p. classes of computable sets. Define

[C,D]NP = {A | (∃C ∈ C) (∃D ∈ D)
(
C ≤NP

T A≤NP
T D

) }
Then [C,D]NP is recursively presentable and closed under finite variants.

Note 4.1. Any finite class of computable sets is recursively presentable. In par-
ticular, the class [{A}, {B}]NP is r.p. and c.f.v. for any A,B ⊆ Σ∗.

Notation. Let f : ω → ω be a strictly increasing function. The nth iteration fn

of f is defined inductively by: f0(m) = m and fn+1(m) = f(fn(m)). We use
the denotation Ifn =def { x ∈ Σ∗ | fn(0) ≤ |x| < fn+1(0) } and we call this the
(n+1)st f-interval. Since f is strictly increasing { Ifn | n ∈ ω } is a partition of
Σ∗ (i.e. Σ∗ =

⋃ { Ifn | n ∈ ω } and Ifm
⋂
Ifl = ∅ for all m �= l). For any set

α ⊆ ω the notation Ifα is used as shorthand for the set
⋃ {Ifn | n ∈ α } .

Note 4.2 ([AS85b]). If f : ω → ω is p-constructible and strictly increasing
and α ∈ Pω then Ifα ∈ P, and therefore for any X ⊆ Σ∗, Ifα ∩X≤P

mX .

Note 4.3 ([AS85b]). Any computable function g : ω → ω is dominated by a
strictly increasing p-constructible function f in the sense that (∀n)[ g(n) < f(n) ].
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Lemma 4.2 (Join lemma [AS85b]). Let C0, C1 be computable sets and let
C0,C1 be r.p and c.f.v. classes such that C0 ∪ C1 /∈ C0 and C1 /∈ C1. Then
there is a computable function g0 : ω → ω such that the following holds. If g is
a strictly increasing computable function that dominates g0 and α is an infinite
and co-infinite set of natural numbers then (C0 ∩ Igα) ∪ C1 /∈ C0 ∪C1 .

Lemma 4.3 (Meet lemma [AS85b]). For any computable set B there is a
computable function g1 such that g1(n) > n and the following holds. If g is
a p-constructible and strictly increasing function which dominates g1, and if
α, β ∈ Pω and C ⊆ Σ∗ is computable, then

degpe( (B∩Ig2α∩2β)⊕C )= degpe( (B ∩ Ig2α)⊕ C ) ∩ degpe( (B ∩ Ig2β)⊕ C ) (4.1)

Proof (Sketch). Given B, let g1 be the stepcounting function of some determin-
istic Turing machine computing B such that g1(n) > n. Fix g, α, β and C as
in the premise of the Lemma. Now, it is easily seen that the pe-degree on the
L.H.S. of (4.1) is below both of the pe-degrees mentioned on the R.H.S. of the
latter. Thus we only need to show that for any X ⊆ Σ∗,

[ X≤pe(B ∩ Ig2α)⊕ C & X≤pe(B ∩ Ig2β)⊕ C ⇒ X≤pe(B ∩ Ig2α∩2β)⊕ C ]

Accordingly, the proof now proceeds in a similar manner to that of Lemma 3.4 of
[AS87] except that we replace p-T-reductions by pe′-reductions. Indeed, by the
same argument—and bearing in mind that pe′-reductions are just specialised
np-T-reductions—we find that for any q(n) ∈ P , if (I) X≤q

pe′ (B ∩ Ig2α) ⊕ C

and (II) X≤q
pe′ (B ∩ Ig2β) ⊕ C , then (III) X≤NP

T (B ∩ Ig2α∩2β) ⊕ C. Moreover,
on any input s, all queries made in reduction (III) are either queries made in
reduction (I) or queries made in reduction (II) on input s. So suppose that
k′, k′′ ≥ 0 witness respectively the fact that the np-T-reductions (I) and (II)
are pe′-reductions for q(n) in the sense of Definition 3.3. Then we know that
q(|z|) ≤ k′ · log |s| for all8 relevant (see Note 3.1) negative queries of reduction
(I) and that q(|z|) ≤ k′′ · log |s| for all relevant negative queries of reduction
(II). But this means that any relevant query in reduction (III) satisfies

q(|z|) ≤ q(|z|) + q(|z|) ≤ k′ · log |s|+ k′′ · log |s| = (k′ + k′′) · log |s|

Now, since s was chosen arbitrarily we know that k = k′ + k′′ witnesses the fact
that (III) is in fact a pe′-reduction for q(n), i.e. that X≤q

pe′ (B ∩ Ig2α∩2β)⊕ C.
Now suppose that X≤pe(B ∩ Ig2α) ⊕ C and X≤pe(B ∩ Ig2β) ⊕ C . Then, by

Theorem 3.1 we know that (I) and (II) apply for all q(n) ∈ P . Thus we know,
by the above argument, that (III) also applies for all q(n) ∈ P . Therefore, by
applying Theorem 3.1 once more we obtain that X≤pe (B ∩ Ig2α∩2β) ⊕ C. This
proves the Lemma. (See Lemma 4.5.7 of [Har06] for a more formal proof.)  !
8 In a more formal argument using operators (as defined in Note 3.2) all possible

negative queries satisfy this condition.
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5 Lattice Embeddings

Ambos-Spies’ join and meet lemmas provide us with the background tools for
the construction of lattice embeddings in the pe-degrees. As the reader will
observe, the join lemma is used indirectly in that it relies on the fact that
np-T-reductions are effective operator based (something we cannot guarantee
for pe-reductions—see Note 3.3), and Corollary 3.1, to perform the necessary
diagonalisation. In other words it uses what is essentially a corollary of the (non
constructive) definition of pe-reducibility. On the other hand, the construction
of meets relies heavily on the constructive formulation of pe-reducibility (see
the proof of Lemma 4.3) in combination with the methods used to construct
joins. We begin by presenting the basic construction of joins and meets in the
pe-degrees and, in so doing, we prove that the computable pe-degrees are dense.
We then go on to state two of Ambos-Spies’ lattice embedding theorems which
are applicable in the present context due to our ability to construct joins and
meets in the manner described below.

Theorem 5.1. If A,B are computable sets such that A<peB then there exist
computable sets B0,B1 such that A<peB0, B1<peB and B0 ⊕B1 ≡pe B.

Proof. Fix A,B ⊆ Σ∗ such that A<pe B. Then, since B �pe A, by Corol-
lary 3.1 there exists computable C ⊆ Σ∗ such that A≤NP

T C but B�NP
T C.

Note that, by Lemma 4.1, the following classes of sets C0 and C1 are recur-
sively presentable and closed under finite variants:

C0 =def { E | E≤NP
T C }

C1 =def { E | B≤NP
T E≤NP

T B ⊕ C }
Now without loss of generality suppose that B ⊆ 0Σ∗ and C ⊆ 1Σ∗. Therefore
(B ∩E)∪C ≡P

m (B ∩E)⊕C for any set E. (For example, B ⊕C ≡P
m B ∪C.)

Then B ∪C /∈ C0 because B ∪C ≡P
m B ⊕C and B�NP

T C , whereas C /∈ C1
(again because B�NP

T C). Now, let g0 be the computable function stipulated by
Lemma 4.2 and let g be a p-constructible strictly increasing function dominating
g0 (such functions always exist—see Note 4.3). Therefore, by Theorem 4.2 we
have

E0 =def (B ∩ Ig2ω)⊕ C /∈ C0 ∪C1

E1 =def (B ∩ Ig2ω+1)⊕ C /∈ C0 ∪C1

Now also define B0 =def (B ∩ Ig2ω)⊕A and B1 =def (B ∩ Ig2ω+1)⊕A. Then since
Ig2ω , I

g
2ω+1 ∈ P (see Note 4.2) we know that (B ∩ Ig2ω)≤P

mB and (B ∩ Ig2ω+1)≤P
m

B so it follows that A≤pe B0, B1 ≤pe B (since ≤P
m ⊆≤pe and A≤pe B by

hypothesis).
We now show that B0 and B1 lie strictly (pe-) in between A and B. Accord-

ingly fix i ∈ {0, 1}.
• Suppose that B≤peBi. Clearly Bi≤NP

T Ei (as A≤NP
T C) and so B≤NP

T Ei
by definition of ≤pe . However this contradicts the fact that Ei /∈ C1 (since
obviously Ei≤NP

T B ⊕ C).
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• Suppose that Bi≤peA. Observe that B ∩ Ig2ω+i≤P
mBi and it thus follows

that B ∩ Ig2ω+i≤peA. However this implies, by definition of ≤pe that B ∩
Ig2ω+i ≤NP

T C (since A≤NP
T C). Therefore Ei = (B ∩ Ig2ω+i) ⊕ C ≤NP

T C in
contradiction with the fact that Ei /∈ C0.

We conclude that A<peB0, B1<peB. Clearly also B0 ⊕B1 ≡pe B.  !
Corollary 5.1 (Density and splitting). For any (computable) pe-degrees a
and b such that a < b there exist pe-degrees b0 and b1 such that a < b0, b1 < b
and b = b0∪b1. In other words the (computable) pe-degrees are dense and every
pe-degree splits.

Theorem 5.2 (Meet reducibility). For any (computable) pe-degrees a and
b such that a < b there exist pe-degrees a0 and a1 such that a < a0,a1 < b
and a = a0 ∩ a1 . Thus the (computable) pe-degrees are meet reducible.

Proof. Let a,b be (computable) pe-degrees such that a < b and let A ⊆ 1Σ∗

and B ⊆ 0Σ∗ be sets such that A ∈ a and B ∈ b. Also let C ⊆ 1Σ∗ be
a computable set such that A≤NP

T C whereas B�NP
T C (using Corollary 3.1).

Apply Lemma 4.2 (the join lemma) to C0 = B, C1 = C, C0 = {X | X ≤NP
T C }

and C1 = {X | B ≤NP
T X ≤NP

T B⊕C }. Also apply Lemma 4.3 (the meet lemma)
to B (i.e. as B in the wording of the Lemma). Let g0, g1 be the respective
functions guaranteed by Lemma 4.2 and Lemma 4.3 and let g be a p-constructible
function dominating both g0 and g1. Then we follow the same reasoning as in
the proof of Theorem 5.1 where now we have

E0 =def (B ∩ Ig4ω)⊕ C /∈ C0 ∪C1

E1 =def (B ∩ Ig4ω+2)⊕ C /∈ C0 ∪C1

and we define B0 =def (B∩Ig4ω)⊕A and B1 =def (B∩Ig4ω+2)⊕A which ensures
that A<peB0, B1<peB. We combine this with a straightforward application of
Lemma 4.3. Whence we are able to conclude the present Theorem (using the
fact that (B ∩ Ig4ω∩4ω+2)⊕A = ∅ ⊕A ≡pe A) by taking

a0 = degpe( (B ∩ Ig4ω)⊕A ) and a1 = degpe( (B ∩ Ig4ω+2)⊕A )  !
Corollary 5.2. Any non-zero (computable) pe-degree b bounds a minimal pair.

With the above results in mind we can now see that two different types of
lattice embeddings proved by Ambos-Spies to exist in the p-m and p-T-degrees
[AS85a, AS85b, AS87] also exist in the pe-degrees.

Theorem 5.3. Let L = 〈L,≤〉 be any countable distributive lattice. Let a and
b be computable pe-degrees such that a < b. Then there exist lattice embeddings
f0, f1 : L → [a, b] of L into the interval [a, b] such that f0 maps the least element
0 of L (if any) to a and f1 maps the greatest element 1 of L (if any) to b.

Indeed, to prove Theorem 5.3, we proceed in a similar manner to the proof of
Corollary 4.3 in [AS85b] except that we apply the join lemma (Lemma 4.2) in
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the indirect manner exemplified in the proof of Theorem 5.1. (See the proof of
Theorem 4.6.7. in [Har06] for details.) Similar observations apply to our final
result below, with regard to the proof of Theorem 7.1 in [AS87].

Theorem 5.4. Let L = 〈L,≤〉 be any finite distributive lattice which is nowhere
complemented (i.e. no a ∈ L − {0, 1} has a complement). Let a and b be
computable pe-degrees such that a < b. Then there exists a lattice embedding
f : L → [a, b] of L into the interval [a, b] such that f maps the least element 0
of L (if any) to a and the greatest element 1 of L (if any) to b.
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Abstract. We describe two representations for real numbers, signed
digit streams and Cauchy sequences. We give coinductive proofs for the
correctness of functions converting between these two representations to
show the adequacy of signed digit stream representation. We also show
a coinductive proof for the correctness of a corecursive program for the
average function with regard to the signed digit stream representation.
We implemented this proof in the interactive proof system Minlog. Thus,
reliable, corecursive functions for real computation can be guaranteed,
which is very helpful in formal software development for real numbers.

Keywords: Real computation, Coinductive proof, Signed digit streams,
Computability, Minlog.

1 Introduction

Computers are widely used for scientific applications in different fields, such as
mathematics, physics, engineering and so on. The modeling of problems in above
areas with a desirable accuracy requires considerable amount of computational
effort. As the computational complexity increases, the risk of round off errors
also increases. No matter how much precision is offered, these computations
are not guaranteed to produce reliable results. Such unreliable computational
results obtained may be useless to real-life problems, even may cause serious
consequences.

Therefore, a mathematical model of exact computation is highly desirable.
This applies in particular to computations concerned with real numbers. In the
current computer model of real numbers through floating point numbers, the
computer memory stores the approximations of (possibly irrational) real num-
bers, which truncate at a fixed rate precision. The probability that this yields
inaccurate results is high, especially if these numbers are used as intermediate re-
sults. Hence, it is necessary to have more accurate representation of real numbers
and algorithms to implement the computations using these representations.

Aiming at the above purpose, a wealth of alternative approaches are pro-
posed, including interval arithmetic, stochastic arithmetic, multiple-precision
arithmetic and exact arithmetic. Exact real arithmetic is a method of performing
arithmetic operations whose results are guaranteed to be completely accurate,
based on potentially infinite data structures such as streams. There are a number
of alternative representations used for exact real arithmetic, such as any integral
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base with negative digits, base 2/3 with binary digits, nested sequences of ratio-
nal intervals, Cauchy sequences, continued fractions ([8]), base golden-ratio with
binary digits, and linear fractional transformations ([6]). Meanwhile, many al-
gorithms have been proposed for real computations using these representations.
However, few give formal proofs for the algorithms. More recently, Chirimar
and Howe ([4]) represented real numbers by Cauchy sequences and implemented
real analysis in Nuprl based on the type theory. Plume ([13]) gave algorithms
for the basic arithmetic operations, transcendental functions, integration, and
function minimum and maximum. Only informal proofs of correctness for some
algorithms were shown. Formalisation of real numbers using corecursive streams
as a coinductive type was discussed in [5], [3], [1] in the logical framework Coq.
Lenisa ([11]) introduced set-theoretic generalizations of the coinduction proof
principle in the view of bisimulation. However, the usual coinduction, based on
bisimulation, is not expressive enough for the equality on real numbers, due to
the redundancy of representation. In contrast, our approach is based on classical
set theory and conventional mathematical reasoning.

Coinduction is a method of growing importance in reasoning about functional
languages, due to the increasing prominence of lazy data structure. What is more,
the proof of coinductive assertions is easy to implement in proof assistants like
Minlog, Coq and so on. The average function for signed digit streams in this
paper has been implemented in the Minlog system. See also [14] for other proof
developments in Minlog based on the Cauchy sequence representation of real
numbers.

1.1 Contributions

The main contributions of this paper are:

– (a) We define (in Section 2) a general lemma on closure properties of coin-
ductively defined relations.

– (b) We define (in Section 3) coinductive representations of real numbers by
signed digit streams and Cauchy sequences.

– (c) We give (in Section 4) coinductive proofs for the correctness of functions
converting between the representations in (b).

– (d) We give (in Section 5) coinductive proofs for the correctness of the
average function for signed digit stream representation.

2 Coinduction

In this section we introduce the concept of coinduction from a classical set-
theoretic point of view. We prove a general lemma on closure properties of coin-
ductive sets, which will be useful later.

2.1 Coinductive Relations as Largest Fixed Points

Let A be a set and ℘(A) := {X |X ⊆ A} its power set. An operation Φ : ℘(A) →
℘(A), is monotone iff X ⊆ Y implies Φ(X) ⊆ Φ(Y ).
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For any X,Y ⊆ A, it is well-known that any monotone operation Φ
has a least and a largest fixed point, XΦ and XΦ respectively, that is,
Φ(XΦ) = XΦ, Φ(XΦ) = XΦ, and for any other fixed point Y ⊆ A of Φ (i.e.
Φ(Y ) = Y ) we have XΦ ⊆ Y ⊆ XΦ. The sets XΦ and XΦ can be defined by

XΦ :=
⋂
{Y |Y ⊆ A,Φ(Y ) ⊆ Y }

XΦ :=
⋃
{Y |Y ⊆ A, Y ⊆ Φ(Y )}

It is easy to see that the monotonicity of Φ implies the required properties of
XΦ and XΦ.

In the following, we will concentrate on the largest fixed point, XΦ. By defi-
nition of XΦ, we have for any set Y ⊆ A that Y ⊆ Φ(Y ) implies Y ⊆ XΦ. This
principle is called coinduction.

In applications, the operation Φ is usually described by a formula F [X, a] as
Φ(X) := {a ∈ A|F [X, a]}. In this case the monotonicity of Φ is guaranteed by
the condition that X does only occur positively in F [X, a]. For our purposes
it will suffice to consider formulae of the form F [X, a] :≡ X

(
f(a)

) ∧ a ∈ B,
where f : A → A is a fixed function and B is a fixed subset of A, hence,
Φ(X) := f−1(X) ∩B.

In this particular case the coinductive principle reads (setting Xf,B := XΦ),

coindf,B(Y )
∀a ∈ A (a ∈ Y ⇒ f(a) ∈ Y ∧ a ∈ B)

∀a ∈ A (a ∈ Y ⇒ a ∈ Xf,B)

The closure condition, XΦ ⊆ Φ(XΦ), then reads

clf,B(Xf,B) ∀a ∈ A(a ∈ Xf,B ⇒ f(a) ∈ Xf,B ∧ a ∈ B).

Because in fact XΦ = Φ(XΦ), the reverse of this implication holds as well. We
will simply say that Xf,B is coinductively defined by clf,B.

2.2 Closure Properties of Coinductive Relations

Consider r ⊆ A, which is coinductively defined by B ⊆ A and f : A → A (that
is, r = Xf,B in the notation above; we write interchangeably r(a) for a ∈ r).

(r) ∀a ∈ A
(
r(a) ⇒ B(a) ∧ r(f(a))

)
(1)

We are interested in the question under which conditions r is closed under a given
function. The following lemma takes care of a slightly more general situation.

Lemma 1. Given g : X → X,h : X → A, s ⊆ X, s.t. for all x ∈ X, if s(x) then

1. s(g(x))
2. f(h(x)) = h(g(x))
3. B(h(x))

Then ∀x ∈ X
(
s(x) ⇒ r(h(x))

)
.
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Proof. Set r̃(a) :≡ ∃x ∈ X
(
s(x)∧a = h(x)∧r(a)). We need to show that (1) holds

when r is replaced by r̃. It is given that s(x) ⇒ B
(
h(x)

)
, that is, B(a) holds. By

(1) we know that r(a) ⇒ r(f(a)). It is also given that f(a) = f
(
h(x)

)
= h
(
g(x)

)

and s(x) ⇒ s
(
g(x)

)
. Therefore, ∃g(x) ∈ X

(
s
(
g(x)

)∧ f(a) = h
(
g(x)

)∧ r(f(a))
)
,

that is, r̃(f(a)) holds. Hence, by coinduction

(r̃ ) ∀a (
r̃(a) ⇒ B(a) ∧ r̃(f(a))

)

r̃ ⊆ r ∀a (
r̃(a) ⇒ r(a)

)

follows r̃ ⊆ r.
Now assume s(x). Set a := h(x). Then r̃(a) implies r(a) since r̃ ⊆ r, that is,

r(h(x)). Hence we have shown ∀x ∈ X
(
s(x) ⇒ r(h(x))

)
.  !

Corollary 1. Let r ⊆ A be coinductively defined by f and B and assume that
for all a, b ∈ A

1. f(h(a, b)) = h(f(a), f(b))
2. r(a) ∧ r(b) ⇒ B(h(a, b))

Then ∀a, b(r(a) ∧ r(b) ⇒ r(h(a, b))
)
.

Proof. By Lemma 1 where X = A × A, s = r × r, g = f × f (that is,
g(a, b) =

(
f(a), f(b)

)
).  !

3 Coinductive Representations of Real Numbers by
Signed Digit Streams and Cauchy Sequences

In this section we show how to represent real numbers by streams of signed digits
(-1,0,1) and Cauchy sequences of rational numbers using coinductively defined
representation relations. We will prove that these representations are equivalent
to the usual ones involving the notion of infinite sum and limits from analysis.

If X is a set, then [X ] denotes the set of infinite streams of elements in X(i.e.
[X ] = X IN). If xs = (x0 : x1 : x2 : . . .) ∈ [X ], then we set
head(xs) = x0, tail(xs) = (x1 : x2 : x3 : . . .).

3.1 Coinductive Representation by Signed Digit Streams

Let SD := {−1, 0, 1} be the set of signed digits and [SD] the set of signed digit
streams. Let ds = (d0 : d1 : d2 : . . .) be a signed digit stream. Then the real
number r in the interval [-1, 1] that is represented by ds will be

r =
∞∑

n=0

di · 2−(n+1) (2)

In order to represent all real numbers r, we use an exponential factor 2k where
k ∈ ZZ as follows.

r = 2k ·
∞∑

n=0

di · 2−(n+1) (3)
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Hence, we define the set of signed digit stream representations of real numbers
as SDR := [SD]×ZZ.

In order to be able to convince ourselves that the above representation is
correct, a function SDToReal, based on (3), converting from signed digit streams
to real numbers is needed.

Definition 1. For every k ∈ ZZ, we define

SDToReal : SDR→ IR, SDToReal(ds, k) = 2k ·
∞∑

n=0

di · 2−(n+1)

According to Definition 1, we have the following lemma.

Lemma 2. For every k ∈ ZZ,

SDToReal(ds, k) = 2k−1 · head(ds) + SDToReal(tail(ds), k− 1).

Especially, SDToReal(ds, 0) =
(
head(ds) + SDToReal(tail(ds), 0)

)
/2, when

k = 0, that is, r ∈ [−1, 1].

Lemma 2 suggests the following coinductive definition of a relation∼⊆ SDR×IR
with the intended meaning (ds, k) ∼ r ⇔ SDToReal(ds, k) = r.

Definition 2 (Coinductive definition of (ds, k) ∼ r). We coinductively
define a relation ∼⊆ SDR× IR by

(∼) (ds, k) ∼ r⇒ |r| ≤ 2k ∧ (tail(ds), k − 1) ∼ r − 2k−1 · head(ds) (4)

For the case k = 0, for short, we use the following coinductive definition.

Definition 3 (Coinductive definition of ds ∼′
x). We coinductively define

a relation ∼′⊆ [SD]× [−1, 1] by

(∼′
) ds ∼′

x⇔ |x| ≤ 1 ∧ tail(ds) ∼′
2 · x− head(ds) (5)

We can prove the correctness of above coinductively defined representation re-
lations by the following lemmas.

Lemma 3. For every x ∈ [−1, 1], ds ∼′
x⇔ SDToReal(ds, 0) = x.

Proof. =⇒: That is to show

∀n ∈ IN ds ∼′
x⇒ |SDToReal(ds, 0)− x| ≤ 21−n (6)

By induction on n.
n = 0 : by Definition 3, we can get ds ∼′

x ⇒ |x| ≤ 1. By Definition 1, it
is easy to see that SDToReal(ds, k) ∈ [−2k, 2k] ⇒ SDToReal(ds, 0) ∈ [−1, 1].
Hence, |SDToReal(ds, 0)− x| ≤ 2 = 21−0, that is (6) holds.
n = n+ 1 : Now assume ds ∼′

x ⇒ |SDToReal(ds, 0)− x| ≤ 21−n holds, we
need to show that ds ∼′

x⇒ |SDToReal(ds, 0)−x| ≤ 21−(n+1) holds. By Defini-
tion 3, we can get ds ∼′

x ⇒ tail(ds) ∼′
2 · x − head(ds).
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By I.H., we know that |SDToReal(tail(ds), 0)− (2 · x− head(ds))| ≤ 21−n. By
Lemma 2, we know 2 · SDToReal(ds, 0) = head(ds) + SDToReal(tail(ds), 0).
Hence, |SDToReal(ds, 0)− x| = |2 · SDToReal(ds, 0)− 2 · x|/2 =
|SDToReal(tail(ds), 0)+head(ds)− 2 ·x|/2≤ 21−n/2 = 21−(n+1). Therefore,

(6) is proved.
⇐=: By coinduction. Set Y := {(ds, x)|SDToReal(ds, 0) = x}. We need to

show Y ⊆∼′
. By the principle of coinduction it suffices to show

1. f(ds, x) ∈ Y , that is, (tail(ds), 2 · x− head(ds)) ∈ Y

2. (ds, x) ∈ B, that is, |x| ≤ 1

Condition 1 holds by Lemma 2. We have |x| ≤ 1, so condition 2 holds.  !

Lemma 4. For every k ∈ ZZ, r ∈ IR, (ds, k) ∼ r ⇒ ds ∼′
2−k · r.

Proof. We apply Lemma 1. We define g, f, h by g((ds, k), r) =
(
(tail(ds), k −

1), r − 2k−1 · head(ds)), f(ds, x) = (tail(ds), 2 · x − head(ds)), h((ds, k), r) =
(ds, 2−k · r). Now we need to show that the three conditions in Lemma 1 hold.

Condition 1 holds by clg,C(∼), where C((ds, k), r) :≡ |r| ≤ 2k. It is easy to
see f

(
h((ds, k), r)

)
=
(
tail(ds), 2−(k−1) · r−head(ds)

)
= h
(
g((ds, k), r)

)
. Hence,

condition 2 holds. We know B
(
h((ds, k), r)

)
= |2−k · r| ≤ 1, that is, condition 3

holds. Therefore, by Lemma 1, we get (ds, k) ∼ r ⇒ ds ∼′
2−k · r.  !

Lemma 5. For every k ∈ ZZ, x ∈ [−1, 1], ds ∼′
x⇒ (ds, k) ∼ 2k · x.

Proof. For lack of space, the proof which is similar to Lemma 4 is omitted.  !

3.2 Coinductive Representation by Cauchy Sequences

We call a sequence xs = (xs0 : xs1 : . . .) of rational numbers (xsi ∈ Q) an
l-Cauchy sequence if ∀n∀m ≥ n.|xsn − xsm| ≤ 2l−n, where xsi represents the
i-th element of the Cauchy sequence. We set CR = [Q]× ZZ. We coinductively
define a relation ∼c⊆ CR × IR with the intended meaning (xs, l) ∼c r ⇔ xs is
an l-Cauchy sequence converging to r.

Definition 4 (Coinductive definition of (xs, l) ∼c r). For every (xs, l) ∈
CR, r ∈ IR, we define a relation ∼c⊆ CR× IR by

(∼c) (xs, l) ∼c r ⇒ |head(xs)− r| ≤ 2l ∧ (tail(xs), l − 1) ∼c r (7)

We can prove the correctness of this definition by the following lemma.

Lemma 6. For every (xs, l) ∈ CR, r ∈ IR, (xs, l) ∼c r ⇔ ∀n.|xsn − r| ≤ 2l−n.

Proof. Similar to the proof of Lemma 3.  !
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4 Adequacy of the Signed Digit Stream Representation

We consider the Cauchy sequence representation of real numbers as the stan-
dard one. We call any other representation adequate if there are computable
back-and-forth translations between these two representations. The concept of
computability on infinite streams can be explained by means of ’Oracle Turing
machine’ (Alan Turing ([15])). More recent accounts of the complexity of stream
functions are studied by e.g. Ko ([10]) and Weihrauch ([16]). Hence, in order to
show that the signed digit stream representation is adequate, we need to provide
computable functions SDTC : SDR → CR and CTSD : CR → SDR, such
that for all r ∈ IR,

1. ∀(ds, k) ∈ SDR
(
(ds, k) ∼ r⇒ SDTC(ds, k) ∼c r

)

2. ∀(xs, l) ∈ CR
(
(xs, l) ∼c r⇒ CTSD(xs, l) ∼ r

)

Definition 5. For every k ∈ IN, we define

SDTC
′
: IN×Q × [SD] → [Q]

SDTC
′
(k, q, ds) =

(
q + 2k−1 · head(ds))

: SDTC
′
(k − 1, q + 2k−1 · head(ds), tail(ds)).

Then we set SDTC(ds, k) :=
(
SDTC

′
(k, 0, ds), k + 1

)
.

The definition of SDTC
′
is an instance of a well-known corecursion scheme for

defining infinite streams. More general schemes of corecursion are discussed, for
example, in recent work of Buchholz ([2]).

Lemma 7 (Convert from SD to Cauchy)

∀ds, k, r, q[(ds, k) ∼ r ⇒ (SDTC
′
(k, q, ds), k + 1) ∼c q + r]

Proof. We use Lemma 1.
We define g, f, h by g((ds, k), r) =

(
(tail(ds), k − 1), r − 2k−1 · head(ds)),

f((xs, l), r) = ((tail(xs), l−1), r), h((ds, k), r) =
(
(SDTC

′
(k, q, ds), k+1), q+r

)
.

Now we need to show that three conditions in Lemma 1 hold.
Condition 1 holds by clg,C(∼c), where C((xs, l), r) :≡ |head(xs) − r| ≤ 2l.

We can get f
(
h((ds, k), r)

)
=
((
SDTC

′
(k − 1, q + 2k−1 · head(ds), tail(ds)), k),

q + r
)

= h
(
g((ds, k), r)

)
. Hence, condition 2 holds. We know B

(
h((ds, k), r)

)
=

|head(SDTC ′
(k, q, ds)) − r| < 2k+1, that is, condition 3 holds. Therefore, by

Lemma 1, we get ∀ds, k, r, q[(ds, k) ∼ r ⇒ (SDTCk(q, ds), k + 1) ∼c q + r].  !

Since from the third element of an l-Cauchy sequence, it is easy to decide in
which part of the interval r is, according to Lemma 6, function CTSD can be
defined as follows.
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Definition 6. For every n ∈ IN, we define

CTSD
′
: IN× CR→ SDR

CTSD
′
(n, (xs, l)) = (d0 : ds, k + 1)

where k = max(l, 1 + log2|y|)
y = head(xs)− n

d0 =

⎧
⎨

⎩

0 if |y| ≤ 2k−1

−1 if y < −2k−1

1 if y > 2k−1

ds = fst
(
CTSD

′
((n+ 2k−1 · head(ds)), (tail(xs), l − 1))

)

Then we set CTSD(xs, l) := CTSD
′
(0, (xs, l)).

Lemma 8 (Convert from Cauchy to SD)

∀xs, l, r, n[(xs, l) ∼c r ⇒ CTSD
′(
n, (xs, l)

) ∼ r − n]

Proof. By an application of Lemma 1, similar to the proof of Lemma 7.  !
Lemma 7 and Lemma 8 show the coherence between models of representations
and their implementations. Hence, the adequacy of signed digit stream repre-
sentation is proved.

5 Average of Signed Digit Streams

The average function plays an important role as a tool to get other computable
functions, e.g. [7]. In the following we define the average function on real numbers
in the interval [-1, 1]. Then we give the coinduction proof of its correctness.

In order to calculate the average of two signed digit streams, a carry function
that takes two digits as the input should be defined as follows( a0 = head(a),
b0 = head(b), a1 = head(head(a)), b1 = head(head(b))).

carry(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a0 + b0 = 2
0 if a0 + b0 = 0
−1 if a0 + b0 = −2
1 if a0 + b0 = 1 ∧ a1 + b1 > 0
0 if a0 + b0 = 1 ∧ a1 + b1 ≤ 0
−1 if a0 + b0 = −1 ∧ a1 + b1 < 0
0 if a0 + b0 = −1 ∧ a1 + b1 ≥ 0

The average of signed digit streams is defined via an auxiliary function:

Definition 7 (Corecursive definition of function avA). For every a, b ∈
[SD], we define the auxiliary function avA as follows.

avA : [SD] → [SD] → [SD]
avA (a, b) = (head(a) + head(b)− 2 · carry(a, b) + carry(tail(a), tail(b)))

: avA(tail(a), tail(b))
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Using avA, the average function can be easily defined by:

Definition 8 (Average function av). For every a, b ∈ [SD], we define average
fuction av : [SD] → [SD] → [SD], av(a, b) = carry(a, b) : avA(a, b).

We can prove the correctness of the auxiliary function of average by the following
lemma.

Lemma 9 (Auxiliary function of average). For every a, b ∈ [SD], x, y ∈
[−1, 1], a ∼′

x ∧ b ∼′
y ⇒ avA(a, b) ∼′

x+ y − carry(a, b).

Proof. According to Corollary 1, define f,B, h by f(a, x) = (tail(a),
2 · x − head(a)), B(a, x) = |x| ≤ 1, h((a, x), (b, y)) = (avA(a, b),
x+ y − carry(a, b)). We need to show

1. tail(avA(a, b)) = avA(tail(a), tail(b))
2. 2·(x+y−carry(a, b))−head(avA(a, b)) = (2·x−head(a))+(2·y−head(b))−

carry(tail(a), tail(b))
3. |x+ y − carry(a, b)| ≤ 1

Obviously, condition 3 holds. By Definition 7, it is easy to find that

tail(avA(a, b)) = avA(tail(a), tail(b)).

Condition 1 is proved. Using Definition 7 to calculate head(avA(a, b)), condition
2 is also proved. Therefore, by Corollary 1, we get a ∼′

x∧b ∼′
y ⇒ avA(a, b) ∼′

x+ y − carry(a, b).  !
The correctness of the average function is proved as follows.

Lemma 10 (Average function). For every a, b ∈ [SD], x, y ∈ [−1, 1], a ∼′

x ∧ b ∼′
y ⇒ av(a, b) ∼′

(x+ y)/2.

Proof. By Lemma 9, we can get a ∼′
x∧b ∼′

y ⇒ avA(a, b) ∼′
x+y−carry(a, b).

By Definition 8, we can get avA(a, b) ∼′
x + y − carry(a, b) ⇒ tail(av(a, b)) ∼′

x + y − head(av(a, b)). Obviously, |(x + y)/2| ≤ 1. By Definition 3, we can get
tail(av(a, b)) ∼′

x+ y − head(av(a, b)) ⇒ av(a, b) ∼′
(x+ y)/2.  !

6 Conclusion and Future Work

Using a general lemma on closure properties of coinductively defined relations,
we have coinductively proved the correctness of the basic arithmetic operation
average and operations that convert between signed digit streams and l-Cauchy
sequences. Parts of these proofs have been implemented in the Minlog system.
This shows that coinductive proofs are very helpful in developing correct func-
tions for real computations. We hope the coinductive methods will further nar-
row the gap between theory and practice in the formal development of reliable
software systems.

As future work within this topic, we intend to perform coinductive proofs of
multiplication and division functions for the signed digit stream representation.
Also left to future research is to compare the efficiency of different proof methods
in finding logical errors which normal testing can not discover.
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Abstract. We propose a new complexity measure of space for the BSS
model of computation. We define LOGSPACEW and PSPACEW complex-
ity classes over the reals. We prove that LOGSPACEW is included in
NC

2

R ∩ PW , i.e. is small enough for being relevant. We prove that the
Real Circuit Decision Problem is PR-complete under LOGSPACEW re-
ductions, i.e. that LOGSPACEW is large enough for containing natural
algorithms. We also prove that PSPACEW is included in PARR.

Keywords: BSS model of computation, weak model, algebraic complex-
ity, space.

1 Introduction

The real number model of computation, introduced in 1989 by Blum, Shub and
Smale in their seminal paper [BSS89], has proved very successful in providing
a sound framework for studying the complexity of decision problems dealing
with real numbers. A large number of complexity classes have been introduced,
and many natural problems have been proved to be complete for these classes.
A nice feature of this model is that it extends many concepts of the classical
complexity theory to the broader setting of real computation; in particular a
question PR �= NPR has arisen, which seems at least as difficult to prove as the
classical one, and several NPR-complete natural problems have been exhibited.

It has been soon pretty obvious, however, that all features of the classical
complexity theory could not be brought to this setting. In particular, the only
complexity measures considered so far were dealing with time, and not, say,
space: in 1989, Michaux proved in [Mic89] that, under a straightforward notion
of space, everything is computable in constant space. Therefore, no notion of
logarithmic or polynomial space complexity exists so far over the reals. A way to
deal with this situation has been to define parallel complexity classes in terms
of algebraic circuits, such that the NCiR and the PARR classes.

This model of computation has also long been criticized for being unrealistic:
the assumption that one could multiply two arbitrary real numbers in constant
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time was the usual target, that Koiran faced in [Koi97] by defining a notion of
weak cost that increases the cost for repeatedly multiplying or adding numbers.

Inspired by his approach, we propose here a new measure of space for the
real number model, denoted as weak space, such that a repeated sequence of
multiplications or additions on a number increases its size. Our notion allows
us to define a logarithmic space complexity class, that falls within NC2

R. We
also prove that this class is large enough for containing natural algorithms: in
particular, we prove a PR-completeness result under LOGSPACEW reductions.

The paper is organized as follows: in Section 2, we recall concepts and no-
tations from the BSS model of computation. We define machines, circuits, and
some major complexity classes. In Section 3, we briefly recall Michaux’s result,
and sketch a proof. In Section 4, we briefly introduce Koiran’s notion of weak
cost, and state some of the major results related to this notion. Then, we intro-
duce our notion of weak size in Section 5, and state our results.

2 A Short Introduction on the BSS Model

In this section, we list the notations used in the paper, and recall some basic no-
tions and results on the BSS model. A comprehensive reference for these notions
is [BCSS98].

2.1 Notations

For an integer c ∈ Z we define its height as �log(|c|+1)2. The height of an integer
is the number of digits of its binary encoding. We also define R∗ =

⋃
n∈N Rn.

2.2 Real Machines

We consider BSS machines over R as they are defined in [BSS89, BCSS98].
Roughly speaking, such a machine takes an input from R∗ , performs a number
of arithmetic operations and comparisons following a finite list of instructions,
and halts returning an element in R∗ (or loops forever). Such a machine can
be seen as a Turing machine over R. It essentially consists in a finite directed
graph, whose nodes are instructions, together with an input tape, an output tape,
and a bi-infinite work tape, equipped with scanning heads. The instructions can
be of the following types: Start, Input (reads an input value), Output (writes
an output value), Computation (performs one arithmetical operation on two
elements on the work tape), Constant (writes a constant parameter Ai ∈ R),
Branch (compares two elements, and branches accordingly), Shift, Copy and
Halt.

For a given machineM , the function ϕM associating its output to a given input
x ∈ R∗ is called the input-output function. We say that a function f : R∗ → R∗

is computable when there is a machine M such that f = ϕM .
Also, a set L ⊆ R∗, or a language is decided by a machineM if its characteristic

function χL : R∗ → {0, 1} coincides with ϕM .
This model of computation allows one to define complexity classes. In partic-

ular, PR is the set of subsets of R∗ that are decided by a real machine that works
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in deterministic polynomial time. Similarly, NPR is the set of subsets of R∗ that
are decided by a real machine that works in nondeterministic polynomial time
i.e, x ∈ R∗ is accepted if and only if there exists y ∈ R∗ of polynomial size such
that the machine accepts (x, y).

2.3 Configurations

Definition 1. Configurations
– A configuration of a machine M is given by an instruction q of M along

with the position of the heads of the machine and three words winput ∈ R∗,
wwork ∈ R∗, woutput ∈ R∗ that give the contents of the input tape, of the
work tape and of the output tape.

– A transition of a machine M is a couple (ci, cj) of configurations such that,
whenever M is in configuration ci, M reaches cj in one computation step.

Definition 2. Configuration Graph
For a given machine M and a given set C of configurations of M , we define the
configuration graph of M on C to be the directed graph with vertexes all elements
in C, and edges all transitions of M between elements in C.

2.4 Algebraic Circuits

We introduce the notion of algebraic circuits, that allows to denote parallel
computations and to define complexity classes below PR.

Definition 3. Algebraic Circuit
An algebraic circuit C is a sequence of gates (G1, . . . , Gm) of one of the following
types:

1. Input gates: Gi = xi, takes the input xi from R,
2. Arithmetic gates: perform the operation ∗ to the outputs of gates Gj and Gl,

j, l < i and ∗ ∈ {+,−, ., /},
3. Constant gates: Gi = Ai, Ai ∈ R,
4. Sign gates: If Gj ≥ 0 then Gi = 1 else Gi = 0, j < i.

If a circuit has n input gates, we can suppose that they are the first ones,
G1, . . . , Gn. If moreover the last node Gm is a sign node, we shall say that C
is a decision circuit.

An algebraic circuit is a finite directed graph with no loops: its size is the number
of gates, and its depth is the length of its longest path, starting from an input
gate.

Algebraic circuits extend the classical notion of boolean circuit to the BSS
setting, and allows one to define the NCR hierarchy of complexity classes:

Definition 4. NCR

For all i ∈ N, NCiR is the class of real decision problems decided by a P-uniform
family of circuits of polynomial size and of depth bounded by O(logi(n)), and

NCR =
⋃

i∈N

NCiR.
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As remarked by Poizat in [Poi95], in the definition above the uniformity of the
family can be considered relative to the classical Turing model. Hence, a P-
uniform family of algebraic decision circuit is such that there exists an finite
enumeration of all the constant gates in the family. There exists then a P time
Turing machine which, on input n, k, outputs a discrete description of the kth

gate of the nth circuit of the family.

Proposition 1. [Cuc92]
NCR � PR.

3 Michaux’s Result

This section is devoted to a brief exposition of Michaux’s Result [Mic89], which
states that a straightforward measure of space fails in differentiating one algo-
rithm from another. In this section, we will use the following notion of space as
a complexity measure:

Definition 5. Unit Space
Let M be a machine over R, and let c be a configuration of M . We define
USize(c), the unit size of c to be number of non-empty cells on the work tape
at configuration c. Assume that on an input (x1, . . . , xn), the computation of M
ends within t computation steps. The computation follows a path c0, . . . , ct. We
define the unit space used by M on input (x1, . . . , xn) to be

USpace(M, (x1, . . . , xn)) = max
0≤k≤t

USize(ck).

Assume that the running time of M is bounded by a function t. We define the
unit space used by M on input size n to be

USpace(M,n) = max
(x1,...,xn)∈Rn

USpace(M, (x1, . . . , xn)).

This notion of unit space is essentially the same as the classical notion of space
for Turing machines. While in the classical Turing model this notion gives rise
to a whole hierarchy of complexity classes like LOGSPACE, PSPACE, interlaced
with the time hierarchy, this is not the case in the real setting. In order to precise
a bit how unit space behaves on the reals, let us begin with the following well
known technical result.

Lemma 1. Let M be a real machine with parameters A1, . . . , Am, whose run-
ning time is bounded by a function t. Let n ∈ N. On any input x1, . . . , xn ∈ Rn,
at any computation step k ≤ t(n), any non-empty cell on the work tape, say
el, contains the evaluation of a rational fraction fl,k ∈ Z(X1, . . . , Xn+m) on
(x1, . . . , xn, A1, . . . , Am).

Proof. Details arguments can be found in [Mic89, Poi95, Koi97]. We only sketch
a proof here. The key argument is that, at any computation step k, the content of
any cell el is obtained from the input values and the parameter values by a finite
sequence of arithmetical operations. Therefore, the value in el is the evaluation
of a rational fraction fl,k ∈ Z(X1, . . . , Xn+m) on (x1, . . . , xn, A1, . . . , Am).
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Proposition 2. [Mic89] Let L ⊆ R∗ by a real language decided by a machine
M in time bounded by a function t. There exists a constant k ∈ N and a machine
M ′ deciding L in unit space k.

Proof. We only sketch the proof here. The interested reader can find more ex-
planations in [Mic89, Poi95].

Rational fractions with integer coefficients can be easily encoded in binary,
therefore, by Lemma 1, any configuration of M can also be encoded in binary. It
suffices to realize that this binary encoding can be embedded into the digits of
only two real numbers. Then, there exists a machine M ′ simulating M with only
a constant number of real registers, among which two are needed for encoding
the configurations of M .

4 The Weak BSS Model by Koiran

4.1 Definitions

Definition 6. Weak Cost
Let M be a machine whose running time is bounded by a function t, and let
A1, . . . , Am be its real parameters. On any input x1, . . . , xn, the computation of
M consists in a sequence c0, . . . , ct, t ≤ t(n) of configurations. To a transition
ck, ck+1 in this sequence we associate its weak cost as follows:

– If the current instruction of ck is a computation node, let el be the current
cell on the work tape: the transition ck, ck+1 consists in the computation of a
rational fraction fl+1,k+1 = gl+1,k+1/hl+1,k+1 ∈ Z(x1, . . . , xn, A1, . . . , Am),
which is placed on the cell el+1 in ck+1. The weak cost of the transition
ck, ck+1 is defined to be the maximum of deg(gl+1,k+1), deg(hl+1,k+1), and
the maximum height of the coefficients of gl+1,k+1 and hl+1,k+1.

– Otherwise, the weak cost of the transition ck, ck+1 is defined to be 1.

The weak running time of M on input x1, . . . , xn is the sum of the weak costs
of the transitions in the sequence c0, . . . , ct.

The weak running time of M is the function that associates with every n the
maximum over all x ∈ Rn of the running time of M on x.

4.2 Some Results

Lemma 2. [Koi97] A function is polynomial-time in the weak BSS model if
and only if it is polynomial-time computable in the standard BSS model and
the rational fractions fl,k have polynomial degree and coefficients of polynomial
bit-size.

Let PW (respectively NPW ) be the set of real languages decided in deterministic
(resp. nondeterministic) weak polynomial time, and EXPW be the set of real
languages decided in weak exponential time by a real machine.
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Proposition 3

NC2
R �⊂ PW � PR ⊆ NPW = NPR ⊆ PARR ⊆ EXPW .

PW � NPW = NPR is from [CSS94], NPR ⊆ EXPW from [Koi97] (where it is
shown that the inclusion is strict). The missing items can be found in [BCSS98].

5 Weak Size and Space

5.1 Definitions

Instead of considering a unit size for all values on the work tape, which allows
one to decide every decidable language in constant space, we would like to have
a notion of size for the values computed on the work tape. The weak size of a
computed value is a reasonable upper bound for the size of a boolean description
of the corresponding rational fraction with integer coefficients. The weak size of
a configuration is then the sum of the weak sizes of all computed values on the
work tape in this configuration.

Yet, we need to precise a bit more the idea. Our purpose is to have a “nice”
measure of space, allowing one to define a reasonable logarithmic space class.
A trivial rational fraction like f1(X1, . . . , Xn, A1, . . . , Am) = X1 has clearly a
boolean description of size 1, while, for describing fn(X1, . . . , Xn, A1, . . . , Am) =
Xn, one would need �log(n+1)2 digits (for encoding the variable index). It seems
rather unsatisfactory that a logarithmic space configuration may have a loga-
rithmic number of occurrences of f1, but only a constant ones of fn. This feature
can be corrected by allowing a permutation of the input variables, provided the
permutation is simple enough, i.e can be described in logarithmic boolean space.
In this paper, we have restricted ourselves to circular permutations, that can be
described by an offset in {0, . . . , n− 1}.

Definition 7. Weak Size
Let A1, . . . , Am ∈ Rm be given real numbers, and g ∈ Z[X1, . . . , Xn+m] a real
polynomial with integer coefficients. Define a real polynomial gA1,...,Am =
g[X1, . . . , Xn, A1, . . . , Am], with free variables X1, . . . , Xn. Let 0 ≤ O < n, O ∈
N be a number, the offset. To g, A1, . . . , Am ∈ Rm and O, we associate the
following:

– deg(g) is the degree of g. We will write D(g) for �log(deg(g) + 1)2.
– V arA1,...,Am(g) ⊆ {X1, . . . , Xn} is the set of input variables on which
gA1,...,Am effectively depends.

– RA1,...,Am,O(g) = max{i+ O mod n} for Xi ∈ V arA1,...,Am(g), is the range
of g. We will write R(g) for �log(RA1,...,Am,O(g) + 1)2.

– N(g) ∈ N is the number of non-zero monomials of g.
– S(g) ∈ Z is the maximal absolute value of the integer coefficients of g. We

will write S(g) for �log(2S(g) + 1)2.
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– V cA1,...,Am(g) is the maximum, for every monomial of g, of the number
of input variables on which it effectively depends. We will write V(g) for
V cA1,...,Am(g).

The weak size SA1,...,Am,O(g) of g is defined as follows:

SA1,...,Am,O(g) = N(g) (S(g) + V(g).R(g) + V(g).D(g)) (1)

For a rational fraction f = g/h we take the weak size of f to be the maximum
of the weak sizes of g and h.

It is clear that the weak size of g bounds the size of a boolean encoding of g,
where g is presented as a sum of monomials modulo a circular permutation of
the variable indexes. We do not take into account succinct boolean descriptions
of factorized polynomials to ensure the tractability of our measure.

This measure of size for an element on the work tape naturally yields a notion
of weak space for the given work tape, as follows:

Definition 8. Weak Space
Let M be a machine with real parameters A1, . . . , Am. Let ck be a configuration
of M , with the corresponding input x1, . . . , xn ∈ Rn. We define:

– ei, . . . , ej to be the non-empty part of the work tape in the configuration ck.
– For any non-empty cell el in ck, fl,k ∈ Z(x1, . . . , xn, A1, . . . , Am) denotes

the rational fraction it contains.

The weak size of the work tape at the configuration ck is then:

Sizew(ck) = min
0≤O<n

j∑

l=i

SA1,...,Am,O(fl,k)

Assume that the running time of M is bounded by a function t. For a given
input x1, . . . , xn, the computation of M consists in a sequence c0, . . . , ct, t ≤ t(n)
of configurations.

The weak running space of M on input x1, . . . , xn is the maximum for all
configurations c0, . . . , ct of their weak size.

The weak running space of M is the function that associates with every n the
maximum over all x ∈ Rn of the running space of M on x.

Definition 9. Complexity Classes

– A language L ⊆ R∗ is in LOGSPACEW if and only if there exist a machine
M and a constant k ∈ N such that, for all n ∈ N, on input x ∈ Rn, M
decides whether x ∈ L in weak space less than k log(n).

– A language L ⊆ R∗ is in PSPACEW if and only if there exist a machine M
and two constants k, d ∈ N such that, for all n ∈ N, on input x ∈ Rn, M
decides whether x ∈ L in weak space less than knd.

– A function f : R∗ → R∗ is in FLOGSPACEW if and only if there exist a
machine M and two constant k,m ∈ N such that, for all n ∈ N, on input
x ∈ Rn, and computation c0, . . . , ct of M on x:
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1. M computes f(x) in weak space less than k log(n).
2. for every configuration ci with current node an output node and current

cell el, the weak size of the content of el is less than m.

In the definition of FLOGSPACEW , the output consists in a sequence of real
values of constant weak size in the input. This ensures that one can compose
FLOGSPACEW algorithms, and that the result of the composition remains an
FLOGSPACEW algorithm. This is necessary for defining notions like logarithmic
space reductions and for obtaining completeness results.

5.2 What Michaux’s Result Becomes

Lemma 3. There exists L ⊆ R∗ such that:

– L ∈ PW
– for all k ∈ N, L is not decidable in weak space less than k.

Proof. Let p(X1, . . . , Xn) = X1 + . . . + Xn, and consider the set L of points
(x1, . . . , xn) ∈ Rn, such that p(x1, . . . , xn) equals 0. Assume L is decided by a
machine M . It is well known that the set of inputs accepted by a BSS machine
is semi-algebraic, therefore, L can be described as a finite union of sets given by
systems of polynomials inequalities of the form

s∧

i=0

Fi(X1, . . . , Xn) = 0 ∧
t∧

j=0

Gj(X1, . . . , Xn) > 0,

where the values Fi(x1, . . . , xn) and Gj(x1, . . . , xn) are effectively computed by
M . Since L has dimension n− 1, at least one of these sets must have dimension
n − 1. Since the set described by the G′

js is open, it must be nonempty, and
then it defines an open subset of Rn. All the polynomials Fi vanish on that
nonempty open subset of L. Since this open subset of L is clearly infinite, and
p is an irreducible polynomial, all the polynomials Fi must vanish on the whole
set L. It is then a well known result ([BCSS98], Proposition 2 p.362) that the
polynomials Fi are multiples of p. Also, at least one of these Fi is a non-trivial
multiple of p.

It is clear that p(x1, . . . , xn) has weak size at least n log(n), and so does this
non-trivial multiple of p. Therefore, M decides L in weak space at least n log(n).

5.3 Structural Complexity Results

Theorem 1

LOGSPACEW ⊆ PW ∩ NC2
R,

PSPACEW ⊆ PARR.

Proof. In a first step, we prove LOGSPACEW ⊆ PR. The key argument is an
upper bound for the number of configurations of weak size at most k log(n).
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Consider a machine M , with t nodes. For a fixed input size n, and an offset O,
simple counting arguments show that the number of rational fractions of weak
size at most B for some B ∈ N is bounded by αB, for some α ∈ N. It follows
that the number of possible work tape contents of weak size B, for the same
fixed offset, is bounded by (2α2)B. Taking into account all possible values for
the offset, the scanning head positions and the current node of the machine, the
number of configurations of weak size at most B is then bounded by tn2B(2α2)B .
When B = k log(n), this bound is polynomial.

LOGSPACEW ⊆ PW follows then by Lemma 2, since all rational fractions of
logarithmic weak size have clearly polynomial degrees and coefficient heights.

LOGSPACEW ⊆ NC2
R is then proven along the lines of [Bor77]: given a

LOGSPACEW machine M , we exhibit a NC1
R construction of its configuration

graph. This construction involves some numeric computation, in order to check
whether two given configurations are connected, and produces a boolean de-
scription of the configuration graph of M . Next, it suffices to decide whether
the input and accepting configurations are connected in this graph: this is the
classical reachability problem, which is decidable in the boolean class NC2.

PSPACEW ⊆ PARR is a corollary.

5.4 Completeness Results

Definition 10. [CT92] Real Circuit Decision Problem (CDPR)
Input: (C, x), where C is an arithmetic circuit with k input gates and x ∈ Rk.
Question: Does C output 1 on input x?

It has been shown in [CT92] that CDPR is PR-complete under NC2
R-reductions.

Theorem 2. CDPR is PR-complete under FLOGSPACEW -reductions.

Proof. The proof follows [CT92]. The reduction happens to be in FLOGSPACEW .

We have stated this completeness results under FLOGSPACEW reductions. By
Theorem 1, it is clear that FLOGSPACEW reductions are in PW ∩ NC2

R. The
problem considered has already been proven complete under first-order reduc-
tions [GM96], which also happen to be in PW ∩ NCR. Yet, it remains unclear
how the two types of reductions compare.

6 Concluding Remarks and Open Questions

In the discrete model, space has proven to be a very relevant complexity measure.
Many natural problems have been found in LOGSPACE, and many others in NC2

whose membership in LOGSPACE is unclear. We believe that weak space may
play the same role in the real setting. An argument in this direction is the
following remark: consider a real algorithm that reads an input, normalizes it to
{0, 1}with some step function, and applies a boolean LOGSPACE procedure. Real
complexity analysis until now only allowed one to say that such a real algorithm
belongs to PW ∩ NC2

R: the algorithmic flavor behind it was lost. However, it is
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now clear that such an algorithm belongs to LOGSPACEW . An important task
now is to exhibit some natural problems in LOGSPACEW . Others in NC2

R or PW ,
not easily in LOGSPACEW , may also be of interest.

Structural results remain also to be found. In particular, it needs to be checked
whether the following conjecture holds:

Conjecture 1

NC1
R �⊂ LOGSPACEW ,

LOGSPACEW ⊆ NC1
R ⇒ LOGSPACE ⊆ NC1.

Similar questions arise also for PSPACEW .
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Abstract. Graph isomorphism (GI) is one of the few remaining prob-
lems in NP whose complexity status couldn’t be solved by classifying
it as being either NP-complete or solvable in P. Nevertheless, efficient
(polynomial-time or even NC) algorithms for restricted versions of GI
have been found over the last four decades. Depending on the graph
class, the design and analysis of algorithms for GI use tools from various
fields, such as combinatorics, algebra and logic.

In this paper, we collect several complexity results on graph iso-
morphism testing and related algorithmic problems for restricted graph
classes from the literature. Further, we provide some new complexity
bounds (as well as easier proofs of some known results) and highlight
some open questions.

1 Introduction

In this section we briefly review some important complexity results for graph iso-
morphism as well as for related problems as, e.g., computing the automorphism
group Aut(X) of a given graph X in terms of a generating set of automorphisms
(we refer to this problem as AUT) or the canonization problem (i.e., renaming
the vertices of a given graph in such a way that all isomorphic graphs become
equal). It is easy to see that GI reduces to both problems (in fact, in the unre-
stricted case, GI and AUT are polynomial-time equivalent, whereas it is open
whether canonization reduces to GI). Formal definitions of these and other con-
cepts used in the paper are deferred to the next section. In some sense, graph
isomorphism represents a whole class of algorithmic problems; for example, GI is
polynomial-time equivalent to the isomorphism problem for semigroups as well
as for finite automata [15]. For the interesting relationships between GI and iso-
morphism testing for other algebraic structures like groups and rings we refer
the reader to the excellent surveys [1, 5].

Two graphsX and Y are isomorphic (denoted byX ∼= Y ) if there is a bijective
mapping g between the vertices of X and the vertices of Y that preserves the
adjacency relation, i.e., g relates edges to edges and non-edges to non-edges.
Graph Isomorphism is the problem of deciding whether two given graphs are
isomorphic. The problem has received considerable attention since it is one of
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the few natural problems in NP that are neither known to be NP-complete nor
known to be solvable in polynomial time.

There is some evidence that GI is not NP-complete. First of all, GI is
polynomial-time equivalent to its counting version #GI which consists in com-
puting the number of isomorphisms between two given graphs [40]. In contrast,
the counting versions of NP-complete problems (like #SAT) are typically much
harder; in fact they are #P-complete and hence at least as hard as any problem
in the polynomial-time hierarchy [46]. More strikingly, the complement of GI be-
longs to the class AM of decision problems whose positive instances have short
membership proofs checkable by a probabilistic verifier [7]. As a consequence,
GI is not NP-complete unless the polynomial hierarchy collapses to its second
level [16, 45].

A promising approach in tackling the graph isomorphism problem for general
graphs is to design efficient algorithms for restricted graph classes. In fact, Luks’
efficient GI algorithm for graphs of bounded degree [38] yields the fastest known
general graph isomorphism algorithm due to Babai, Luks, and Zemlyachenko
[6, 11, 49]. The strongest known hardness result due to Torán [47] says that GI is
hard for the class DET of problems that are NC1 reducible to the computation
of the determinant of a given integer matrix (cf. [20]). DET is a subclass of
NC2 (even of TC1) and contains NL as well as all logspace counting classes like
ModkL, C=L, PL and L(#L) [2, 17].

The first significant complexity result for restricted graph classes is the linear
time canonization algorithm for trees, designed by Hopcroft and Tarjan [29],
and independently by Zemlyachenko [48]. Miller and Reif [42] later gave an NC
algorithm for tree canonization, based on tree contraction methods. Then Lindell
came up with a logspace algorithm for tree canonization [37]. As shown in [34],
this upper bound is optimal, since tree isomorphism is also hard for L under AC0

reductions. If we consider complexity bounds below L, then the representation
that we use to encode the input trees becomes important. For trees encoded in
the string representation, Buss [18] located the canonization problem even in
NC1 (which is also optimal [34]).

Shortly after the linear time canonization algorithm for trees was found,
Hopcroft, Tarjan and Wong designed a linear time canonization algorithm for
planar graphs [28, 30]. This line of research has been pursued by Lichtenstein,
Miller, Filotti, and Mayer, culminating in a polynomial-time GI algorithm for
graphs of bounded genus [36, 41, 33]. In 1991, Miller and Reif [42] designed an
AC1 algorithm for planar graph isomorphism.

Using a group theoretic approach, Babai showed in 1979 that GI is decidable
in random polynomial time for the class CGb of colored graphs with constant
color multiplicity b. More precisely, the vertices of a graph in CGb are colored in
such a way that at most b vertices have the same color and we are only inter-
ested in isomorphisms that preserve the colors. Inspired by Babai’s work, Furst,
Hopcroft and Luks [22] developed efficient solutions for various permutation
group problems and as a byproduct they could eliminate the need for random-
ness in Babai’s algorithm. Both algorithms exploit, in a significant manner, the



On Graph Isomorphism for Restricted Graph Classes 243

fact that the automorphism group Aut(X) of a graph X with constant color
class size, is contained in the product of constant size symmetric groups. For
such groups the pointwise stabilizer series can be used to successively compute
generators for the groups in the series.

In a breakthrough result, Luks in 1982 was able to design an algorithm for
computing Aut(X) in polynomial time for graphs of bounded degree [38]. To
achieve this result, Luks considerably refined the group-theoretic techniques used
in earlier algorithms. By combining Luks’ algorithm with a preprocessing proce-
dure due to Zemlyachenko [49] (see also [6]) for reducing the color valence of the
input graphs, Babai and Luks obtained an 2O(

√
n logn) time-bounded GI algo-

rithm, where n denotes the number of vertices in the input graphs (see [11]). This
is the fastest algorithm known for the unrestricted graph isomorphism problem.
In [11] it is also shown that for general graphs there is a 2O(n1/2+o(1)) canon-
izing algorithm which closely matches the running time of the best known GI
algorithm.

Later, Luks in [39] gave a remarkable NC algorithm for the bounded color
class case. Building on [39], Arvind, Kurur and Vijayaraghavan further improved
Luks’ NC upper bound by showing that GI for graphs in CGb (we denote this
version of GI by GIb) is in the ModkL hierarchy (and hence in TC1), where the
constant k and the level of the hierarchy depend on b [4]. Prior to this result,
Torán showed that GIb2 is hard for the logspace counting class ModbL [47].
Torán’s lower bound has been extended in [4] where it is shown that for each
level in the ModkL hierarchy there is a constant b such that GIb is hard for this
level.

The pointwise stabilizer series approach has also been applied by Babai, Grig-
oryev and Mount to compute the automorphism group for graphs with bounded
eigenvalue multiplicity [10]. By applying group theory to a greater extent, Babai,
Luks, and Séress were able to show that isomorphism testing for these graph
classes is in NC [12, 8, 39]. However, it is still open whether also Luks’ efficient
GI algorithm for graphs with bounded degree is parallelizable.

Question 1. Is GI for graphs with bounded degree in NC?

Ponomarenko proved that GI for graphs with excluded minors is decidable in
P [43]. In 1990, Bodlaender gave a polynomial-time GI algorithm for graphs of
bounded treewidth [14]. This class contains all series-parallel graphs, all outer-
planar graphs, all graphs with constant bandwidth (or cutwidth) and all chordal
graphs with constant clique-size. Very recently, Grohe and Verbitsky [26] im-
proved Bodlaender’s upper bound by showing that GI for graphs of bounded
treewidth is in TC1. This follows by combining the following two results which
are interesting on their own.

First, they show that a parallel version of the r-round k-dimensional Weis-
feiler-Lehman algorithm (r-round WLk for short) can be implemented as a
logspace uniform family of TC circuits of depth O(r) and polynomial size. As
a consequence, for any class C for which the multidimensional WL algorithm
correctly decides GI on C in O(log n) rounds, GI on C is decidable by a TC1

algorithm.
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As a second ingredient of the proof, Grohe and Verbitsky show that for
r = O(k logn), the r-round WL4k+3 correctly decides GI on all graphs of
treewidth at most k. This latter result is obtained by designing a winning strat-
egy for a suitable Ehrenfeucht-Fräıssé game with 4k + 4 pebbles and r moves.
An interesting question in this context is whether this approach can be extended
to the canonization version of WL.

Question 2. Do graphs of bounded treewidth admit an NC (or even TC1) can-
onization?

As Grohe and Verbitsky use the WL algorithm to solve GI for graphs with
bounded treewidth, it follows that these graphs have a TC1 computable complete
normalform (also called invariant). Although, as shown by Gurevich, canoniza-
tion is polynomial-time reducible to computing a complete normalform [27], it is
not clear whether such a reduction is computable in NC for graphs with bounded
treewidth.

Another possibility to answer Question 2 affirmatively may be to use a vari-
ation of the WL algorithm to canonize the input graph. For example, in [32,
Theorem 1.9.4] Immerman and Lander propose the following procedure: as soon
as the refinement process stabilizes choose any vertex (or tuple) from the lexico-
graphically smallest color class of size at least two and individualize it (i.e., give
it a new color). Then restart WL and repeat the process until all color classes
are singletons. The resulting (total) refinement induces unique names for all the
vertices. An interesting question is whether this variant of WL indeed computes
a canon for all graphs of bounded treewidth, and if the answer is yes, whether
this task can be performed in a logarithmic number of rounds.

2 Preliminaries

In this section we fix the notation and give formal definitions for the concepts
used in this paper. For other basic definitions we refer the reader to [35] or to
any textbook on complexity like [13].

We denote the symmetric group of all permutations on a set A by Sym(A)
and by Sn in case A = {1, . . . , n}. Let G be a subgroup of Sym(A) and let a ∈ A.
Then the set {b ∈ A | ∃g ∈ G : g(a) = b} of all elements b ∈ A reachable from a
via a permutation g ∈ G is called the orbit of a in G.

2.1 Colored Graphs

Let X = (V,E) denote a (finite) hypergraph, i.e., E is a subset of the power
set P(V ) of V . We always assume that the vertex set is of the form V = [n],
where [n] denotes the set {1, . . . , n}. For a subset U ⊆ V , we use X [U ] to denote
the induced subgraph (U,E(U)) of X , where E(U) = {e ∈ E | e ⊆ U}. For
usual graphs, i.e., E ⊆ (V2

)
= {e ⊆ v | ‖e‖ = 2}, we use ΓX(u) to denote the

neighborhood {v ∈ V | {u, v} ∈ E} of vertex u in the graph X (if X is clear from
the context we omit the subscript). Further, for disjoint subsets U,U ′ ⊆ V , we
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use X [U,U ′] to denote the induced bipartite subgraph (U ∪ U ′, E(U,U ′)), where
E(U,U ′) contains all edges e ∈ E with e ∩ U �= ∅ and e ∩ U ′ �= ∅.

A coloring of X is given by a function c : V → [m]. We represent colored hy-
pergraphs as triples X = (V,E, C), where C = (C1, . . . , Cm) is the color partition
induced by c, i.e., Ci = {u ∈ V | c(u) = i}. We denote the class of all colored
hypergraphs by CHG and the class of all colored graphs by CG. Note that the
class of uncolored (hyper)graphs can also be seen as a subclass of CHG where all
nodes have color 1. In case ‖Ci‖ ≤ b for all i ∈ [m], we refer to X as a b-bounded
(hyper)graph. The class of all b-bounded graphs (hypergraphs) is denoted by CGb
(respectively, CHGb).

2.2 Isomorphisms and Automorphisms

Let X = (V,E, C) and Y = (V,E′, C) be hypergraphs and let g be a permutation
on V . We can extend g to a mapping on subsets U = {u1, . . . , uk} of V by

g(U) = {g(u1), . . . , g(uk)}.

g is an isomorphism between hypergraphs X and Y , if g preserves the edge
relation, i.e.,

∀e ⊆ V : e ∈ E ⇔ g(e) ∈ E′

as well as the color relation,

∀i ∈ [m] : g(Ci) = Ci.

We also say that g maps X to Y and write g(X) = Y . If g(X) = X , then g
is called an automorphism of X . We use Aut(X) to denote the automorphism
group of X . Note that the identity mapping on V is always an automorphism.
Any other automorphism is called nontrivial.

The decision problem HGIb consists of deciding whether two given b-bounded
hypergraphs X and Y are isomorphic (GIb denotes the restriction of this prob-
lem to graphs). A related problem is the automorphism problem HGAb (GAb)
of deciding if a given b-bounded hypergraph (respectively, graph) has a non-
trivial automorphism. For uncolored (hyper)graphs X = (V,E) we denote these
problems by HGI, GI, HGA and GA, respectively.

2.3 Normal Forms and Canonization

In the following we assume an appropriate binary encoding of colored (hy-
per)graphs and we identify each graph X with its encoding. Let D ⊆ CHG
be a graph class and let f : {0, 1}∗ → {0, 1}∗ be a function. We say that f
computes a normal form for D, if

∀X,Y ∈ D : X ∼= Y ⇒ f(X) = f(Y ).

If f also fulfils the backward implication, i.e.

∀X,Y ∈ D : X ∼= Y ⇔ f(X) = f(Y ),
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f is called a complete normal form for D. A normal form f for D that computes
for any graph X ∈ D a graph f(X) that is isomorphic to X , i.e.

∀X,Y ∈ D : X ∼= f(X) ∧ [X ∼= Y ⇒ f(X) = f(Y )],

is called a canonization for D. Note that a canonization for D is also a complete
normal form for D. We call f(X) the canon of X (w.r.t. f). Of course, f(X) is
uniquely determined by any isomorphism g between X and f(X). We call any
such g a canonical relabeling of X (w.r.t. f).

2.4 The Weisfeiler-Lehman Algorithm

For the history of this approach to GI we refer the reader to [9, 19, 21]. We
will abbreviate k-dimensional Weisfeiler-Lehman algorithm by WLk. WL1 is
commonly known as the canonical labeling or color refinement algorithm. On
input a colored graph X = (V,E, C), where C = (C1, . . . , Cm), the algorithm
proceeds in rounds starting with the initial coloring C0 = C, i.e., c0 assigns to
each node v ∈ V its color c(v). In each round, each node v ∈ V receives a
new color that depends on the previous colors of v and all its neighbors. More
precisely, in the (i+ 1)st round, WL1 assigns to node v the color

ci+1(v) = (ci(v), {{ ci(u) | u ∈ Γ (v)}})

consisting of the preceding color ci(v) and the multiset {{ ci(u) | u ∈ Γ (v)}} of
colors ci(u) for all u ∈ Γ (v). For example, c1(v) = c1(w) if and only if for each
color i ∈ [m], v and w have the same number of neighbors with that color. To
keep the color encoding short, after each round the colors are lexicographically
sorted and renamed (hence the renamed colors are in the range [mi], where
mi = ‖{ci(v) | v ∈ V }‖ ≤ n). However, the algorithm retains a table that can
be used to derive the old color names from the new ones. After r rounds, the
r-round WL1 stops and outputs the multiset {{ cr(v) | v ∈ V }} of colors in the
coloring Cr (together with the tables retained at each round). Note that as long
as Ci+1 is a proper refinement of Ci, the number of colors increases. Hence, the
coloring stabilizes after at most n rounds, i.e. Cs+1 = Cs for some s < n. We
call Cs the WL1-stable coloring of X .

Following the same idea, the k-dimensional version iteratively refines a col-
oring of V k. The initial coloring of a k-tuple v̄ is the isomorphism type of the
subgraph induced by the vertices in v̄ (viewed as a labeled graph where each
vertex is labeled by its color and by the positions in the tuple where it occurs).
The refinement step takes into account the colors of all neighbors of v̄ in the
Hamming metric (see [19, 26] for details).

Since the coloring is stable after at most nk rounds, WLk can be implemented
in polynomial time for each constant dimension k. Further, since the colorings
computed by the WL algorithm in each round only depend on the isomorphism
class of X , it is clear that WL computes a normal form on the class of all graphs.
We say that the r-round WLk works correctly for a graph X , if the output for
X is distinct from all outputs produced for any nonisomorphic graph Y �∼= X .
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It is clear that the r-round WLk computes a complete normalform on a graph
class D, provided that it works correctly for each graph X ∈ D (note that for
some graph classes the latter condition might be stronger than the former).

Of course, WLn needs at most one round to work correctly on all graphs
with n vertices. In fact, already WL1 works correctly on all trees and almost
all graphs (in the Gn,1/2 model), and WL2 succeeds on all graphs of color class
size 3 [32]. Thus there was some hope that a low dimensional WL algorithm
may work correctly on all graphs. However, in 1990 Cai, Fürer and Immerman
[19] proved a striking negative result: For any sublinear dimension k = o(n),
WLk does not work correctly even on graphs of vertex degree 3 and color class
size 4. Nevertheless, it was realized later that a constant-dimensional WL is still
applicable to particular classes of graphs, including planar graphs [23], graphs
of bounded genus [24], and graphs of bounded treewidth [25].

3 Hardness of HGA

To show that there are n-vertex graphs of vertex degree 3 and color class size
4 that are hard instances for WLo(n), Cai, Fürer and Immerman used a graph
gadget that originally appeared in [31]. This gadget has also been used by Torán
in a significant manner to show that GI and GA are hard for various subclasses
of TC1 [47]. Here we use a hypergraph variant of this gadget to show that for
any prime p, HGAp is hard for Modp!L. The proof given here simplifies a proof
of a similar result in [3].

It is well-known that the following problem is ModpL complete (cf. [17]).
Given a homogenous system

∑

j∈[n]

aijxj = 0, i ∈ [k] (1)

of linear equations over the field Zp = Z/pZ, decide whether (1) has a nontrivial
solution x̄ ∈ Zn

p . This problem remains ModpL complete, if we require that the
support Si = {j ∈ [n] | aij �= 0} of each equation contains at most three elements
and Sj �= Sk for j �= k (these restrictions are not really necessary but they
simplify the reduction and keep the orbit size of the hyperedges in the reduced
hypergraph small). Now consider the following hypergraph X = (V,E, C) with

V =
n⋃

j=1

Vj , E =
n⋃

j=1

Zj ∪
k⋃

i=0

Ei and C = (C1, C
′
1, C

′′
1 , . . . , Cn, C

′
n, C

′′
n),

where
Vj =Cj ∪ C′

j ∪ C′′
j ,

Cj ={ujx | x ∈ Zp}, C′
j = {vjx | x ∈ Zp}, C′′

j = {wjx | x ∈ Zp},
Zj ={{ujx, vjx}, {vjx, wjx}, {wjx, ujx+1} | x ∈ Zp}, and

Ei ={{ujxj
| j ∈ Si} |

∑
j∈[n] aijxj = 0}.
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In the hypergraph X we have for each variable xj a cycle Xj = X [Vj ] such
that Aut(Xj) is isomorphic to the additive group (Zp,+). Fix any isomorphism
ϕ between Aut(Xj) and Zp and denote the automorphism g ∈ Aut(Xj) with
ϕ(g) = x by gjx. Then Aut(Xj) is represented as {gjx | x ∈ Zp} and we have
gjx ◦ gjx′ = gjx+x′ .

For any vector x̄ = (x1, . . . , xn) we use x̄|Si to denote the si-dimensional
projection (xj)j∈Si of x̄ to Si. Since Ei contains for each solution x̄ = (x1, . . . , xn)
of the i-th equation in (1) the hyperedge e(x̄|Si) = {ujxj

| j ∈ Si}, Ei consists of
exactly psi−1 hyperedges. We use Li to denote the set of vectors x̄ ∈ Zsi

p with
e(x̄) ∈ Ei.

Of course, for p = 2, 3 we can simplify X to the graph X̂ = X [C1 ∪ · · · ∪ Cn]
since in these cases the groups Aut(X̂j) are cyclic anyway. Figure 1 shows the
graph X̂ corresponding to the equation x1 + x2 − x3 = 0 over Z3.

e(2, 2, 1)

e(1, 2, 0)

e(0, 2, 2)

e(2, 1, 0)

e(1, 1, 2)

e(0, 1, 2)

e(2, 0, 2)

e(1, 0, 1)

e(0, 0, 0)

u3

2

u3

1

u3

0

u2

2

u2

1

u2

0

u1

2

u1

1

u1

0

Fig. 1. The hypergraph gadget for the equation x1 + x2 − x3 = 0 over Z3

Now it is easy to see that for each i ∈ [k] the automorphism group Aut(Yi) of
the hypergraph Yi = (Wi, Fi, Ci) where Wi =

⋃
j∈Si

Vj , Fi = Ei ∪
⋃
j∈Si

Zj and
Ci is the restriction of the coloring C to Wi, is isomorphic to the solution space
Li of the equation

∑
j∈Si

aijxj = 0. For example, if Si = {1, 2, 3} and the i-th
equation of (1) is x1 + x2 − x3 = 0, then

Aut(Yi) = {(g1
x1
, g2
x2
, g3
x3

) | x1 + x2 − x3 = 0}.

Hence, a permutation g = (g1
x1
, . . . , gnxn

) ∈ Aut(X1) × · · · × Aut(Xn) is an
automorphism of X if and only if for all i ∈ [k], the restriction of g to Wi

is an automorphism of Yi, implying that

Aut(X) = {(g1
x1
, . . . , gnxn

) | (x1, . . . , xn) is a solution of (1)}.
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This shows that X ∈ HGAp if and only if the system (1) has a nontrivial solution.
Since the reduction from the given homogenous system (1) to the hypergraph X
can be performed in AC0, it follows that for any prime q ≤ p, HGAp is hard for
the class ModqL under AC0 many-one reductions.

Moreover, since HGAp has an easily computable or-function (just take the
union of the graphs where we assume w.l.o.g. that the input graphs have no
colors in common) and since any set in the class ModmL can be represented
as the union A1, . . . , Ak of sets Ai in ModpiL, where p1, . . . , pk are the prime
factors of m [17], it immediately follows that HGAp is even hard for Modp!L.
Since the orbit size of the hyperedges in the reduced hypergraph is bounded by
p2, we also get that GAp2 is Modp!L hard.

Theorem 3. HGAp and GAp2 are hard for Modp!L.

In [3] it is shown that GA4 (as well as GA5 and HGA2) in fact is complete for
the class Mod2L = ⊕L. The best known upper bound for HGAb, b > 2, is P [3].
We remark that if the hyperedges are all of constant size, i.e., ‖e‖ ≤ k for all
e ∈ E, then HGAb is reducible to GAb′ for b′ = bk which is known to be in TC1

[39, 4]. However, when hyperedges are of unbounded size, it is not clear whether
HGAb is reducible to GAb′ for any constant b′.

Question 4. Is HGAb in NC for some constant b > 2?

Torán’s proof that GI and GA are hard for NL crucially hinges on the fact
that the produced graphs have unbounded color classes. Since already in the
2-bounded case the orbits of the edges of a hypergraph can have exponential
size it might be possible to reduce NL to HGAb (or HGIb) for a constant b. Note
that the orbit size of the edges of a b-bounded graph is at most b2.

Question 5. Is there any constant b for which HGAb (or HGIb) is NL hard?

4 Logspace Canonization of 3-Bounded Graphs

In this section we improve the result from [34] that GI for 2-bounded as well as
for 3-bounded graphs is equivalent to undirected graph reachability (and there-
fore complete for L [44]). We first describe a logspace canonization algorithm
for 2-bounded graphs. This algorithm performs a 1-round WL1 and uses indi-
vidualization to refine the remaining size two color classes. We also sketch how
this algorithm can be improved to handle the 3-bounded case. For the complete
proof we refer the reader to the journal version of [3] (in preparation).

Let X = (V,E, C) be a b-bounded graph and let C = (C1, . . . , Cm). We use
Xi to denote the graph X [Ci] induced by Ci and Xij to denote the bipartite
graph X [Ci, Cj ] induced by the pair of color classes Ci and Cj . Since it suffices
to compute a canonical relabeling for X we can assume that all vertices in the
same color class Ci have the same degree and each graph Xi is regular of degree
at most (‖Ci‖ − 1)/2. Otherwise we can either canonically split Ci into smaller
color classes or we can replace Xi by the complement graph. Further, we assume
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that the edge set Eij of Xij is of size at most ‖Ci‖ · ‖Cj‖/2, since otherwise, we
can replace Xij by the complement bipartite graph.

We say that two color classes Ci, Cj with ‖Ci‖ = ‖Cj‖ are directly linked, if
Eij is a perfect matching in Xij . Ci and Cj are linked, if Ci is reachable from
Cj by a chain of directly linked color classes. We make use of some basic facts
from [3].

Lemma 6. [3] For any directly linked pair Ci, Cj of color classes there is a bi-
jection πij : Sym(Ci) → Sym(Cj) such that for any automorphism g = (gi, gj) ∈
Aut(Xij) it holds that gj = πij(gi).

Let Gi be the intersection of Aut(Xi) with the projections of Aut(Xij) on Ci
for all j �= i. Any subgroup of the symmetric group Sym(Ci) of all permutations
on Ci is called a constraint for Ci. We call Gi the direct constraint for Ci.

Lemma 7. [3] For a given b-bounded graph, the direct constraints of each color
class can be determined in deterministic logspace.

We use Lemma 6 to define a symmetric relation on constraints. Let Gi and
Gj be constraints of two directly linked classes Ci and Cj , respectively, and let
gij be the bijection provided by Lemma 6. We say that Gi is directly induced
by Gj , if gij is an isomorphism between Gi and Gj . Further, a constraint G
is induced by a constraint H , if G is reachable from H via a chain of directly
induced constraints. Note that the latter relation is an equivalence on the set of
all constraints. We call the intersection of all constraints of Ci that are induced
by some direct constraint the induced constraint of Ci and denote it by G′

i.

Lemma 8. [3] For a given b-bounded graph, the induced constraints of each color
class can be determined in deterministic logspace.

Proof. Consider the undirected graph X ′ = (V ′, E′) where V ′ consists of all
constraintsG in X and E′ = {(G,H) | G is directly induced by H}. In this graph
we mark all direct constraints computed by Lemma 7 as special nodes. Now, the
algorithm outputs for each color class Ci the intersection of all constraints for
Ci that are reachable from some special node, and since SL = L [44], this can
be done in deterministic logspace.  !
We define two special types of constraints. We say that Ci is split, if its induced
constraint G′

i has at least two orbits, and we call the partition of Ci in the orbits
of G′

i the splitting partition of Ci. Further, a class Ci of size b is called whole,
if its induced constraint G′

i is the whole group Sym(Ci). The following lemma
summarizes some properties of whole color classes.

Lemma 9. Let Ci be a whole color class in a b-bounded graph X and let Cj be
a color class such that Eij �= ∅. Then the following holds.

– X [Ci, ΓXij (Ci)] is semiregular,i.e., the degree of any node u in the bipartite
graph only depends on its (non)membership to Ci.
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– If also Cj is whole, then ‖Ci‖ = ‖Cj‖ and Ci, Cj are directly linked.
– If Cj is split or ‖Cj‖ < b, then all vertices in Ci have the same neighborhood

in Xij.

Lemma 9 tells us that the action of an automorphism on a whole color class C is
not influenced by its action on color classes that are either smaller or split, i.e.,
only other whole color classes can influence C. Similarly, it follows that WL1

will never refine any of the whole color classes in X . Let W be the union of all
whole color classes. Then Aut(X [W ]) is computable in logspace.

Lemma 10. [34, 3] A generating set for Aut(X [W ]) is computable in FL.

Proof. The algorithm works by reducing the problem to reachability in undi-
rected graphs. For each whole color class Ci we create a set Pi of b! nodes (one
for each permutation of Ci). Recall that if Ci and Cj are directly linked, then
each g ∈ Pi induces a unique permutation h = πij(g) on Cj and hence, we put
an undirected edge between g and h. This gives an undirected graph G with
(b− 1)!‖W‖ nodes.

A connected component P in G that picks out at most one element gi from
each set Pi defines a valid automorphism g for the graph X [W ], if P contains
only elements gi ∈ Aut(Xi). On the color classes Ci, for which P contains an
element gi ∈ Pi, g acts as gi, and it fixes all nodes of the other color classes.
By collecting these automorphisms we get a generating set for Aut(X [W ]) and
since SL = L [44], this can be done in deterministic logspace.  !

Now we prove that WL1 on 2-bounded graphs can be implemented in logspace.

Theorem 11. For graphs in CG2 the WL1-stable coloring is computable in FL.

Proof (sketch). Let X = (V,E, C) be a 2-bounded graph with coloring C =
(C1, . . . , Cm). The only way that a color class Ci gets directly split (i.e. by its
direct constraint Gi) is that one node a ∈ Ci is incident to some color class Cj
whereas the other node b ∈ Ci is not. Let Cj be the lexicographically smallest
color class with this property. Then WL1 refines Ci into ({b}, {a}). These are
exactly the refinements that WL1 performs by the initial coloring and they are
clearly computable in logspace.

If Ci gets refined in a later round, then this refinement is caused by a direct
link to a color class that has been refined earlier. Let Cj be the lexicographically
smallest directly split color class which is linked to Ci by a chain (Cj , . . . , Ci)
of directly linked color classes of minimal length. Then WL1 transposes the
refinement of Cj to Ci via the chain (Cj , . . . , Ci). Clearly, also these refinements
are computable in logspace. Finally, observe that the whole color classes never
get refined by WL1. In fact, they form orbits in Aut(X).  !

As an easy consequence we get a logspace canonization for all 2-bounded graphs.

Theorem 12. CG2 admits a logspace canonization.
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Proof (sketch). Let X = (V,E, C) be a 2-bounded graph with coloring C =
(C1, . . . , Cm). By Theorem 11 the WL1-stable coloring X ′ of X is computable
in logspace. If X ′ assigns unique colors to all vertices, then a canonical labeling
is determined.

Otherwise, for each connected component of linked color classes (of size 2),
the algorithm determines the lexicographically smallest color class C in that
component. Since the nodes of different C’s can be flipped independently, the
algorithm can select in each such color class an arbitrary node and give it a new
color. Now it suffices to run WL1 once more to compute the stable coloring for
the modified graph which will provide unique colors for all vertices.  !
We notice that the above proof also shows that the canonization version of WL1

(as proposed in [32, Theorem 1.9.4]) succeeds on the class CG2 (despite the fact
that WL1 does not work correctly on CG2 [32, Corollary 1.6.2]).

Question 13. For which values of k and b does the canonization version of
WLk succeed in canonizing the graphs in CGb?
Similar to the proof of Theorem 11 it can be shown that also for graphs in CG3
the WL1-stable coloring is computable in logspace but it is not clear whether
this generalizes.

Question 14. What is the complexity of computing the WLk-stable coloring for
graphs in CGb?
Immerman and Lander have shown that WL2 works correctly on all 3-bounded
graphs, implying that the canonizing version of WL2 succeeds on the class CG3
[32]. Here we give a logspace canonization algorithm for this class.

Theorem 15. CG3 admits a logspace canonization.

Proof (sketch). Let X = (V,E, C) be a 3-bounded graph with coloring C =
(C1, . . . , Cm). Let Cw denote the subclass of C containing all whole color classes of
size 3 that are linked to the lexicographically smallest whole class Ci and letW be
the set of vertices in these color classes. W.l.o.g. let i = 1 and Cw = (C1, . . . , Cl)
for some l ≤ m.

We first show how to refine the color classes in Cw in a canonical way. We
define a (canonical) reflexive, transitive and connex relation 3 on C1 such that
u and v are in the same orbit of Aut(X [W ]) if and only if u 3 v as well as
v 3 u. To define 3, for u ∈ C1 consider the set Z(u) of all cycles of color classes
starting (and ending) at C1 such that starting from vertex u ∈ C1 it is possible
to follow this cycle along the edges in E and come back to u. Now define u 3 v
if Z(u) = Z(v) or the lexicographically smallest cycle in Z(u)ΔZ(v) is in Z(v).
Then we can proof the following claim.

Claim. If the three nodes u1, u2, u3 in C1 are cycle-equivalent (i.e. Z(u1) =
Z(u2) = Z(u3)), then the permutation g1 : u1 )→ u2 )→ u3 is extendible to an
automorphism of X [W ].
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Proof of Claim. The permutation g1 uniquely extends to a permutation g =
(g1, . . . , gl) ∈ Aut(X1)×· · ·×Aut(Xl) on X [W ], where we extend g successively
by the lexicographically smallest color class that is linked to a color class on
which g is already defined. If g �∈ Aut(X [W ]), then there must exist two vertices
u, v in two color classes Ci, Cj , respectively, such that

{u, v} ∈ Eij ⇔ (gi(u), gj(v)) �∈ Eij .

Now let u′ be the vertex in Cj that is linked to u in the spanning tree T along
which g has been extended.

In case u′ = v and {u, v} ∈ Eij it follows that there is a cycle starting at u
following some path in T to u′ = v and then back to u. Starting at gi(u) we reach
gj(v) following the same path through T but proceeding further to Ci we don’t
come back to gi(u), implying that u and gi(u) (and hence also the corresponding
vertices in C1) are not cycle-equivalent.

The other cases are similar. This completes the proof of the claim. (

A similar argument shows that if exactly two of the three vertices u1, u2, u3 are
cycle-equivalent, then there is an automorphism flipping them. Now, we select
any vertex u ∈ C1 with u 3 v for all v ∈ C1 and give it a new color. As in the
proof of Theorem 12, this can be done in parallel for all connected components
of linked color classes. Running WL1 again on the graph with the individualized
vertices will now refine all whole color classes. Thus we have transformed X into
a canonical 2-bounded refinement and hence we can invoke Theorem 12.  !
It follows that for the graph classes GA2 and GA3 all problems related to GI
are complete for L: GA, #GA, #GI, AUT, computing a complete normalform
and canonization. Is this also true for the class of 2-bounded hypergraphs (or
for GA4), i.e., is the canonization problem for these graphs solvable in FL(⊕L)?

Question 16. What is the complexity of computing a canonizing function for
the graph classes CGb and CHGb?
We remark that the TC1 upper bound for GIb given in [4] uses the group theoretic
approach to compute a generating set for Aut(X). Can this approach be adapted
to give also an NC upper bound on the canonization problem for graphs with
bounded color classes?
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graphs on Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg, sec-
ond edition, 1995.

14. H. Bodlaender. Polynomial algorithm for graph isomorphism and chromatic index
on partial k-trees. Journal of Algorithms, 11:631–643, 1990.

15. K. Booth. Isomorphism testing for graphs, semigroups, and finite automata are
polynomially equivalent problems. SIAM Journal on Computing, 7(3):273–279,
1978.

16. R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):27–32, 1987.

17. G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance
of logspace-MOD classes. Mathematical Systems Theory, 25:223–237, 1992.

18. S. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization.
In Computational Logic and Proof Theory, 5th Kurt Gödel Colloquium’97, volume
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Abstract. Infinite time register machines (ITRMs) are register ma-
chines which act on natural numbers and which may run for arbitrarily
many ordinal steps. Successor steps are determined by standard regis-
ter machine commands, at limits the register contents are defined as
lim inf’s of the previous register contents. We prove that a real number
is computable by an ITRM iff it is hyperarithmetic.

1 Introduction

In [2], Joel D. Hamkins and Andy Lewis define infinite time Turing ma-
chines (ITTMs) by letting an ordinary Turing machine run for arbitrarily many
ordinal steps, taking appropriate limits at limit times. An ITTM can compute
considerably more functions than a standard Turing machine. In analogy, we
let a standard register machine run for arbitrarily many ordinal steps and call
it an infinite time register machines (ITRM). An ITRM can carry out infinitely
many steps of an ordinary register machine and can thus compute the halting
problem. Indeed we show in Lemma 1 that it can compute any Δ1

1 real number.
Conversely it will be shown in Lemma 4 that if a computation by an ITRM halts
then it halts before the Church-Kleene ordinal ωCK

1 . Hence all computable
reals are in the admissible set LωCK

1

(Lemma 5). Since the Δ1
1-reals coincide with

the reals in LωCK

1

and with the hyperarithmetic reals (see [8]) this yields a new
characterisation of the hyperarithmetic reals:

Theorem 1. A real x ⊆ ω is computable by an infinite time register machine
iff it is hyperarithmetic.

This result was inspired by discussions with Joel Hamkins and Philip Welch

at Oberwolfach in December 2005. Infinite time register machines belong to the
following schema of machines which may all run for arbitrarily many ordinal
steps. Let Ord be the class of ordinal numbers.

1.1: Infinite time Turing machines, ITTMs, with finitely many standard Turing
tapes; every Σ1

1 real and every Π1
1 real is ITTM computable [2].
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1.2: Ordinal Turing machines, OTMs, with finitely many Turing tapes of length
ORD; a set of ordinals is OTM computable iff it is a constructible set of ordinals
[3], [4], [6].
2.1: Infinite time register machines, ITRMs, as defined in this article; a real is
ITRM computable iff it is hyperarithmetic (Δ1

1).
2.2: Ordinal register machines, ORMs, with finitely many registers containing
arbitrary ordinals; a set of ordinals is ORM computable iff it is a constructible
set of ordinals [7].

2 Infinite Time Register Machines

We base our presentation of infinite time machines on the unlimited register
machines as presented in [1].

Definition 1. An unlimited register machine URM has registers R0, R1, . . .
which can hold natural numbers. A register program consists of commands to
increase or to reset a register. The program may jump on condition of equality
between two registers.

An URM program is a finite list P = I0, I1, . . . , Is−1 of instructions each of
which may be of one of four kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the natural number contained in Rn

by 1, leaving all other registers unaltered;
c) the transfer instruction T (m,n) replaces the contents of Rn by the natural

number contained in Rm, leaving all other registers unaltered;
d) the jump instruction J(m,n, q) is carried out within the program P as fol-

lows: the contents rm and rn of the registers Rm and Rn are compared, but
all the registers are left unaltered; then, if Rm = Rn, the URM proceeds
to the qth instruction of P ; if Rm �= Rn, the URM proceeds to the next
instruction in P .

The instructions of a register program can be addressed by their indices which
are called program states. At each ordinal time t the machine will be in a con-
figuration consisting of a program state I(t) ∈ ω and the register contents which
can be viewed as a function R(t) : ω → ω. R(t)(n) is the content of the register
Rn at time t. We also write Rn(t) instead of R(t)(n).

Definition 2. Let P = I0, I1, . . . , Is−1 be an URM program. A pair

I : θ → ω,R : θ → (ωω)

is an (infinite time register) computation by P if the following hold:

a) θ is an ordinal or θ = Ord; θ is the length of the computation;
b) I(0) = 0; the machine starts in state 0;
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c) If t < θ and I(t) �∈ s = {0, 1, . . . , s− 1} then θ = t+ 1; the machine stops if
the machine state is not a program state of P ;

d) If t < θ and I(t) ∈ state(P ) then t + 1 < θ; the next configuration is deter-
mined by the instruction II(t) :

i. if II(t) is the zero instruction Z(n) then let I(t+1) = I(t)+1 and define
R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{

0, if k = n
Rk(t), if k �= n

ii. if II(t) is the successor instruction S(n) then let I(t+ 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{
Rk(t) + 1, if k = n
Rk(t), if k �= n

iii. if II(t) is the transfer instruction T (m,n) then let I(t+1) = I(t)+1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{
Rm(t), if k = n
Rk(t), if k �= n

iv. if II(t) is the jump instruction J(m,n, q) then let R(t+ 1) = R(t) and

I(t+ 1) =
{
q, if Rm(t) = Rn(t)
I(t) + 1, if Rm(t) �= Rn(t)

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits. If lim inf

r→t
Rk(r) = ω for some k ∈ ω then let θ = t; the

machine stops if one of the registers overruns; otherwise let

∀k ∈ ω Rk(t) = lim inf
r→t

Rk(r);

I(t) = lim inf
r→t

I(r).

The computation is obviously determined recursively by the initial register con-
tents R(0) and the program P . We call it the (infinite time register) computation
by P with input R(0). If the computation stops at a successor ordinal θ = β+1
then R(β) is the final register content. In this case we say that P computes
R(β)(0) from R(0) and write P : R(0) )→ R(β)(0).

The definition of I(t) for limit t can be motivated as follows. Since a program
is finite its execution will lead to some (complex) looping structure involving
loops, subloops and so forth. This can be presented by pseudo code like:

...
17:begin mainloop

...
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21: begin subloop
...

29: end subloop
...

32:end mainloop
...

Assume that for times r → t the main loop (17−32) with its subloop (21−29)
is traversed cofinally often. Then at time t it is natural to put the machine at the
start of the “main loop”. Assuming that the lines of the program are enumerated
in increasing order this corresponds to the lim inf rule

I(t) = lim inf
r→t

S(r).

The interpretation of programs yields associated notions of computability.

Definition 3. An n-ary partial function F : ωn ⇀ ω is (ordinal register) com-
putable if there is a register program P such that for every n-tuple (a0, . . . , an−1)
∈ dom(F ) holds

P : (a0, . . . , an−1, 0, 0, . . .) )→ F (a0, . . . , an−1).

Definition 4. A subset x ⊆ ω, i.e., a real number, is (ordinal register) com-
putable if there is a register program P such that for every m ∈ ω holds

P : (m, 0, 0, . . .) )→ χx(m),

where χx is the characteristic function of x.

Obviously any standard recursive function is ordinal register computable.

3 Computing Δ1
1-Reals

For e ∈ ω let Re denote the e-th recursively enumerable, binary relation on ω.
If Re is wellfounded, let |Re| denote the ordinal rank of Re. Consider a hyper-
arithmetic real number x, i.e., {x} is a parameter-free Δ1

1-singleton. By standard
representation theorems for Π1

1 -reals there exists a recursive function f : ω → ω
such that for all n ∈ ω:

n ∈ x iff Rf(n) is a wellfounded relation. (1)

Since x is also Σ1
1 the boundedness property for parameter-free Σ1

1-sets implies
the existence of an ordinal α less than the Church-Kleene ordinal ωCK

1 such
that for all n ∈ ω:

n ∈ x iff Rf(n) is a wellfounded relation of rank |Rf(n)| < α. (2)
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The ordinal α is the ordertype of some recursive wellorder (ω, S). The right-hand
side of (2) holds iff there is an orderpreserving embedding from (ω,Rf(n)) into
(ω, S).

More generally, consider any infinite time register computable relations (ω,R)
and (ω, S) where (ω, S) is a wellorder. We shall define a register program P
uniformly in programs for R and S which computes whether (ω,R) can be em-
bedded orderpreservingly into (ω, S). This shows that the right-hand side of the
equivalence (2) is infinite time register computable and proves

Lemma 1. If x ⊆ ω is a hyperarithmetic real then x is computable by an infinite
time register machine.

For r ∈ ω let TCR(r) be the transitive closure of r in R, i.e. the ⊆-smallest set
which contains r and is closed under R-predecessors. Define TCS(s) similarly.
Define a relation r ∼ s iff there is an orderpreserving map

π : (TCR(r), R) → (TCS(s), S) with π(r) = s.

If the relations R and S both have 0 as their maximum element, i.e.,

∀r ∈ dom(R) \ {0} rR0 and ∀s ∈ dom(S) \ {0} sS0 ,

then (ω,R) can be embedded orderpreservingly into (ω, S) iff 0 ∼ 0. Since we
may simply assume that R and S have maximum elements, this reduces the
embeddablility property to the problem of computing ∼ with an ITRM. Since
S is a wellorder the following lemma yields a recursive definition of ∼.

Lemma 2. For every r and s, r ∼ s iff ∀r′Rr∃s′Ss r′ ∼ s′.

Proof. Assume r ∼ s. Take an orderpreserving map

π : (TCR(r), R) → (TCS(s), S) with π(r) = s.

Let r′Rr. Let s′ = π(r′) S s = π(r). Then TCR(r′) ⊆ TCR(r) and

π  TCR(r′) : TCR(r′) → TCS(s′)

orderpreservingly with π(r′) = s′. Thus ∀r′Rr∃s′Ss r′ ∼ s′.
Conversely assume that ∀r′Rr∃s′Ss r′ ∼ s′. For every r′Rr choose a map

πr′ : TCR(r′) → TCS(s′) witnessing r′ ∼ s′. Note that

TCR(r) = {r} ∪
⋃

r′Rr

TCR(r′).

Thus we may define a map π : TCR(r) → TCS(s) by π(r) = s and for r′′ �= r:

π(r′′) = min{πr′(r′′)|r′Rr}
where the minimum is formed with respect to the the wellorder S. Then π
witnesses that r ∼ s.



262 P. Koepke

We shall compute ∼ on an ITRM using finite stacks of natural numbers. Code a
stack (r0, . . . , rm−1) by r = 2r0 · 3r1 · · · prm−1+1

m−1 . Standard stack operations like
pushing and popping natural numbers or finding the length m− 1 of the stack r
are recursive and thus computable by an ITRM. Since the relations R and S are
infinite time register computable the question whether the stack (r0, . . . , rm−1)
is strictly descending in R or S can also be computed by an ITRM. For the
subsequent program we shall use two registers A and B as stacks with associated
operations pushA, popA, lenghthA, A-is-decreasing-in-R and pushB, popB,
lenghthB, B-is-decreasing-in-S. The specific coding of stack contents leeds
to a controlled limit behaviour:

Proposition 1. Let α < t where t is a limit ordinal. Assume that the stack
A (or B) contains the contents r = (r0, . . . , rm−1) for cofinally many times
below t and that all contents in the time interval (α, t) are endextensions of
r = (r0, . . . , rm−1). Then at time t the stack contents are r = (r0, . . . , rm−1).

So let us assume that R and S both have 0 as their maximum element. Running
the following program P on an ITRM outputs yes/no depending on whether R
can be embedded order-preservingly into S. We present the program in simple
pseudo-code and assume that it is translated into a register program according
to Definition 1 so that the order of commands is kept. Also the stack commands
like pushA are understood as macros which are inserted into the code with
appropriate renaming of variables and statement numbers.

pushA 0;
pushB 0;
FLAG := 1; %% ask whether 0 ~ 0

Loop: Case1: if FLAG=0 and lengthA=lengthB=1 %% 0 ~ 0
then begin; output ’yes’; stop; end;

Case2: if FLAG=0 and lengthA>lengthB=1 %% 0 !~ 0
then begin; output ’no’; stop; end;

Case3: if FLAG=0 and lengthA = lengthB > 1
%% last element of A ~ last of B

then begin; %% check next
popA N;
pushA N+1;
popB N;
pushB 0;
FLAG:=1; %% ask whether last of A ~ last of B
goto Loop;
end;

Case4: if FLAG=0 and lengthA>lengthB
%% 2nd-but-last of A !~ last of B

then begin;
popA N;
popB N;
pushB N+1;
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FLAG:=1; %% ask whether last element of A ~ last of B
goto Loop;
end;

Case5: if FLAG=1 and A-is-decreasing-in-R
and B-is-decreasing-in-S
then begin;
pushA 0;
pushB 0;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case6: if FLAG=1 and A-is-decreasing-in-R
and not B-is-decreasing-in-S
then begin;
popB N;
pushB N+1;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

Case7: if FLAG=1 and not A-is-decreasing-in-R
then begin;
popA N;
pushA N+1;
popB N;
pushB 0;
FLAG:=0; FLAG:=1; %% flash the flag
goto Loop;
end;

The next Lemma proves the correctness of the program. Note that the program
will always loop back to Loop until the program stops.

Lemma 3. Let
I : θ → ω,R : θ → (ωω)

be the computation by P with trivial input (0, 0, . . .). Then the computation sat-
isfies:

a) Suppose the machine is in state Loop and the stack contents of A and B are
(r0, . . . , rm−1) and (s0, . . . , sm−1), m � 1 which descend strictly in R and S
resp. Moreover suppose that Flag=1 and rm−1 ∼ sm−1. Then the machine will
reach the state Loop with the same stack contents and Flag=0 after a certain
interval of time; during that interval, (r0, . . . , rm−1) and (s0, . . . , sm−1) will
always be initial segments of the stacks A and B resp.

b) Suppose the machine is in state Loop and the stack contents of A and B
are (r0, . . . , rm−1) and (s0, . . . , sm−1), m � 1 which descend strictly in R
and S resp. Moreover suppose that Flag=1 and rm−1 � sm−1. Let rm be
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the smallest integer such that rmRrm−1 for which there is no smSsm−1 such
that rm ∼ sm. Then the machine will reach the state Loop with stack contents
(r0, . . . , rm−1, rm) and (s0, . . . , sm−1) and Flag=0 after a certain interval of
time; during that interval, (r0, . . . , rm−1) and (s0, . . . , sm−1) will always be
initial segments of the stacks A and B resp.

c) If R can be embedded orderpreservingly into S then the computation stops
with output ’yes’.

d) If R cannot be embedded orderpreservingly into S then the computation stops
with output ’no’.

Proof. a) and b) are proved by simultaneous induction on sm−1 along the well-
order S. So consider a situation (r0, . . . , rm−1) and (s0, . . . , sm−1) as in a) or b)
and assume that a) and b) already hold for all appropriate stacks (r′0, . . . , r′m′−1)
and (s′0, . . . , s

′
m′−1) with s′m′−1Ssm−1.

We first prove a) for the given situation. So Flag=1 and rm−1 ∼ sm−1. In-
spection of the program shows that the machine will successively enter the main
loop with register A containing the stacks (r0, . . . , rm−1, i) for i = 0, 1, . . .. Note
that by Case7, only the strictly decreasing stacks with iRrm−1 are relevant. For
such a (r0, . . . , rm−1, i) in register A the machine will enter the main loop with
register B containing stacks (s0, . . . , sm−1, j). Again, by Case6, only strictly de-
creasing stacks (s0, . . . , sm−1, j) with jSsm−1 are relevant. In these cases, the
main loop is entered with strictly descending stack contents (r0, . . . , rm−1, i) and
(s0, . . . , sm−1, j) and Flag=1.

We can apply the inductive assumptions: If i ∼ j the machine will subse-
quently reach the state Loop with the same stack contents and Flag=0. If i � j
the machine will reach the state Loop with stack contents (r0, . . . , rm−1, i, k),
some k < ω, and (s0, . . . , sm−1, j) and Flag=0; it will then set the stack contents
to (r0, . . . , rm−1, i) and (s0, . . . , sm−1, j + 1) with Flag=1. Since rm−1 ∼ sm−1
there is some j such that i ∼ j and so the machine will eventually reach the state
Loop with stack contents (r0, . . . , rm−1, i) and (s0, . . . , sm−1, j), some j < ω,
and Flag=0. This will be the case in turn for all i < ω. By the limit rules the
limit of these configurations will be a machine configuration with stack contents
(r0, . . . , rm−1) and (s0, . . . , sm−1), and Flag=0.

For b) assume that Flag=1 and rm−1 � sm−1. Let rm be defined as above.
Then the machine will proceed as in the proof of a), until it reaches the stack
contents (r0, . . . , rm−1, rm). We argue inductively that it will subsequently set
the contents of B to (s0, . . . , sm−1, j) for j = 0, 1, . . . and enter the main loop
with Flag=1.

For j = 0, an analysis of the program shows that when the contents of A are
first set to (r0, . . . , rm−1, rm), the contents of B are set to (s0, . . . , sm−1, 0) (Case3
or Case5). For the inductive step assume that the machine enters the main
loop with stack contents (r0, . . . , rm−1, rm) and (s0, . . . , sm−1, j) with Flag=1.
If (s0, . . . , sm−1, j) is not strictly descending in S then Case6 will modify the
contents of B to (s0, . . . , sm−1) and (s0, . . . , sm−1, j + 1) and enter the main
loop with Flag=1. If (s0, . . . , sm−1, j) is strictly descending in S then we can
apply the inductive assumptions. Since rm � j the machine will reach the state
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Loop with stack contents (r0, . . . , rm−1, rm, k), some k < ω, and (s0, . . . , sm−1, j)
and Flag=0 after a certain interval of time. Then Case4 will modify the stack
contents to (r0, . . . , rm−1, rm) and (s0, . . . , sm−1, j + 1), set Flag:=0 and enter
the main loop. This concludes the induction.

By the limit rules the limit of this inductive sequence of configurations will be
a configuration with state Loop, Flag=0, and stack contents (r0, . . . , rm−1, rm)
and (s0, . . . , sm−1), as required by b). Inspection of the algorithm shows that
the desired configurations for a) and b) are first reached with the stack contents
always endextending (r0, . . . , rm−1) and (s0, . . . , sm−1) resp.
c) Assume that R can be embedded orderpreservingly into S. Since 0 is the
maximum element of both R and S, 0 ∼ 0. The computation will first reach
state Loop with stack contents (0) and (0) and Flag=1. By a), it will later reach
state Loop with stack contents (0) and (0) and Flag=0. By Case1 of the main
loop, the machine will output ’yes’ and stop.
d) is proved an analogy with c).

4 Admissible Sets and Infinite Register Computations

For the converse we show

Lemma 4. Let I : θ → ω,R : θ → (ωω) be a computation by a program P which
stops at some successor ordinal θ = β + 1. Then θ < ωCK

1 .

Proof. Assume that θ � ωCK
1 . Let I(ωCK

1 ) = k and

R(ωCK
1 ) = (n0, . . . , nl−1, 0, 0, . . .)

where R0, . . . , Rl−1 includes all the registers mentioned in the program P . By
the liminf rules for ITRMs there is some α < ωCK

1 such that the sets

{t ∈ (α, ωCK
1 )|I(t) = k}

and
{t ∈ (α, ωCK

1 )|Rj(t) = nj}
are closed unbounded in ωCK

1 . These sets are Σ1-definable over the admissible
set LωCK

1

in the parameter α. In LωCK

1

define a sequence α0 = α < α1 < α2 < . . .
such that

∃t ∈ (αn, αn+1) I(t) = k and for j = 0, . . . , l− 1∃t ∈ (αn, αn+1) Rj(t) = nj.

Such a sequence may be defined by a Σ1-definition over LωCK

1

. By the Σ1-
bounding principle in LωCK

1

, α∗ =
⋃
n<ω αn < ωCK

1 . Also I(α∗) = k and
R(α∗) = (n0, . . . , nl−1, 0, 0, . . .). So the constellation I(t) = k and R(t) =
(n0, . . . , nl−1, 0, 0, . . .) occurs at times α∗ and ωCK

1 . This means that the ma-
chine runs into a cycle and does not stop, contrary to our assumption.
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Lemma 5. Let x ⊆ ω be computable by an infinite time register machine. Then
x ∈ LωCK

1

.

Proof. Let P be a register program such that such that for every n < ω

P : (n, 0, 0, . . .) )→ χx(n).

For n < ω let the computation by P with input (n, 0, 0, . . .) stop at time θn.
By the previous lemma, θn < ωCK

1 . Therefore the computation by P with input
(n, 0, 0, . . .) is an element of LωCK

1

. The characteristic function χx is Δ1-definable
over LωCK

1

by

χx(n) = 1 iff there is a computation by P with input (n, 0, 0, . . .) and output 1
iff all computations by P with input (n, 0, 0, . . .) stop with output 1.

Since the admissible set LωCK

1

satisfies Δ1-separation, x ∈ LωCK

1

.

5 Further Considerations

One may consider variants of the ITRMs, where the registers can hold ordinals
below a certain bound β. What is the collection of subsets of β computable by
β-ITRMs? It is hoped that such interpolations between ITRMs and ORMs yield
a stratification of the constructible sets which may lead to a fine structure theory
of the class L of constructible sets (see [5]).
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Abstract. In this paper we study a class of hybrid systems defined by
Pfaffian maps. It is a sub-class of o-minimal hybrid systems which capture
rich continuous dynamics and yet can be studied using finite bisimula-
tions. The existence of finite bisimulations for o-minimal dynamical and
hybrid systems has been shown by several authors (see e.g. [3,4,13]). The
next natural question to investigate is how the sizes of such bisimulations
can be bounded. The first step in this direction was done in [10] where a
double exponential upper bound was shown for Pfaffian dynamical and
hybrid systems. In the present paper we improve this bound to a single
exponential upper bound. Moreover we show that this bound is tight
in general, by exhibiting a parameterized class of systems on which the
exponential bound is attained. The bounds provide a basis for designing
efficient algorithms for computing bisimulations, solving reachability and
motion planning problems.

1 Introduction

One of the main complexities in the reasoning about hybrid systems arises from
their uncountably infinite state spaces. To overcome this difficulty bisimulation
by simpler systems was introduced. Informally, two hybrid systems are bisimilar
if their behaviors are indistinguishable with respect to the properties we consider.
It is desirable to have bisimulations on which we can verify basic properties
(like reachability) effectively, in particular, finite bisimulations. A wide class of
hybrid systems that admits finite bisimulations is formed by o-minimal systems,
introduced and studied in [3,4,13]. This approach is based on the theory of o-
minimal structures, intensively studied in model theory [15].

The existence of finite bisimulations for o-minimal hybrid systems has been
shown by several authors (see e.g. [3,4,13]). The next natural question to inves-
tigate is how the sizes of such bisimulations can be bounded.

In order to give effective bounds on the sizes of the bisimulations we restrict
ourselves to a particular case of o-minimal hybrid systems, namely to the class
of Pfaffian hybrid systems introduced in [10], and represented by Pfaffian func-
tions. Such functions naturally arise in applications as real analytic solutions of

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 267–276, 2006.
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triangular first order partial differential equations with polynomial coefficients,
and include polynomials, algebraic functions, exponentials, and trigonometric
functions in appropriate domains [9]. In our previous work [10] we gave a double
exponential upper bound on the sizes of bisimulations of Pfaffian hybrid sys-
tems. In the present paper we improve that bound to a single exponential upper
bound. Moreover we show that the bound is tight in general, by exhibiting a
parameterized class of polynomial dynamical systems on which the exponential
bound is attained. Let us note that previous bounds were obtained using cylin-
drical cell decomposition, which is of intrinsically double exponential complexity.
In this paper we avoid cylindrical decomposition by using some finer tools from
real analytic geometry.

These tools also provide framework for further studies of the behavior of
Pfaffian hybrid systems. In [10] an algorithm was proposed for computing fi-
nite bisimulations with the double exponential complexity. The bounds ob-
tained in the present paper provide a basis for computing bisimulations, and via
them, reachability, motion planning, etc. problems, with the single exponential
complexity.

This paper is organized as follows. In Section 2 we recall the notions of bisim-
ulation of transition systems and Pfaffian dynamical systems. In Section 3 we
construct an upper bound on sizes of finite bisimulations of a Pfaffian dynamical
system. In Section 4 we show that this bound is tight in general, by exhibiting
a parameterized class of Pfaffian dynamical systems on which the exponential
bound is attained. We then conclude with the future work.

2 Basic Notions and Definitions

2.1 Transition Systems and Dynamical Systems

One of the approaches to study of a dynamical system uses the partition of
the state space into finitely many equivalence classes, so that equivalent states
exhibit similar properties. This special quotient of the original state space, called
bisimulation, is reachability preserving, i.e., checking the reachability on the
quotient system is equivalent to checking it on the original system. In this section
we recall (following [3]) the notion of bisimulations of transition systems, and
basic results concerning finite bisimulations of o-minimal dynamical systems.

The first group of definitions describe transition systems and bisimulations
between the transition systems.

Definition 1. Let Q be an arbitrary set and → be a binary relation on Q. In the
context of dynamical systems theory we call Q the set of states, → the transition,
and T := (Q,→) the transition system.

Definition 2. Given two transition systems T1 := (Q1,→1) and T2 := (Q2,→2)
we define a simulation of T1 by T2 as a binary relation ∼⊂ Q1 ×Q2 such that:

• ∀q1 ∈ Q1∃q2 ∈ Q2(q1 ∼ q2);
• ∀q1, q′1 ∈ Q1∀q2 ∈ Q2((q1 ∼ q2 ∧ q1 →1 q

′
1) ⇒ ∃q′2 ∈ Q2(q′1 ∼ q′2∧ q2 →2 q

′
2)).
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Definition 3. A bisimulation between two transition systems T1 := (Q1,→1)
and T2 := (Q2,→2) is a simulation ∼ ⊂ Q1 × Q1 of T1 by T2 such that the
converse relation ∼−1:= {(q2, q1) ∈ Q2 × Q1|q1 ∼ q2} is a simulation of T2 by
T1.

Definition 4. A bisimulation between a transition system T and itself is called
a bisimulation on T .

Definition 5. Let ∼ be a bisimulation on T = (Q,→) and also an equivalence
relation on Q. Let P be a partition of Q. We say that ∼ is a bisimulation with
respect to P if every P ∈ P is the union of some equivalence classes of ∼.

Normally, the partition P reflects regions of interest such as invariants and initial
conditions of the dynamical system.

In this paper we are concerned with estimating cardinality of bisimulations
in the sense of Definition 5. We now give some definitions concerning dynamical
systems.

Definition 6. Let G1 ⊂ IRm and G2 ⊂ IRn be open domains. A dynamical
system is a map γ : G1 × (−1, 1) → G2. For a given x ∈ G1 the set Γx =
{y|∃t ∈ (−1, 1)(γ(x, t) = y)} ⊂ G2 is called the trajectory determined by x, and
the graph Γ̂x = {(t,y)| γ(x, t) = y} ⊂ (−1, 1) × G2 is called the integral curve
determined by x.
A dynamical system is called o-minimal if it is definable in an o-minimal struc-
ture over IR.

Definition 7. The transition system Tγ = (Q,→) associated to the dynamical
system γ is defined as follows:

• Q := G2, and
• y1 → y2 for y1,y2 ∈ Q if and only if

∃x ∈ G1∃t1, t2 ∈ (−1, 1)((t1 ≤ t2) ∧ (γ(x, t1) = y1) ∧ (γ(x, t2) = y2))

We now introduce following [3], a technique of encoding trajectories of dynamical
systems by words. Let P := {P1, . . . , Ps} be a finite partition of γ(G1× (−1, 1))
definable in the o-minimal structure. Fix x ∈ G1. Define the set Fx of points
and open intervals I in (−1, 1) which are maximal with respect to inclusion for
the property ∃i ∈ {1, . . . , s} ∀t ∈ I (γ(x, t) ∈ Pi).

Let the cardinality |Fx| = r and y1 < · · · < yr be representatives of Fx such
that γ(x, yj) ∈ Pij . Then define the word ω := Pi1 · · ·Pir in the alphabet P .
Informally, ω is the list of names of elements of the partition in the order they
are visited by the trajectory Γx.

Let y ∈ Γx. Then y ∈ Pij for some 1 ≤ j ≤ r, where Pij is a letter in ω. We
represent the location of y on the trajectory Γx by the dotted word

ω̇ := Pi1 · · · Ṗij · · ·Pir
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It will be convenient to use the operation undot(ω̇) = ω := Pi1 · · ·Pij · · ·Pir . In
the sequel we will always assume that the dynamical system γ is injective. In
this case there is a unique dotted word associated to a given y ∈ γ(G1×(−1, 1)).
Introduce sets of words Ω := {ω| x ∈ G1}, Ω̇ := {ω̇| x ∈ G1}. The following
statement is an easy consequence of o-minimality.

Lemma 1. [3] The set Ω is finite.

An obvious (purely combinatorial) corollary is that Ω̇ is also finite.

Definition 8. The transition system TΩ̇ is defined as follows:

• Q := Ω̇, and
• ω̇1 → ω̇2 for ω̇1, ω̇2 ∈ Q if and only if ω1 = ω2 and the dot on ω̇2 is to the

right of (or in the same) position as the dot on ω̇1.

Theorem 1. [3] Let the o-minimal dynamical system γ be bijective, and the
partition P be definable in the o-minimal structure. Then there is a finite bisim-
ulation on Tγ with respect to P.

Proof. To prove the theorem one first shows that TΩ̇ is a bisimulation of Tγ , and
then considers the following equivalence relation ∼ on G2: y1 ∼ y2 iff for respec-
tive pre-images (x1, t1), (x2, t2), the locations of y1,y2 on trajectories Γx1

, Γx2

are described by the same dotted word ω̇. Then ∼ is the required bisimulation
(see details in [3]).

2.2 Pfaffian Functions and Related Sets

In what follows, in order to give a quantitative refinement of Theorem 1 we will
restrict our considerations of o-minimal dynamical systems to a particular case,
the class of Pfaffian dynamical systems. This section is a digest of the theory
of Pfaffian functions and sets definable with Pfaffian functions. The detailed
exposition can be found in the survey [6].

Definition 9. A Pfaffian chain of order r ≥ 0 and degree α ≥ 1 in an open
domain G ⊂ IRn is a sequence of real analytic functions f1, . . . , fr in G satisfying
differential equations

∂fj
∂xi

= gij(x, f1(x), . . . , fj(x)) (1)

for 1 ≤ j ≤ r, 1 ≤ i ≤ n. Here gij(x, y1, . . . , yj) are polynomials in x =
(x1, . . . , xn), y1, . . . , yj of degrees not exceeding α.

A function
f(x) = P (x, f1(x), . . . , fr(x)),

where P (x, y1, . . . , yr) is a polynomial of a degree not exceeding β ≥ 1, the se-
quence f1, . . . , fr is a Pfaffian chain of order r and degree α, is called a Pfaffian
function of order r and degree (α, β).
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Apart from polynomials, the class of Pfaffian functions includes real algebraic
functions, exponentials, logarithms, trigonometric functions, their compositions,
and other major transcendental functions in appropriate domains (see [5]).

Now we introduce classes of sets definable with Pfaffian functions. In the
case of polynomials they reduce to semialgebraic sets whose quantitative and
algorithmic theory is treated in [2].

Definition 10. A set X ⊂ IRn is called semi-Pfaffian in an open domain G ⊂
IRn if it consists of the points in G satisfying a Boolean combination of some
atomic equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions
having a common Pfaffian chain defined in G. A semi-Pfaffian set X is restricted
in G if its topological closure lies in G.

Definition 11. A set X ⊂ IRn is called sub-Pfaffian in an open domain G ⊂ IRn

if it is the image of a semi-Pfaffian set under a projection into a subspace.

In the sequel we will be dealing with the following subclass of sub-Pfaffian sets.

Definition 12. Consider the closed cube [−1, 1]m+n in an open domain G ⊂
IRm+n and the projection map π : IRm+n → IRn. A subset Y ⊂ [−1, 1]n is
called restricted sub-Pfaffian if Y = π(X) for a restricted semi-Pfaffian set X ⊂
[−1, 1]m+n.

Note that a restricted sub-Pfaffian set need not be semi-Pfaffian.

Definition 13. Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M
{x ∈ IRn| fi1 = 0, . . . , fili = 0, gi1 > 0, . . . , giji > 0} ⊂ G (2)

where fis, gis are Pfaffian functions with a common Pfaffian chain of order r and
degree (α, β), defined in an open domain G. Its format is the tuple (r,N, α, β, n),
where N ≥ ∑1≤i≤M (li + ji). For n = m + k and a sub-Pfaffian set Y ⊂ IRk

such that Y = π(X), its format is the format of X.

We will refer to the representation of a semi-Pfaffian set in the form (2) as to
the disjunctive normal form (DNF).

Remark 1. In this paper we are concerned with upper and lower bounds on sizes
of bisimulations as functions of the format. In the case of Pfaffian dynamical
systems these sizes and complexities also depend on the domain G. So far our
definitions have imposed no restrictions on an open set G, thus allowing it to be
arbitrarily complex and to induce this complexity on the corresponding semi-
and sub-Pfaffian sets. To avoid this we will always assume in the context of
Pfaffian dynamical systems that G is “simple”, like IRn, or (−1, 1)n.

Theorem 2. [6,17] Consider a semi-Pfaffian set X ⊂ G ⊂ IRn, where G is
an open domain, represented in DNF with a format (r,N, α, β, n). Then the sum
of the Betti numbers (in particular, the number of connected components) of X
does not exceed Nn2r(r−1)/2O(nβ + min{n, r}α)n+r.
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Theorem 3. ([7], Section 5.2) Consider a sub-Pfaffian set Y = π(X) as de-
scribed in Definition 12. Let X be closed and represented in DNF with a format
(r,N, α, β, n+m). Then the kth Betti number bk(Y ) does not exceed

k((k+1)N)n+(k+1)m2(k+1)r((k+1)r−1)/2O((n+km)β+min{kr, n+km}α)n+(k+1)(m+r).

Let d > α+ β. Relaxing the bound from Theorem 3, we get

bk(Y ) ≤ (kN)O(n+km)2O((kr)2)((n+ km)d)O(n+km+kr).

3 The Upper Bound on Sizes of Finite Bisimulation of
Pfaffian Dynamical Systems

It was shown in [13] that in an o-minimal hybrid system the continuous and
discrete components can be separated, and therefore the problem of finite bisim-
ulation reduces to the same problem for a transition system associated with a
continuous dynamical system. Moreover the size of the bisimulation is linear in
the number of discrete components (locations) of the hybrid system.

It follows from [16] that the Pfaffian hybrid systems are a subclass of o-minimal
hybrid systems, therefore we can restrict ourselves to Pfaffian dynamical systems
and partitions defined by semi-Pfaffian sets. Our main results concern upper and
lower bounds for finite bisimulations of Pfaffian dynamical systems with respect
to partitions defined by semi-Pfaffian sets.

Definition 14. A dynamical system γ : G1 × (−1, 1) → G2, where G1 ⊆ IRm

and G2 ⊆ IRn are open and γ is a map with a semi-Pfaffian graph, is called a
Pfaffian dynamical system.

Let γ : G1 × (−1, 1) → G2, where G1 = In−1 := (−1, 1)n−1 and G2 = In, be
a homeomorphism, defined by its graph Γ̂ := {(x, t,y)| γ(x, t) = y} which is a
semi-Pfaffian set, and P be a partition of G2 into semi-Pfaffian sets. Suppose the
number of functions involved in the definitions of the graph Γ̂ and the partition
P does not exceeds N , and each of these functions has the order r and the degree
(α, β).

Theorem 4. Let Tγ = (G2,→) be the transition system associated to the dy-
namical system γ. Then there is a bisimulation on Tγ with respect to P consisting
of at most NO(n4)(n(α + β))O(n6r3) equivalence classes.

Remark 2. The best upper bound known until now [10] was double exponential:

N (r+n)O(n)

(α+ β)(r+n)O(n3
)

These results show that, w.r.t the size of coarsest bisimulations, Pfaffian hybrid
systems behave like timed automata (see [1]). We consider an elementary exam-
ple illustrating techniques which we use to show the single exponential upper
bounds in the general case. For the full proof of Theorem 4 we refer to [11].
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Let G1 := (−1, 1), G2 := (−1, 1)2, and γ : (x, t) )→ (y1 = x, y2 = t). (Note
that this dynamical system corresponds to the system of differential equations
ẏ1 = 0, ẏ2 = 1.) Consider the graph Γ̂ := {(x, t, y1, y2)|x−y1 = 0, t−y2 = 0} of
the map γ. Note that Γ̂ is an intersection of the 4-cube (−1, 1)4 with a 2-plane,
and therefore is a smooth manifold. In the general case the graph of a dynamical
system may not be smooth and we will need to separate smooth and singular
parts of it. For a fixed x ∈ G1 the set Γ̂x := {(t, y1, y2)| x − y1 = 0, t− y2 = 0}
is the integral curve, and the set Γx := {(y1, y2)| ∃t (x − y1 = 0, t− y2 = 0)} is
the trajectory of γ. Thus, in our example, the trajectories are open segments of
straight lines parallel to y2-axis.

Introduce the projection π : G1× (−1, 1)×G2 → G1 as (x, t, y1, y2) )→ x. Let
πΓ be the restriction of π on Γ̂ . For a fixed x ∈ G1 the fiber π−1

Γ
(x) coincides

with Γ̂x. Let the partition P of G2 consist of the disc {(y1, y2)| f := y2
1 +

y2
2 − 1/4 ≤ 0} labelled by letter A and its complement in G2 labelled by B.

The aim is to determine the number of different words in the alphabet {A,B}
encoding the trajectories. Clearly, it is sufficient to consider only intersections
of the trajectories with the open sets {(y1, y2)| f < 0} and {(y1, y2)| f > 0} (in
the general case, the transition to open sets is less trivial).

Let Ŝ := {(x, t, y1, y2)| f(y1, y2) = 0}. Observe that Ŝ ∩ Γ̂ is a smooth curve.
Consider the partition P̂ of Γ̂ consisting of {(x, t, y1, y2)|f := y2

1 +y2
2−1/4 ≤ 0}

labelled by letter A and its complement in Γ̂ labelled by B. Clearly, it is sufficient
to find the number of distinct words encoding the intersections of integral curves
with open sets {(x, t, y1, y2)| f < 0} ∩ Γ̂ and {(x, t, y1, y2)| f > 0} ∩ Γ̂ .

Consider the restriction πΓS : Γ̂ → G1 of πΓ to Ŝ ∩ Γ̂ . Let C be the set of
all critical values of πΓS . By setting to 0 the appropriate Jacobian we find that
the critical points of πΓS are (1/2, 0, 1/2, 0) and (−1/2, 0,−1/2, 0), thus C =
{1/2,−1/2}. Let R := G1 \C. This set consists of three connected components:

{x ∈ (−1, 1)|x < −1/2}, {x ∈ (−1, 1)|−1/2 < x < 1/2}, {x ∈ (−1, 1)|1/2 < x}.

Proposition 1. If x, x′ belong to the same connected component R′ of R, then
Γ̂x and Γ̂x′ are labelled by the same word.

In the general case the proposition requires a careful proof. As applied to our
example, this proof has the following scheme.

(1) The restriction of πΓS to π−1
ΓS

(R′) is a trivial covering, i.e., for any x′ ∈ R′

the pre-image π−1
ΓS

(R′) is homeomorphic to π−1
ΓS

(x′)×R′. In our example, in the
only non-trivial case of R′ = {x ∈ (−1, 1)| − 1/2 < x < 1/2}, we have:

π−1
ΓS

(R′) = (Ŝ ∩ Γ̂ ) \ {(1/2, 0, 1/2, 0), (−1/2, 0,−1/2, 0)}

is an oval minus two points, which is homeomorphic to the Cartesian product
of the pair of points π−1

ΓS
(x′) by the interval R′. In other words, the connected

components of π−1
ΓS

(R′) are two open arcs of simple curves.
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(2) These arcs are naturally ordered separating the difference π−1
Γ

(R′)\π−1
ΓS

(R′)
into ordered connected components. In the case of R′ = {x ∈ (−1, 1)| − 1/2 <
x < 1/2} the components are (in order):

{(x, t, y1, y2) ∈ Γ | (−1/2 < x < 1/2) ∧ (f > 0) ∧ (y2 < 0)},

{(x, t, y1, y2) ∈ Γ | (−1/2 < x < 1/2) ∧ (f < 0)},

{(x, t, y1, y2) ∈ Γ | (−1/2 < x < 1/2) ∧ (f > 0) ∧ (y2 > 0)}.

For any x ∈ R′ the integral curve Γ̂x intersects these connected components
according to their order.
(3) Each connected component of the difference π−1

Γ
(R′) \ π−1

ΓS
(R′) lies either in

the component {(x, t, y1, y2)| f < 0}, or in {(x, t, y1, y2)| f > 0}, and, therefore
can be naturally labelled by A or B respectively. Since the connected components
are ordered, the difference π−1

Γ
(R′) \ π−1

ΓS
(R′) itself is labelled by a word (in the

case of R′ = {x ∈ (−1, 1)| − 1/2 < x < 1/2} by BAB). It follows that for any
x ∈ R′ the integral curve Γ̂x is labelled by this word, and the proposition is
proved.

Proposition 1 implies that the number of distinct realizable words does not
exceed the number of all connected components of R. In our example the latter
is 3, which equals to the cardinality of the discrete set C plus 1. The general case
uses the far-reaching extension of such method of counting, Alexander’s duality,
Theorems 2, 3 and Sard’s Theorem (see [11]).

4 Lower Bound

We construct a parametric example of a semi-algebraic dynamical system G1 ×
(−1, 1) → G2 together with a semi-algebraic partition of G2 such that the format
of both of them is (d, n) (degrees, number of variables) while the number of
different words (size of a bisimulation) is dΩ(n).

Let g(y) be a polynomial of degree d such that |g(y)| < 1 for every y ∈ (−1, 1)
and for every c ∈ (− 1

2 ,
1
2 ) the polynomial g(y)− c has d simple roots in (−1, 1).

First we illustrate the idea of the example by describing the case n = 2. Let
the dynamical system be given by G1 := (−1, 1), G2 := (−1, 1)2, γ : (x, t) )→
(t,x). The partition P consists of two sets A and B = G2 \ A where A :=
{(y1, y2)| g(y1) = 0, y1 + y2 > 0}. Notice that there are exactly d + 1 distinct
words encoding all trajectories of the defined dynamical system. These words
are formed by alternating letters starting and ending with B, i.e., B, BAB, . . . ,
BABABAB, . . . For arbitrary n, let G1 := (−1, 1), G2 := (−1, 1)n. Define a
curve

Δ := {(y1, . . . , yn−1) ∈ (−1, 1)n−1| y2 = g(y1), . . . , yn−1 = g(yn−2)}

Observe that Δ is connected in (−1, 1)n−1, being the graph of a map f :
(−1, 1) → (−1, 1)n−1, y1 )→ (g(y1), . . . , g(g(· · · g(y1) · · ·))), and smooth.
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Consider the polynomial h(yn−1) := (yn−1 − b1)(yn−1 − b2) · · · (yn−1 − bd)
where all bi ∈ (− 1

2 ,
1
2 ) and bi �= bj for i �= j. Then Δ ∩ {h = 0} consists of

dn−1 points. Define A := {(y1, . . . , yn)| (y1, . . . , yn−1) ∈ Δ,h(yn−1) = 0, L > 0},
where L(y1, . . . , yn) is a generic linear homogeneous polynomial such that {L =
0} intersects all dn−1 parallel straight lines of {(y1, . . . , yn)| (y1, . . . , yn−1) ∈
Δ,h(yn−1) = 0}. Notice that the projection of this intersection on the yn-
coordinate consists of dn−1 distinct points.

Finally, define the dynamical system γ and the partition P as follows. The
function γ maps x ∈ G1 and t ∈ (−1, 1) to the point (f(t),x) ∈ G2. The partition
P consists of A and B = G2 \ A. Clearly, there are exactly dn−1 + 1 pairwise
distinct words encoding all trajectories.

In order to meet the requirement: G1 has to be homeomorphic to In−1, G2
has to be homeomorphic to In, we can do the following modifications.

Observe that there is a small enough ε > 0 such that for any sequence 0 <
ε1, . . . , εn−2 ≤ ε and any sequence ∗1, . . . , ∗n−2 ∈ {+,−}, the algebraic set

Δ′ := {(y1, . . . , yn−1) ∈ (−1, 1)n−1| y2 = g(y1) ∗1 ε1, . . . , yn−1 = g(yn−2) ∗n−2 εn−2}

is a smooth connected curve. These curves are disjoint and their union is

Δ
′′

:=
⋂

1≤i≤n−2{(y1, . . . , yn−1) ∈ (−1, 1)n−1| − ε < yi+1 − g(yi) < ε}.

Let G1 := (−ε, ε)n−2 × (−1, 1), G2 = Δ
′′ × (−1, 1) and γ : G1 × (−1, 1) →

G2, such that

(∗1ε1, . . . , ∗n−2εn−2, x, t) )→ (g(t) ∗1 ε1, . . . , g(g(· · · g(t) · · ·)) ∗n−2 εn−2, x)

Note that γ is a diffeomorphism. It is obvious that the modified γ still has at
least dΩ(n) trajectories with pairwise distinct word codes with respect to the
partition P .

Let us summarize the obtained lower bound in the following theorem.

Theorem 5. There exists a family of Pfaffian dynamical systems such that the
sizes of bisimulations are bounded from below by an exponential function on the
parameters of the system.

5 Future Work

In [10] the authors proposed an algorithm (a Blum-Shub-Smale type machine
with an oracle for deciding non-emptiness of semi-Pfaffian sets) for computing
a finite bisimulation. That algorithm is based on the cylindrical cell decompo-
sition technique and, accordingly, has a double exponential upper complexity
bound. It seems feasible to construct a bisimulation algorithm with single expo-
nential complexity using the approach employed in the present paper. Once a
bisimulation is computed, it can be used in efficient algorithms for fundamen-
tal computational problems such as deciding reachability or motion planning in
definable dynamical systems.
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Forcing with Random Variables
and Proof Complexity

Jan Kra j́ıček1,2
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A fundamental problem about the strength of non-deterministic computations is
the problem whether the complexity class NP is closed under complementation.
The set TAUT (w.l.o.g. a subset of {0, 1}∗) of propositional tautologies (in
some fixed, complete language, e.g. DeMorgan language) is coNP-complete. The
above problem is therefore equivalent to asking if there is a non-deterministic
polynomial-time algorithm accepting exactly TAUT .

Cook and Reckhow (1979) realized that there is a suitably general defini-
tion of propositional proof systems that encompasses traditional propositional
calculi but links naturally with computational complexity theory. Namely, a
propositional proof system is defined to be a binary relation (on {0, 1}∗) P (x, y)
decidable in polynomial time such that x ∈ TAUT iff ∃y, P (x, y). Any y such
that P (x, y) is called a P -proof of x.

It is easy to see (viz Cook and Reckhow (1979)) that the fundamental prob-
lem becomes a lengths-of-proofs question: Is there a propositional proof system
in which every tautology admits a proof whose length is bounded above by a
polynomial in the length of the tautology?

Proving lower bounds for particular propositional proof systems appears
rather difficult. For example, no non-trivial lower bounds are known even for
the ordinary text-book calculus based on a finite number of axiom schemes and
inference rules (a Frege system in the terminology of Cook and Reckhow (1979)).

Proof complexity applies methods from logic, from finite combinatorics, from
complexity theory (in particular, from circuit complexity, communication com-
plexity, cryptography, or derandomization), from classical algebra (field theory
or representation theory of groups), and even borrows abstract geometrical con-
cepts like Euler characteristic or Grothendieck ring.

However, the most stimulating for proof complexity are its multiple connec-
tions to bounded arithmetic. In particular, the task of proving lower bounds (for
any particular proof system) is equivalent to the task of constructing suitably
non-elementary extensions of models of a bounded arithmetic theory (the theory
in question depends on the proof system we want lower bounds for). Most lower
bounds can be explained very naturally as constructions of such extensions (and
some of the most treasured ones were discovered in this way).

In particular, models M to be extended are cuts in models of true arithmetic
(they can be “explicitly” obtained as bounded ultrapowers of N). Extensions N
of M we are after should preserve polynomial-time properties but should not be
elementary w.r.t. NP-properties. There are two things going against each other:
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Under how fast functions is M closed and how strong theory model N satisfies.
The former issue influences the rate of the lower bound deduced, the latter one
the strength of the proof system for which it is proved.

I shall describe a new method for constructing these extensions. The models
are Boolean-valued and are formed by random variables.
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Abstract. We introduce two hierarchies of unknown ordinal height. The
hierarchies are induced by natural fragments of a calculus based on finite
types and Gödel’s T , and all the classes in the hierarchies are uniformly
defined without referring to explicit bounds. Deterministic complexity
classes like logspace, p, pspace, linspace and exp are captured by the
hierarchies. Typical subrecursive classes are also captured, e.g. the small
relational Grzegorczyk classes E0

∗ , E1

∗ and E2

∗ .

Keywords: Complexity theory, subrecursive classes, types, λ-calculi,
Gödel’s T .

1 Introduction

In this paper we introduce two hierarchies. Many of the well-known deterministic
complexity classes, e.g. logspace, p, pspace, linspace and exp, can be found
in the hierarchies. These classes are defined by imposing explicit resource bounds
on Turing machines, but note that the classes are not uniformly defined as some
are defined by imposing time bounds, whereas other are defined by imposing
space bounds. Small subrecursive classes can also be found in our hierarchies,
e.g. the relational Grzegorczyk classes E0∗ , E1∗ and E2∗ . In contrast to a complexity
class, a subrecursive class is defined as the least class containing some initial
functions and closed under certain composition and recursion schemes. Some of
the schemes might contain explicit bounds, but no machine models are involved.

The two hierarchies are induced by neat and natural fragments of a calculus
based on finite types and Gödel’s T , and all the classes in the hierarchies are
uniformly defined without referring to explicit bounds. Thus, one should not
expect the hierarchies to capture such a wide variety of classes, that is, both
time classes, space classes and subrecursive classes. This indicates that a further
investigation of the hierarchies might be rewarding, and perhaps shed light upon
some of the notoriously hard open problems involving the classes captured by
the hierarchies, e.g. maybe some of these problems turn out to be related in
some unexpected way. (We comment on some of these open problems in Section
4 and Section 5 ) Moreover, the ingredients of the theoretic framework nour-
ishing the hierarchies are well known and thoroughly studied in the literature,
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e.g. the ordinal numbers, the typed λ-calculi, cut-elimination, rewriting systems
and Gödel’s T . Advanced and well proven techniques of mathematical logic and
computability theory will thus be available facilitating the investigations.

2 Types

Definition. We define the types recursively: q is a type (primitive type); ι is a
type (primitive type); σ ⊕ τ is a type if σ and τ are types (sum types); σ ⊗ τ is
a type if σ and τ are types (product types); σ → τ is a type if σ and τ are types
(arrow types). We use typ to denote the set of all types. We use σ, σ′ → σ′′

as alternative notation for σ → (σ′ → σ′′). We interpret σ → σ′ → σ′′ by
associating parentheses to the right, i.e. as σ → (σ′ → σ′′).

We define the cardinality of type σ at base b, written |σ|b, by recursion on the
structure of the type σ: |q|b = 1; |ι|b = b; |ρ⊕τ |b = |ρ|b+|τ |b; |ρ⊗τ |b = |ρ|b×|τ |b;
and |ρ→ τ |b = |τ ||ρ|bb .

A type σ is of level n when lv(σ) = n where lv(q) = 0; lv(ι) = 0; lv(σ ⊕ τ) =
max(lv(σ), lv(τ)); lv(σ ⊗ τ) = max(lv(σ), lv(τ)); and

lv(σ → τ) =
{

lv(τ) if ∃k ∀x ( |σ|x = k )
max(lv(σ) + 1, lv(τ)) otherwise.

We define the relation ≺⊆ typ× typ by

σ ≺ τ ⇔def ∃x0 ∀x > x0 ( |σ|x < |τ |x )

and the relation 3⊆ typ× typ by σ 3 τ ⇔def σ ≺ τ ∨ ∀x ( |σ|x = |τ |x ).  !
Skolem [25] conjectures that ≺ is a well-ordering of the set typ, and he asks
what the ordinal number of this well-ordering will be. Ehrenfeucht [4] proves
that ≺ indeed is a well-ordering, and Levitz [19] proves that the least critical
epsilon number is an upper bound for the ordinal of the well-ordering. It follows
from the results in [25] that if we restrict the arrow types to types of the form
σ → ι, then the ordinal will be ε0. If we omit product types, the ordinal will
also be ε0. We will develop our theory without any such restrictions, and thus,
all we know is that the actual ordinal corresponding to the well-ordering ≺, lies
somewhere between ε0 and the the least critical epsilon number. (Levitz [19]
conjectures that the actual ordinal indeed is ε0.)

3 Calculi

Definition. We define the terms of the typed λ-calculus.

– We have an infinite supply of variables xσ0 , xσ1 , xσ2 , . . . for each type σ. A
variable of type σ is a term of type σ;

– λxM is a term of type σ → τ if x is a variable of type σ and M is a term of
type τ (λ-abstraction)

– (MN) is a term of type τ if M is a term of type σ → τ and N is a term of
type σ (application)
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– 〈M,N〉 is a term of type σ ⊗ τ if M is a term of type σ and N is a term of
type τ (product)

– fstM is a term of type σ if M is a term of type σ ⊗ τ (projection)
– sndM is a term of type τ if M is a term of type σ ⊗ τ (projection)
– inlτM is a term of type σ ⊕ τ if M is a term of type σ
– inrτM is a term of type τ ⊕ σ if M is a term of type σ
– δ(xM, yN, P ) is a term of type ξ if M and N are terms of type ξ; P is a

term of type σ⊕ τ ; x and y are variables of type σ and τ respectively (case).

We define the reduction rules of the typed λ-calculus. We have the following
β-conversions:

– (λxM)N �M [x := N ] if x �∈ FV (N)
– fst〈M,N〉�M and snd〈M,N〉�N
– δ(xM, yN, inl(P )) �M [x := P ] if x �∈ FV (P )
– δ(xM, yN, inr(P )) �N [y := P ] if y �∈ FV (P )

Further, we have standard α-conversion and all the other standard reduction
rules (MN)� (MN ′) if N�N ′; (MN)� (M ′N) if M �M ′; . . . etcetera. We will
use the standard conventions in the literature and e.g. F (X,Y ) means ((FX)Y ).

The calculus T− is the typed λ-calculus extended with the constants q :q and
1: ι, and for each type σ, the recursor Rσ of type σ, ι→ σ → σ, ι→ σ.

The calculus T is the calculus T− extended with the constants 0 : ι (zero)
and s : ι → ι (successor), the reduction rule 1 � s0, and for each type σ, the
reduction rules Rσ(P,Q, 0) � P and Rσ(P,Q, sN) �Q(N,Rσ(P,Q,N)).

We use n to denote the numeral sn0 where s00 = 0 and sn+10 = s(sn0). We
will use

�
� to denote the transitive-reflexive closure of �.  !

It is crucial that the successor s cannot occur in a T−-term, and the reader
should note that the calculus T− has no reduction rules in addition to those of
the standard typed λ-calculus. E.g., the term Rσ(M,N, 1) is irreducible in the
calculus T− if M and N are irreducible. Reductions take place in the system T ,
and � is the standard reduction relation for Gödel’s system T .

It is well known that any closed T -term of type ι normalises to a unique
numeral. Thus, a closed term M of type ι → ι defines a function f : N → N,
and the value f(n) can be computed by normalising the term Mn. Any function
provably total in Peano Arithmetic is definable in T . (See [1] for more on the
T -calculus and Gödel’s T .) If we disallow occurrences of the successor s in the
defining terms, the class of functions definable is of course severely restricted.
(Indeed, at a first glance it is hard to believe that any interesting functions at
all can be defined without the successor function.) Roughly speaking, T− is the
calculus T where successors are not admissible in the defining terms.

The constant q should be interpreted as the sole element in the type q.

Definition. A problem is a subset of N. A term M : ι→ ι decides a problem A

when Mn
�
� 0 iff n ∈ A. Let T−

σ denote the set of T− terms such that M ∈ T−
σ

iff we have τ 3 σ for every recursor Rτ occurring in M .
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We define the set of problems Gσ by A ∈ Gσ iff A is decided by a T−
τ -term

where τ ≺ σ. We define the hierarchy G by G =
⋃

σ∈typ

Gσ.

The hierarchy Gb =
⋃

σ∈typ

Gb
σ is defined as the hierarchy G, with one ex-

ception: we use dyadic notation for the numerals, that is, the hierarchy is in-
duced by a calculus with two successors constants s0 : ι → ι and s1 : ι → ι.
The recursor should of course be adjusted accordingly, that is, for any type
σ we have the recursor Rb

σ : σ, ι→ σ → σ, ι→ σ → σ, ι→ σ and the reduction
rules Rb

σ(P,Q1, Q0, 0) � P and Rb
σ(P,Q1, Q0, siN) � Qi(N,Rb

σ(P,Q1, Q0, N))
(for i = 0, 1).  !

4 Complexity Classes

Complexity classes are defined by imposing explicit resource bounds on Turing
machines. We will assume that the reader is familiar with Turing machines and
basic complexity theory. For more on the subject see e.g. Odifreddi [20].

Definition. A Turing machine M decides a problem A when M on input x ∈ N
halts in a distinguished accept state if x ∈ A, and in a distinguished reject
state if x �∈ A. The input x ∈ N should be represented in binary on the Turing
machine’s input tape. We will use |x| to denote the length of the standard binary
representation of the natural number x. For i ∈ N, we define time 2lin

i (space 2lin

i )
to be the set of problem decidable by a deterministic Turing machine working
in time (space) 2c|x|i for some fixed c ∈ N (where 2x0 = x and 2xi+1 = 22x

i ).  !
It is trivial that time 2lin

i ⊆ space 2lin

i and space 2lin

i ⊆ time 2lin

i+1, and thus, we
have an alternating space-time hierarchy

space 2lin

0 ⊆ time 2lin

1 ⊆ space 2lin

1 ⊆ time 2lin

2 ⊆ space 2lin

2 ⊆ time 2lin

3 ⊆ . . . .

The three classes at the bottom of the hierarchy are often called respectively
linspace, exp, and expspace in the literature. It is well known, and quite
obvious, that we have space 2lin

i ⊂ space 2lin

i+1 and time 2lin

i ⊂ time 2lin

i+1 for
any i ∈ N. Thus, we know that at least one of the two inclusions

space 2lin

i ⊆ time 2lin

i+1 ⊆ space 2lin

i+1

are strict, similarly, we know that at least one of the inclusions

time 2lin

i ⊆ space 2lin

i ⊆ time 2lin

i+1

are strict, and the general opinion is that all they all are. Still, no one has ever
been able to prove that any particular of the inclusions actually is strict.

Definition. Let logspace denote the set of problems decided by a Turing
machine working in logarithmic space. Let time 2pol

i (space 2pol

i ) denote the set
of problems decided by a Turing machine working in time (space) 2p(|x|)i for some
polynomial p.  !
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This definition yields another alternating space-time hierarchy

logspace ⊆ time 2pol

0 ⊆ space 2pol

0 ⊆ time 2pol

1 ⊆ space 2pol

1 ⊆ time 2pol

2 ⊆ . . .

analogous to the hierarchy above. The analogous open problems do also emerge.
Let Ci, Ci+1, Ci+2 be three arbitrary consecutive classes in the hierarchy. It is
well-known that Ci ⊂ Ci+2, so at least one of the two inclusions Ci ⊆ Ci+1 and
Ci+1 ⊆ Ci+2 will be strict. Still, for any fixed j ∈ N, it is an open problem if Cj
is strictly included in Cj+1. Note that time 2pol

0 and space 2pol

0 are the classes
usually denoted respectively p and pspace in the literature, so the notorious
open problem logspace

?⊂ p
?⊂ pspace emerges at the bottom of the hierarchy.

The relationship between the two alternating space-time hierarchies is also a
bit of a mystery. The only thing known about the relationship between space 2lin

i

and time 2pol

i is that the two classes cannot be equal. So, it is known that e.g.
linspace �= p, but it is an open problem if linspace is strictly included in p, or
if p is strictly included in linspace, or if neither of the two classes is included
in the other.

Definition. We will use bold faced natural numbers 0,1,2, . . . to denote the
pure types, that is, 0 = ι and n + 1 = n → ι, and we will say that Gn (respectively
Gb
n) is a pure class in the hierarchy G (respectively Gb).  !

It turns out that the pure classes in the hierarchies G and Gb match the classes in
the alternating time-space hierarchies. We state the next lemma without proof.

Lemma 1. We have lv(σ) = n iff σ ≺ n + 1.

The alternating space-time hierarchies have enjoyed some attention from re-
searchers in finite model theory. Goerdt & Seidel [7] (and Goerdt [8]) use finite
models to characterise the latter of the hierarchies. Inspired by Goerdt & Sei-
del’s work, Kristiansen & Voda [16] show that the two hierarchies match, level
by level, hierarchies induced by a successor-free fragment of Gödel’s T . The next
theorem follows straightforwardly from Lemma 1 and the results proved in [16].
The theorem also follows from results proved in Kristiansen & Voda [17]. The
proofs in [17] are based on an adaption of Schwichtenberg’s Trade-off Theorem
to a complexity-theoretic context and are essentially different from those in [16].
For more on Schwichtenberg’s Theorem see [24].

Theorem 1. The pure classes in the hierarchy G match the classes in the al-
ternating space-time hierarchy starting with linspace, that is, we have

space 2lin

i = G2i and time 2lin

i+1 = G2i+1

for any i ∈ N. The pure classes in the hierarchy Gb match the classes in the
alternating space-time hierarchy starting with logspace, that is, logspace =
Gb
0 and

space 2pol

i = Gb
2i+2 and time 2pol

i = Gb
2i+1

for any i ∈ N.
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5 Subrecursive Classes

Definition. We will use some notation and terminology from Clote [3]. An
operator, here also called (definition) scheme, is a mapping from functions to
functions. Let X be a set of functions (possibly given in a slightly informal no-
tation), and let op be a collection of operators. The function algebra [X ;op]
is the smallest set of functions containing X and closed under the operations
of op. comp denotes the definition scheme called composition, i.e. the scheme
f(*x) = h(g1(*x), . . . , gm(*x)) where m ≥ 0. br denotes the scheme bounded (prim-
itive) recursion, i.e. the scheme

f(*x, 0) = g(*x) f(*x, y + 1) = h(*x, y, f(*x, y)) f(*x, y) ≤ j(*x, y)

Let S denote the successor function, and let Ini denote the projection func-
tion, i.e. Ini (*x) = xi where *x = x1, . . . , xn and 1 ≤ i ≤ n. Let I denote
the set of all such projection functions. The small Grzegorczyk classes E0, E1

and E2 are defined by E0 = [I, 0, S;comp,br], E1 = [I, 0, S,+;comp,br] and
E2 = [I, 0, S,+, x2 + 2;comp,br].

A unary number-theoretic function f decides the problem A when f(x) = 0
iff x ∈ A. For any set F of number-theoretic functions F∗ denotes the set of
problem decided by the functions in F .

A problem A is rudimentary when there exist a Δ0
0 statement φ(x) in Peano

Arithmetic such that x ∈ A iff N |= φ(x), and ΔN
0 denotes the class of rudimen-

tary problems.  !
Our use of the ∗ subscript differs slightly from the literature standard. Normally,
F∗ denotes the 0-1 valued functions in F whereas we use F∗ to denote the set
of problem decided by the functions in F . This is a matter of convenience, and
the deviation has no essential mathematical implications. Our definitions of the
Grzegorczyk classes are the ones given in Rose [23]. Grzegorczyk [9] original def-
initions are slightly different, but yield the same classes of functions. The next
lemma states some important and well known properties of the small Grzegor-
czyk classes. The proofs can be found in Rose [23].

Lemma 2. (i) For any f ∈ E0 there exist fixed numbers i, k where 1 ≤ i ≤ n
such that f(x1, . . . , xn) ≤ xi + k. (ii) For any f ∈ E1 there exists a fixed number
k such that f(*x) ≤ kmax(*x, 1). (iii) For any f ∈ E2 there exists a polynomial p
such that f(*x) ≤ p(*x).

The next lemma is a consequence of Lemma 2 and will be used to prove the
main result of this section.

Lemma 3. (i) For any f ∈ E1 there exist f ′ ∈ E0 and fixed k ∈ N such that
f(*x) = f ′(y, *x) for any y ≥ kmax(*x, 1) (ii) For any f ∈ E2 there exist f ′ ∈ E0

and a fixed polynomial p such that f(*x) = f ′(y, *x) for any y ≥ p(*x). Moreover,
in both (i) and (ii) we have f ′(y, *x) ≤ y.

Proof. Assume f ∈ E1. It follows from Lemma 2 (ii) that there exists a fixed k ∈
N such that f ∈ [I, 0, S,+z, kmax(*x, 1);comp,br] where the ternary function
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+z is addition modulo z+1, that is, x+z y = x+ y (mod z+1). Now, +z ∈ E0,
and hence, it is easy to prove by induction over the build-up of f form the
functions in [I, 0, S,+z, kmax(*x, 1);comp,br] that there exists a function f ′

with the required properties. Thus, (i) holds. The proof of (ii) is similar; use
Lemma 2 (iii) and that the function x× y (mod z + 1) belongs to E0.  !

It is well know, and rather obvious, that ΔN
0 ⊆ E0

∗ ⊆ E1
∗ ⊆ E2

∗ , but it is not
known whether any of the inclusions are strict, indeed it is open if the inclusion
ΔN

0 ⊆ E2∗ is strict. It is proved in Bel’tyukov [2] that E1∗ = E2∗ implies E0∗ = E2∗ .
Furthermore, we know that ΔN

0 = E0
∗ implies ΔN

0 = E2
∗ (see Kristiansen & Barra

[13]). The open problems can be traced back to Grzegorczyk’s initial paper [9]
from 1953. For more on the Grzegorczyk classes and the rudimentary relations
see Clote [3], Rose [23], Kutylowski [18], Esbelin & More [5], Gandy [6], Paris &
Wilkie [21], Kristiansen & Barra [13].

Definition. Let bcomp denote the definition scheme called bounded composi-
tion, i.e. the scheme

f(*x) = h(g1(*x), . . . , gm(*x)) f(*x) ≤ j(*z)

where every variable in the list *z occurs in the list *x. (For technical reasons
we cannot just state the bound as f(*x) ≤ j(*x). All the variables in a bound
should be considered universally quantified, and e.g. the bound f(x, y) ≤ j(x)
should hold for all values of y.) We define the bounded successor function Ŝ by
Ŝ(x, y) = x + 1 if x < y; otherwise Ŝ(x, y) = y. For each type σ, we define the
function σ̂ by σ̂(x) = |σ|max(x,1)+1 − 1.  !

Theorem 2. We have Gσ⊕q = [I, 0, Ŝ, σ̂;bcomp,br]∗ for any type σ such that
0 ≺ σ ≺ 1.

We are now ready to state and prove one of the main theorems of this paper.
Clause (ii), (iii) and (iv) of the theorem are corollaries of Theorem 2. The long,
and occasionally very technical, proof of Theorem 2 can be found in Kristiansen
[11].

Theorem 3. (i) ΔN
0 ⊆ Gι⊕q. (ii) Gι⊕ι = E0

∗ . (iii) Gι⊗ι = E1
∗ . (iv) G1 = E2

∗ .

Proof. First we prove that we have the equivalence

f ∈ [I, 0, Ŝ, x+ k;bcomp,br] for some k ∈ N ⇔ f ∈ E0 . (*)

The left-right implication is trivial. To prove the right-left implication, let f ∈
E0, and chose any definition of f which witness membership in the function
algebra [I, 0, S;comp,br] = E0 Let f1, . . . , fm be the functions involved in the
definition. Let us say that f = fm. By Lemma 2 we have fixed i0, ki ∈ N
such that fi(x1, . . . , xn) ≤ xi0 + ki where 1 ≤ i0 ≤ n (for i = 1, . . . ,m). Let
k = max(k1, . . . , km). It is easy to see that f can be defined in the function
algebra [I, 0, Ŝ, x+ k;bcomp,br], and thus (*) holds.
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To see that (ii) holds, note that for every k ∈ N there exists a type σ such
that σ ≺ ι⊕ ι and x+ k < σ̂(x); and for every σ such that σ ≺ ι⊕ ι there exists
k ∈ N such that σ̂(x) < x+ k. Hence, (ii) follows from (*) and Theorem 2.

We prove (iii). Let A be a problem in E1
∗ . Thus, there exists fA ∈ E1 deciding

A. By Lemma 3 (i) there exists f ′ ∈ E0 and fixed k ∈ N such that fA(x) =
f ′(y, x) for any y ≥ kmax(x, 1). Furthermore we have f ′(y, x) ≤ y. There exists
a type σ such that kmax(x, 1) ≤ σ̂(x) and σ ≺ ι ⊗ ι, and since f ′ ∈ E0,
it follows easily from (*) that f ′ ∈ [I, 0, Ŝ, σ̂;bcomp,br]. Now, the function
algebra is closed under bounded composition, and hence we also have fA ∈
[I, 0, Ŝ, σ̂;bcomp,br] since fA(x) = f ′(σ̂(x), x) ≤ σ̂(x). By Theorem 2 we have
A ∈ Gι⊗ι. This proves E1∗ ⊆ Gι⊗ι.

Let A be a problem in Gι⊗ι. Thus, there exist a type σ and a function fA
deciding A such that σ ≺ ι ⊗ ι and fA ∈ [I, 0, Ŝ, σ̂;bcomp,br]. Since σ ≺ ι ⊗ ι
there exists a fixed k ∈ N such that σ̂(x) ≤ kmax(x, 1). Now, it is easy to see
that fA ∈ [I, 0, Ŝ, kmax(x, 1);bcomp,br]. Furthermore, it is easy to prove that
[I, 0, Ŝ, kmax(x, 1);bcomp,br] ⊆ E1. Hence, fA ∈ E1, and thus A ∈ E1∗ . This
proves Gι⊗ι ⊆ E1

∗ .
The proof of (iv) is similar to the proof of (iii). Use Lemma 3 (ii) in place

of Lemma 3 (i); use the fact that for any polynomial p(x) the exists a type σ
such that p(x) ≤ σ̂(x) and σ ≺ ι→ ι; and use the fact that for any type σ such
that σ ≺ ι→ ι there exists a polynomial p(x) such that σ̂(x) ≤ p(x). (i) follows
straightforwardly from results proved in Kristiansen & Barra [13].  !
It is well known that linspace = E2

∗ (Ritchie [22]), and hence, Clause (iv) of
Theorem 3 also follows from Theorem 1. The reader should note that the proof of
Theorem 1 is based on Turing machines whereas the proof of Theorem 3 makes
no detours via computations by machine models.

We expect a wide variety of more or less natural subrecursive classes to be
captured by our hierarchies, and hence, the hierarchies might turn out as apt
tools for analysing the relationship between subrecursive classes and complexity-
theoretic classes.

6 Nondeterminism

In this section we discuss a notion of nondeterminism that might be worth further
study. The basic idea is very simple: Let T̃− be the calculus T− extended by

– (M |N) is a term of type σ if M and N are terms of type σ
– (M |N) �M and (M |N) �N .

All the definitions in the preceding sections will still make sense when the calculus
T̃− replaces the calculus T−.

If C denotes a class of problems induced by T−-terms, let C̃ denotes the
corresponding class induced by T̃−-terms. Recall Theorem 1 states e.g. that
Gb
2 = pspace, that Gb

1 = p, and that Gb
0 = logspace. Will it be the case

that G̃b
1 = np and that G̃b

0 = nlogspace? Presumably it is, but this immediate
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conjecture does definitely require a meticulous proof. Also, since Gb
2 = pspace =

npspace, and since we presumably can prove G̃b
2 = npspace, we presumably

have Gb
2 = G̃b

2 . Still, it seems like e.g. Gb
2⊕ι �= G̃b

2⊕ι. For which types σ can we
prove Gb

σ = G̃b
σ , and for which types σ can we prove Gb

σ �= G̃b
σ ? We do indeed have

a nondeterministic version of any class in our hierarchies, even those classes we
cannot characterise by imposing natural resource bounds on Turing machines. In
particular, we have nondeterministic versions of the small Grzegorczyk classes E0∗
and E1

∗ . How do these nondeterministic Grzegorczyk classes fit into the picture?

7 References to Related Research

Some years ago the author (and others, e.g. Jones [10]) discovered that inter-
esting things tend to happen when successor-like functions are removed from a
standard computability-theoretic framework. The present paper is the last in a
series of papers investigating successor-free models of computation. In [14] we
characterise well-known complexity classes, like e.g. logspace and p, by frag-
ments of a first order imperative programming language, and in [12] we give
function algebraic characterisations of logspace and linspace.

Imperative and functional programming languages embodying higher types
are investigated in [15] and [16]. The system T− is introduced in [15], but no T−-
hierarchies are introduced. Two T−-hierarchies of ordinal height ω are introduced
in [16], and it is proved that these hierarchies capture the alternating space-time
hierarchies discussed in Section 4. In [17] we relate the functionals of T− to
the Kleene-Kreisel functionals and undertake a further study of the hierarchies
introduced in [16].

In [13] we study a T−-hierarchy of ordinal height ω where the classes in the
hierarchy adds up to E2

∗ . Neither E0
∗ nor E1

∗ are captured by the hierarchy.
The full hierarchies induced by admitting both arrow types, product types

and sum types, are introduced for the first time in the present paper. The main
original technical result of this paper is the theorem stating that E0

∗ , E1
∗ and

E2∗ are captured by the hierarchy G. A fairly complete proof of the theorem is
available in [11].
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Abstract. We prove that the homomorphic quasiorder of finite k-labe-
led forests has undecidable elementary theory for k ≥ 3, in contrast to
the known decidability result for k = 2. We establish also undecidablity
(again for every k ≥ 3) of elementary theories of two other relevant
structures: the homomorphic quasiorder of finite k-labeled trees, and of
finite k-labeled trees with a fixed label of the root element.

Keywords: Tree, labeled tree, forest, homomorphic quasiorder, unde-
cidability, elementary theory.

1 Introduction

In [Se04] (see also [H96]) the stucture (Fk;≤), k < ω, of finite k-labeled forests
with the homomorphic quasiorder was studied. The structure is interesting in
its own right since the homomorphic quasiorder is one in a series relations on
words, trees and forests relevant to computer science (see [Ku06] and references
therein). The original interest to this structure [Se04] was motivated by its close
relationship to the Boolean hierarchy of k-partitions [Ko00, KW00]. Throughout
this paper, k denotes an arbitrary integer, k ≥ 2, which is identified with the set
{0, . . . , k − 1}.

As was observed in [Ku06], elementary theory Th(Fk;≤) (and even the
monadic second order theory) of this structure is decidable for k = 2. For k > 2
the question on decidability of this structure was left open in [Ku06]. In this
paper we solve this question (and a couple of relevant questions) in the negative.
Next we recall some necessary definitions and formulate our main result.

We use some standard notation and terminology on posets which may be found
in any book on the subject, see e.g. [DP94]. We will not be very cautious when
applying notions about posets also to quasiorders (known also as preorders); in
such cases we mean the corresponding quotient-poset of the quasiorder.

A poset (P ;≤) will be often shorter denoted just by P (this applies also
to structures of other signatures in place of {≤}). Any subset of P may be
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considered as a poset with the induced partial ordering. In particular, this applies
to the ”cones” x̌ = {y ∈ P |x ≤ y} and x̂ = {y ∈ P |y ≤ x} defined by any x ∈ P .

By a forest we mean a finite poset in which every lower cone x̂ is a chain. A
tree is a forest having the least element (called the root of the tree). Note that
any forest is uniquely representable as a disjoint union of trees, the roots of the
trees being the minimal elements of the forest. A proper forest is a forest which is
not a tree. Notice that our trees and forests “grow bottom up”, like the natural
ones while trees in [Se04, Se06] grow in the opposite direction.

A k-labeled poset (or just a k-poset) is an object (P ;≤, c) consisting of a poset
(P ;≤) and a labeling c : P → k. Sometimes we simplify notation of a k-poset to
(P, c) or even to P . A morphism f : (P ;≤, c) → (P ′;≤′, c′) between k-posets is a
monotone function f : (P ;≤) → (P ′;≤′) respecting the labelings, i.e. satisfying
c = c′ ◦ f .

Let Fk and Tk be the classes of all finite k-forests and finite k-trees, respec-
tively. Define [Ko00, KW00] a quasiorder ≤ on Fk as follows: (P, c) ≤ (P ′, c′),
if there is a morphism from (P, c) to (P ′, c′). By ≡ we denote the equivalence
relation on Fk induced by ≤. For technical reasons we consider also the empty k-
forest ∅ (which is not assumed to be a tree) assuming that ∅ ≤ P for each P ∈ Fk.
Note that in this paper (contrary to notation in [Se04]) we assume that ∅ ∈ Fk.

For arbitrary finite k-trees T0, . . . , Tn, let F = T0 ! · · · ! Tn be their join, i.e.
the disjoint union. Then F is a k-forest whose trees are exactly T0, . . . , Tn. Of
course, every k-forest is (equivalent to) the join of its trees. Note that the join
operation applies also to k-forests, and the join of any two k-forests is clearly
their supremum under ≤. Hence, (Fk;≤) is an upper semilattice.

For every finite k-forest F and every i < k, let pi(F ) be the k-tree obtained
from F by joining a new smallest element and assigning the label i to this
element. In particular, pi(∅) will be the singleton tree carrying the label i. In
[Se06] some interesting properties of the operations p0, . . . , pk−1 were established.

For each i < k, let T i
k be the set of finite k-trees the roots of which carry

the label i. Our interest to the sets Fk, Tk and T i
k is explained by the above-

mentioned relation to the Boolean hierarchy of k-partitions. Namely, the sets
T i
k and Fk \ Tk generalize respectively Σ- (and Π-) levels and Δ-levels of the

Boolean hierarchy of k-partitions.
The main result of this paper is now formulated as follows.

Theorem 1. For all k > 2 and i < k, the elementary theories of the quotient
structures of (Fk;≤), (T i

k ;≤) and (Tk;≤) are undecidable.

In Section 2 we describe a general scheme of proving the three undecidability
results. In Sections 3, 4 and 5 we prove the three results one by one. We conclude
in Section 6 with mentioning some of remaining open questions.

2 Interpretation Scheme

In this section we isolate a general part in the proof of all the three undecidability
results.
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As is well known [E+65] (see also [E65]), for establishing undecidability of
elementary theory of a structure, say of a partial order (P ;≤), it suffices to
show that the class of finite models of the theory of two equivalence relations is
respectively elementary definable (or interpretable) in (P ;≤) with parameters.
It turns out that the following very particular interpretation scheme will work
in our case.

It suffices to find first order formulas φ0(x, p̄), φ1(x, y, p̄) and φ2(x, y, p̄) of
signature {≤} (where x, y are variables and p̄ is a string of variables called
parameters) with the following property:

(*) for every n < ω and for all equivalence relations ξ, η on {0, . . . , n} there are
values of parameters p̄ ∈ P such that the structure ({0, . . . , n}; ξ, η) is isomorphic
to the structure (φ0(P, p̄);φ1(P, p̄), φ2(P, p̄)).

Here
φ0(P, p̄) = {a ∈ P |(P ;≤) |= φ0(a, p̄)},

φ1(P, p̄) = {(a, b) ∈ P |(P ;≤) |= φ1(a, b, p̄)}
and similarly for φ2. So for each of the quotient structures (Fk;≤), (T i

k ;≤)
and (Tk;≤) it remains only to find suitable formulas φ0, φ1, φ2 and to specify
parameter values as described in (*).

3 Undecidability of Fk

Before going to the proof of undecidability of Th(Fk;≤) we recall some known
facts about this structure established in [Se04].

Proposition 1. For every k ≥ 2, the quotient structure of (Fk;≤) is a dis-
tributive lattice in which the non-zero join-irreducible elements are exactly the
elements defined by the finite k-trees.

In [Ko00] it was observed (this is actually an easy exercise) that for all k > 2
and n < ω there are repetition-free k-chains C0, . . . , Cn (i.e. repetition-free words
over the alphabet k) of the same length which are pairwise incomparable under
≤ and have the same label 0 on the roots.

Proof of Undecidability of Th(Fk;≤). Let ir(x) be a formula of signature
{≤} which defines in every lattice exactly the non-zero join-irreducible elements.
Such a formula is written easily in the signature {0,≤,∪}, namely

x �= 0 ∧ ∀y∀z(x ≤ y ∪ z → (x ≤ y ∨ x ≤ z)).

Since 0 and ∪ are first order definable in signature {≤} the last formula may be
rewritten as an equivalent formula of {≤}.

Let φ(x, u) be the formula

x ≤ u ∧ ir(x) ∧ ¬∃y > x(y ≤ u ∧ ir(y))
which means that x is a maximal non-zero join-irreducible element below u.
From Proposition 1 it follows that if u is a nonempty k-forest with pairwise
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incomparable trees then the set φ(Fk, u) (see Section 2) coincides with the set
of trees of u. In particular, if u = C0 ! · · · ! Cn then

φ(Fk, u) = {C0, . . . , Cn}. (1)

Let ψ(x, y, u, v) be the formula

φ(x, u) ∧ φ(y, u) ∧ ∃t(φ(t, v) ∧ x ≤ t ∧ y ≤ t).

To illustrate the meaning of ψ for an important particular case, fix the following
values of parameters u, v in Fk:

u = C0 ! · · · ! Cn, v = p1(
⊔

i∈ξ0
Ci) ! · · · ! p1(

⊔

i∈ξm

Ci), (2)

where ξ ⊆ (n + 1)2 is an equivalence relation on n + 1 = {0, . . . , n} and
(ξ0, . . . , ξm) is the partition of n + 1 to ξ-equivalence classes. By observation
from the last paragraph, Fk |= ψ(x, y, u, v) iff x = Ci and y = Cj for some
unique i, j ≤ n such that Ci, Cj ≤ t for some t = p1(!i∈ξl

Ci) and l ≤ m. In
other words, Fk |= ψ(x, y, u, v) iff x = Ci and y = Cj for some ξ-equivalent
i, j ≤ n. Therefore, for the values (2) we have

ψ(Fk, u, v) = {(Ci, Cj)|(i, j) ∈ ξ}. (3)

Now let p̄ be the string of variables u, v, w, φ0(x, p̄) be φ(x, u), φ1(x, y, p̄) be
ψ(x, y, u, v) and φ2(x, y, p̄) be ψ(x, y, u, w) (the last formula is obtained from
ψ(x, y, u, v) by substituting w in place of v). We claim that formulas φ0, φ1, φ2
satisfy the condition (*) from Section 2 for P = Fk. Let equivalence relations
ξ, η on n + 1 be given. Specify values of the parameters u, v as in (2), and the
value of parameter w as

w = p1(
⊔

i∈η0
Ci) ! · · · ! p1(

⊔

i∈ηl

Ci),

where (η0, . . . , ηl) is the partition of n+1 to η-equivalence classes. From (1) and
(3) we obtain

φ0(Fk, p̄) = {C0, . . . , Cn}, φ1(Fk, p̄) = {(Ci, Cj)|(i, j) ∈ ξ}
and

φ2(Fk, p̄) = {(Ci, Cj)|(i, j) ∈ η}.
This means that i )→ Ci defines an isomorphism of (n+1; ξ, η) onto the structure
(φ0(Fk, p̄);φ1(Fk, p̄), φ2(Fk, p̄)). This completes the proof.

4 Undecidability of T i
k

Before proving the undecidability result, we recall some necessary facts estab-
lished in [Se06].
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Proposition 2. (i) For all i, j < k, (T i
k ;≤) is isomorphic to (T j

k ;≤).
(ii) For every i < k, the quotient structure of (T i

k ;≤) is a distributive lattice
the non-zero join-irreducible elements of which are exactly the elements pipj(x),
where x ∈ Fk and j < k, j �= i. The supremum operation in this lattice is given
by x ∪ y = pi(x ! y).

(iii) The operations !, p0, . . . , pk−1 have the following properties in (Fk;≤):
x ≤ pi(x), x ≤ y → pi(x) ≤ pi(y) and pi(pi(x)) ≤ pi(x);
for all distinct i, j < k, pi(x) ≤ pj(y) → pi(x) ≤ y;
pi(x) ≤ y ! z → (pi(x) ≤ y ∨ pi(x) ≤ z).

As in Section 3, we need for each n < ω the sequence of k-chains C0, . . . , Cn.
W.l.o.g. we may assume additionally that the second element in every (Ci;≤)
carries the label 1, i.e. Ci = p0p1(Di) for suitable Di, i ≤ n.

Proof of Undecidability of Th(T i
k ;≤). By Proposition 2(i), it suffices to

prove udecidability of T 0
k . We claim that the formulas φ0, φ1, φ2 from the proof

for Fk do the job, i.e. satisfy the condition (*) from Section 2 for P = T 0
k . Let

equivalence relations ξ, η on n + 1 be given. We take now the following values
for the parameters (u, v, w) = p̄ ∈ T 0

k :

u = p0(C0 ! · · · ! Cn) = p0(p1(D0) ! · · · ! p1(Dn)),

v = p0(p2(
⊔

i∈ξ0
Di) ! · · · ! p2(

⊔

i∈ξm

Di))

and
w = p0(p2(

⊔

i∈η0
Di) ! · · · ! p2(

⊔

i∈ηl

Di)).

As in the proof for Fk, it remains to check that

φ(T 0
k , u) = {C0, . . . , Cn}

and
ψ(T 0

k , u, v) = {(Ci, Cj)|(i, j) ∈ ξ}.
The first equation follows from Proposition 2(ii). In checking the second equation
we use Proposition 2(iii). Let T 0

k |= ψ(x, y, u, v). Then φ(x, u), φ(y, u) and x, y ≤
t for some t with φ(t, v). Then x = Ci, y = Cj for unique i, j ≤ n and

Ci, Cj ≤ t = p0p2(
⊔

i∈ξl

Di)

for a unique l ≤ m. We have

p0p1(Dj) = Cj ≤ t = p0p2(
⊔

i∈ξl

Di),

hence p1(Dj) ≤ p0p2(!i∈ξl
Di), hence p1(Dj) ≤ !i∈ξl

Di and therefore j ∈ ξl. A
similar computation shows i ∈ ξl, so (i, j) ∈ ξ. A converse argument settles the
inclusion {(Ci, Cj)|(i, j) ∈ ξ} ⊆ ψ(T 0

k , u, v). This completes the proof.
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5 Undecidability of Tk

Again before proving the undecidability we cite a fact from [Se06].

Proposition 3. For every finite sequence x0, . . . , xn ∈ Tk there exist elements
u0, . . . , uk−1 ∈ Tk with the following properties:

(i) ∀i ≤ n∀j < k(xi ≤ uj);
(ii) for every x ∈ Tk, ∀i ≤ n(xi ≤ x) → ∃j < k(uj ≤ x);
(iii) for every x ∈ Tk, ∀j < k(x ≤ uj) → ∃i ≤ n(x ≤ xi).

To see this it suffices to set uj = pj(x0!· · ·!xn), j < k, and apply Proposition
2(iii). Note that if there is no greatest element in ({x0, . . . , xn};≤) then the
elements u0, . . . , uk−1 are pairwise incomparable. Note also that any of the sets
{x0, . . . , xn}, {u0, . . . , uk−1} is definable through the other; we use this fact
below.

Proof of Undecidability of Th(Tk;≤). We again use the chains C0, . . . , Cn
from Section 3. We use also the strings ū = (u0, . . . , uk−1), v̄ = (v0, . . . , vk−1)
and w̄ = (w0, . . . , wk−1) of different variables.

Let φ(x, ū) be the formula

(
∧

i<k

(x ≤ ui)) ∧ ¬∃y > x(
∧

i<k

(y ≤ ui))

which means that x is a maximal lower bound for {u0, . . . , uk−1}. If we fix the
values

uj = pj(C0 ! · · · ! Cn) ∈ Tk, j < k, (4)

of parameters ū then, by Proposition 3,

φ(Tk, ū) = {C0, . . . , Cn}. (5)

Let ψ(x, y, ū, v̄) be the formula

φ(x, ū) ∧ φ(y, ū) ∧ ∃t(φ(t, v̄) ∧ x ≤ t ∧ y ≤ t).

Let us fix the values ū as in (4), and values of v̄ ∈ Tk as follows:

vj = pj(p0(
⊔

i∈ξ0
Ci) ! · · · ! p0(

⊔

i∈ξm

Ci)), j < k, (6)

where ξ is an equivalence relation on n + 1 and (ξ0, . . . , ξm) is the partition of
n+ 1 to ξ-equivalence classes. From Propositions 2(iii) and 3 it follows that for
these values we have

ψ(Tk, ū, v̄) = {(Ci, Cj)|(i, j) ∈ ξ}. (7)

Now let p̄ be the string of 3k variables (ū, v̄, w̄), φ0(x, p̄) be φ(x, ū), φ1(x, y, p̄)
be ψ(x, y, ū, v̄) and φ2(x, y, p̄) be ψ(x, y, ū, w̄) (the last formula is obtained from



Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests 295

ψ(x, y, ū, v̄) by substituting w̄ in place of v̄). We claim that formulas φ0, φ1, φ2
satisfy the condition (*) from Section 2 for P = Tk. Let equivalence relations
ξ, η on n + 1 be given. Specify values of the parameters ū, v̄ as in (4), (6), and
values of parameter w̄ as

wj = pj(p0(
⊔

i∈η0
Ci) ! · · · ! p0(

⊔

i∈ηl

Ci)), j < k,

where (η0, . . . , ηl) is the partition of n+1 to η-equivalence classes. From (5) and
(7) we obtain

φ0(Tk, p̄) = {C0, . . . , Cn}, φ1(Tk, p̄) = {(Ci, Cj)|(i, j) ∈ ξ}

and
φ2(Tk, p̄) = {(Ci, Cj)|(i, j) ∈ η}.

This means that i )→ Ci defines an isomorphism of (n+1; ξ, η) onto the structure
(φ0(Tk, p̄);φ1(Tk, p̄), φ2(Tk, p̄)). This completes the proof.

Remark. From Proposition 1 it follows that Tk is first-order definable in (Fk;≤)
without parameters, hence the undecidability of Th(Tk;≤) implies the undecid-
ability of Th(Fk;≤). Nevertheless, we included the proof of the second fact for
methodical reasons because it is a bit simpler and its ideas are used in the two
other proofs. In contrast, the undecidability of Th(T i

k ;≤) does not imply the
other two undecidability results because, by Proposition 2(i), T i

k is not defnable
without parameters in the other two structures.

6 Open Questions

There are many natural open questions related to this paper. From our proofs
it follows that for each of the three structures there exists an n < ω such that
the n-quantifier theory of this structure is undecidable. It would be nice to find
for each structure the least such n.

All the three structures are clearly recursively presentable, hence their elemen-
tary theories are interpretable in arithmetics, and therefore they are m-reducible
to ∅ω. Our proofs show that ∅′ is m-reducible to any of the theories. The question
remains to characterize the m-degree of each of the three theories. We expect
that all three theories are recursively isomorphic to ∅ω.

There are also several interesting questions on definability (or non-definabi-
lity) in any of the structures. E.g., we do not know whether the set Ck of finite
k-chains is definable in (Tk;≤) or in (Fk;≤). This question is related to ques-
tions from the last paragraph because in [Ku06] it was shown that Th(Ck;≤) is
recursively isomorphic to ∅ω. So if Ck were e.g. first order definable without para-
meters in (Fk;≤) then the theory of the last structure would also be recursively
isomorphic to ∅ω.
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Sophie Laplante
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Abstract. In this paper, we survey a few recent applications of Kol-
mogorov complexity to lower bounds in several models of computation.
We consider KI complexity of Boolean functions, which gives the com-
plexity of finding a bit where inputs differ, for pairs of inputs that map to
different function values. This measure and variants thereof were shown
to imply lower bounds for quantum and randomized decision tree com-
plexity (or query complexity) [LM04]. We give a similar result for de-
terministic decision trees as well. It was later shown in [LLS05] that KI

complexity gives lower bounds for circuit depth. We review those results
here, emphasizing simple proofs using Kolmogorov complexity, instead
of strongest possible lower bounds.

We also present a Kolmogorov complexity alternative to Yao’s min-
max principle [LL04]. As an example, this is applied to randomized one-
way communication complexity.

Keywords: Lower bounds, Kolmogorov complexity, circuit complexity,
query complexity, communication complexity.

1 Introduction

Kolmogorov complexity has been used in a variety of settings to prove lower
bounds and other complexity results. However, until recently, the methods have
been ad hoc, tailored to a particular problem and a particular computational
model. In the past few years, techniques have been developed that apply to
any Boolean function, and to a wide variety of computational models, so that a
single analysis yields lower bounds in multiple models. In this paper, we review
these results and present them in a unified setting, called KI complexity. We also
present a Kolmogorov-based alternative to Yao’s min-max principle, and apply
it to one-way randomized communication complexity.

2 Preliminaries

Kolmogorov complexity is the main tool that is used to prove lower bounds in
this paper, and we recall the main notions here. We also present the models of
computation used in the paper.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 297–306, 2006.
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2.1 Kolmogorov Complexity

Kolmogorov complexity captures well the information theoretic component of
many lower bound arguments. We review a few of its main properties in this
section.

Definition 1. Let M be a Turing machine. Let x and y be finite strings.

1. The Kolmogorov complexity of x given y with respect to M is denoted
CM (x|y), and defined as follows:

CM (x|y) = min(|P | such that M(P, y) = x).

2. A set of strings is prefix-free if no string is a prefix of another in the set.
3. A Turing machine M ′ is prefix-free if the set of programs is prefix-free, that

is, the set {P : ∃xM ′(P, x) �= ε}, where ε is the empty string, is prefix-free.
4. The prefix-free Kolmogorov complexity of x given y with respect to a prefix-

free Turing Machine M ′ is denoted KM ′(x|y), and defined as follows:

KM ′(x|y) = min(|P | such that M ′(P, y) = x),

In the rest of the paper M is a fixed prefix-free universal Turing machine, and we
will write K instead of KM ′ . When y is the empty string, we write K(x) instead
of K(x|y). To simplify notation we omit additive terms in the upper bounds.

Incompressibility. Perhaps the most important property of Kolmogorov com-
plexity that we use for lower bounds is the existence of incompressible strings,
that is, strings whose shortest description is maximal.

Proposition 1. [Incompressibility] For any finite set A ⊆ {0, 1}∗, and any
string σ, there exists x ∈ A such that K(x|σ) ≥ log(#A).

The proposition is proved by comparing the number of succinct programs (2l−1
have length strictly less than l), with the number of strings (#A) that these
programs are purported to describe, and conclude by applying the pigeonhole
principle.

This should be compared with the corresponding upper bound.

Proposition 2. For any finite set A ⊆ {0, 1}∗, ∃σ, ∀x ∈ A, K(x|σ) ≤ log(#A).

To describe x, it suffices to give an index into some pre-determined enumeration
of the set A, which can be encoded in σ.

We will also need Kraft’s inequality.

Proposition 3 (Kraft’s inequality). Let S be any prefix-free set of finite
strings. Then

∑
x∈S 2−|x| ≤ 1.

We shall also use the following bound on conditional Kolmogorov complexity.

Proposition 4. There is a constant c ≥ 0 such that for any three strings x, y, z,

K(z|x) ≥ K(x, y)− K(x)− K(y|z, x) + K(z|x, y,K(x, y))− c.

The proof uses symmetry of information in an essential way.
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2.2 Decision Trees and Query Complexity

A decision tree is a rooted binary tree, where each internal node is labeled with an
integer i referencing an input variable, one of the outgoing edges of an internal
node is labeled 0 and the other is labeled 1, and each leaf is labeled with an
output value. The tree is evaluated on an input x = x1 · · ·xn, starting at the
root, by evaluating xi if the node is labeled i and following the corresponding
edge, and so on, until a leaf is reached, and outputing the value at the leaf. A
decision tree T computes f if the output on x equals f(x), for all x. The decision
tree complexity of f , written DT(f), is the depth of the shallowest decision tree
that computes f .

We also consider quantum and randomized analogues of decision trees. In
these models, the complexity measure is the number of queries to the input, but
unlike the classical case, queries can be made in superposition, in the quantum
case, or according to some distribution, in the randomized case. Access to the
input is achieved by way of a query operator Ox, which behaves like a classical
query on classical states, but in the quantum case, it is defined as a unitary
matrix Ox that satisfies Ox|i, z, w〉 = |i, z ⊕ xi, w〉, for every i, z, w, where i
represents a query, z is a register to hold the answer to the query, and w is the
remainder of the workspace of the algorithm. Randomized queries can be defined
similarly, except the matrix is stochastic. The query complexity of an algorithm
is the number of calls to Ox. Details of the model can be found for example
in [LM04], but they are not necessary for this paper.

We say that the algorithm A ε-computes a function f : {0, 1}n → {0, 1}, if the
observation of the last bits of the work register equals f(x) with probability at
least 1−ε, for every x ∈ S. Then QQC(f) (resp., RQC(f)) is the minimum query
complexity of quantum (resp., randomized) query algorithms that ε0-compute f ,
where ε0 is a fixed positive constant no greater than 1

3 .

2.3 Communication Complexity

Communication complexity is a model of computation widely used to prove lower
bounds in various models of computation. Here we will appeal to this model
for lower bounds for circuit depth. We also consider one-way communication
complexity in Section 4.

Let X,Y, Z be finite sets, and R ⊆ X×Y×Z. In the communication game for
R, Alice is given some x ∈ X , Bob is given some y ∈ Y and their goal is to find
some z ∈ Z such that (x, y, z) ∈ R, if such a z exists. A communication protocol
determines what message each player sends in each round, and by convention,
Bob produces an output at the end of the protocol. The cost of a protocol is
the total number of bits exchanged in the worst case, and the communication
complexity of R, written D(R), is the minumum cost of a protocol computing R.

There are many variants of communication complexity, and we will also con-
sider one-way communication complexity of boolean functions. In a one-way
communication protocol, two players, A and B wish to compute the value of a
two-argument function f : X × Y → Z. Player A receives an input x ∈ X , and
sends a message m to Player B. Player B receives an input y ∈ Y , as well as A’s
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message m and should output the value of the function f(x, y). The protocol is
successful if B’s output equals f(x, y), for all x, y.

In the randomized model, a protocol is δ-correct if for all inputs x, y, the error
probability on x, y is at most δ. The probability is taken over the random choices
made by the players. Rδ(R) is the minumum cost of a protocol computing R in
this way.

In the distributional model, we consider deterministic protocols, together with
a distribution of the inputs μ, and an error threshold δ. A distributional protocol
is δ-correct if the probability taken over μ that the output differs from the func-
tion is at most δ. The distributional communication complexity for μ, Dδ,μ(f),
is the maximum number of bits exchanged for the best δ-correct protocol for f
when the input is chosen according to μ. The distributional complexity Dδ(f) of
f is the maximum, over all probability distributions μ on the inputs, of Dδ,μ(f).

2.4 Circuits and Formulae

A Boolean formula over the standard basis {∨,∧,¬} is a binary tree where each
internal node is labeled with ∨ or ∧, and each leaf is labeled with a literal, that is,
a Boolean variable or its negation. The size of a formula is its number of leaves.

Definition 2. Let f : {0, 1}n → {0, 1} be a Boolean function. The formula size
of f , denoted L(f), is the size of the smallest formula which computes f . The
formula depth of f , denoted d(f) is the minimum depth of a formula comput-
ing f .

It is clear that L(f) ≤ 2d(f). Spira has also shown that d(f) ≤ O(log L(f)) [Spi71].
Karchmer and Wigderson [KW88] give an elegant characterization of formula

size and depth in terms of communication complexity.

Definition 3. For any Boolean function f , the relation Rf = {(x, y, i) : f(x) =
0, f(y) = 1, xi �= yi}.
Theorem 1 (Karchmer-Wigderson). For any Boolean function f , d(f) =
D(Rf ).

3 KI Complexity, Its Variants, and Applications

In order to prove a lower bound for a Boolean function f , consider two inputs
that are mapped by f to different values. Then these two inputs must differ in
some position and if the computation is correct, it must implicitly or explicitly
have found one of these positions where the inputs differ. This is the principle
which we will show how to exploit in this section, to obtain lower bounds in
various models of computation.

3.1 Decision Trees and KI Complexity

Proposition 5. Let f be a Boolean function, x, y be inputs such that f(x) �=
f(y). Then

DT(f) ≥ min
α∈{0,1}∗

max
x,y

f(x)	=f(y)

min
i:xi �=yi

{max{2K(i|x,α), 2K(i|y,α)}}
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Proof. Let T be a decision tree for f . If f(x) �= f(y), then the computation
paths on x and y must diverge at some level of the decision tree. Let i be the
variable queried at this level. Since the computation paths diverge at this point,
xi �= yi. So K(i|x, T ) ≤ log(depth(T )) since it suffices to give an index into the
depth of the tree, and similarly, K(i|y, T ) ≤ log(depth(T )). Therefore, ∃α =
T, ∀x, y : f(x) �= f(y), ∃i,DT(f) ≥ max{2K(i|x,T ), 2K(i|y,T )}, which concludes the
proof.  !

Similar results hold for various models of computation, but with somewhat dif-
ferent combinations of the terms K(i|x) and K(i|y), for f(x) �= f(y) and xi �= yi.
We introduce a general definition that captures the known lower bounds in a
common framework.

Definition 4. Let f : {0, 1}n → {0, 1}. Let Λ : R∗ → R (Λ takes an arbitrary
number of real inputs, such as max or Σ, which we will take over all terms
parameterized by i where xi �= yi) and # : R× R → R (where we sometimes use
infix notation, e.g. A # B). Define

KIΛ,�(f) = min
α∈{0,1}∗

max
x,y

f(x)	=f(y)

1
Λi:xi 	=yi

2−K(i|x,α)�2−K(i|y,α)
.

Reformulating Proposition 5 in terms of KI, we have

Proposition 6. DT(f) ≥ KImax,min(f).

3.2 Randomized and Quantum Query Complexity Lower Bounds

Proposition 6 can be extended to randomized and quantum query complexity.
The intuition is the same, but one has to analyze the the contribution of making
a “useful” query much more carefully, since in these models, a query can be
made with some probability or some amplitude.

Theorem 2. [LM04] Let f : {0, 1}n → {0, 1}.
1. QQC(f) ≥ Ω(KIΣ,geom(f)) where Σ denotes sum over i such that xi �= yi

and geom is the geometric average: geom(A,B) =
√
A · B.

2. RQC(f) ≥ Ω(KIΣ,min(f)).

The theorem is proved by analyzing the overall contribution of each query to-
wards disinguishing pairs of inputs with different values. Roughly speaking, the
sum appears as a result of considering progress over all input pairs x, y such that
f(x) �= f(y). The # operation is not so easily explained but the difference can be
attributed to the fact that in the quantum case we operate under the �2 norm
whereas in the randomized case, the �1 norm is used.

It turns out that this lower bound on query complexity implies all so-called
adversary techniques for proving lower bounds in quantum query complexity,
including the quantum and randomized weighted methods [Amb03, Aar04] and
the spectral method [BSS03].
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To give an idea of why this is the case we give an proof of Ambainis’ un-
weighted adversary method, which is given in terms of the combinatorial struc-
ture of the graph that represents pairs (edges) x, y such that f(x) �= f(y). This
graph is thought of as containing the pairs of instances that are hard to distin-
guish. Furthermore, the pairs x, y that differ on some index i are those that a
query to i can be helpful to distinguish x from y. Comparing the graph R with
the subgraph Ri where the ith query is useful allows us to establish lower bounds
on the number of queries required to distinguish all the pairs in R.

Theorem 3. [Amb02, Aar04, LM04] Let R ⊆ X × Y , be a relation on pairs of
instances, where X = f−1(0) and Y = f−1(1), and let Ri be the restriction of
R to pairs x, y for which xi �= yi. Viewing the relation R as a bipartite graph,
then if

– m is a lower bound on the degree of all x ∈ X,
– m′ is a lower bound on the degree of all y ∈ Y ,
– for any fixed i, 1 ≤ i ≤ n, the degree of any x ∈ X in Ri is at most l,
– for any fixed i, 1 ≤ i ≤ n, the degree of any y ∈ Y in Ri is at most l′,

then QQC(f) = Ω

(√
mm′
ll′

)

and RQC(f) = Ω
(
max{ml , m

′
l′ }
)
.

Proof. We make the following observations.

1. |R| ≥ max{m|X |,m′|Y |}, so ∃x, y K(x, y) ≥ max (log(m|X |), log(m′|Y |)) .
2. ∀x ∈ X,K(x) ≤ log(|X |) and K(y) ≤ log(|Y |), for all y ∈ Y .
3. ∀x, y, i with (x, y) ∈ Ri,K(y|i, x) ≤ log(l) and similarly, K(x|i, y) ≤ log(l′).

For any i with xi �= yi, by Proposition 4,

K(i|x) ≥ K(x, y)− K(x)− K(y|i, x) + K(i|x, y,K(x, y))
≥ log(m|X |)− log(|X |)− log(l) + K(i|x, y,K(x, y))
= log(ml ) + K(i|x, y,K(x, y))

The same proof works to show that K(i|y) ≥ log(m
′

l′ )+K(i|x, y,K(x, y)). We can
conclude by Theorem 2 and Kraft’s inequality.  !

3.3 Circuit Depth and Formula Size

Another model where KI can be used to obtain lower bounds is boolean formulas.
We give a simple proof that KI gives a lower bound on circuit depth.

Theorem 4. For any Boolean function f , d(f) ≥ KImax,·(f).

Proof. Let P be a protocol for Rf . Fix x, y with different values under f , and
let TA be a transcript of the messages sent from A to B, on input x, y. Similarly,
let TB be a transcript of the messages sent from B to A. Let i be the output
of the protocol, therefore xi �= yi. To print i given x, simulate P using x and
TB. To print i given y, simulate P using y and TA. This shows that ∀x, y :
f(x) �= f(y), ∃i : xi �= yi,K(i|x, α) + K(i|y, α) ≤ |TA| + |TB| ≤ D(Rf ), where
α is a description of A’s and B’s algorithms. The theorem then follows from
Theorem 1.  !
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3.4 A Few Examples

We give a few elementary examples to demonstrate how the technique can be
applied to specific functions. To apply the adversary method, we have to give a
relation R of hard instances; however, when applying KI, it suffices to exhibit a
single hard pair of inputs.

Example 1: OR. The OR function is 0 on the all-0 input and 1 everywhere else.
Consider inputs x, y of length n, where x is the all-0 string, and y is 0 everywhere
except in bit i, where i is chosen so that K(i) ≥ log(n). (More exactly, for any
α we choose i such that K(i|α) ≥ log(n).) Such an i exists by incompressibility
(Proposition 1). Therefore, by Theorems 2 and 4, and Proposition 6,

1. DT(OR) ≥ Ω(n),
2. RQC(OR) ≥ Ω(n),
3. QQC(OR) ≥ Ω(

√
n),

4. d(OR) ≥ Ω(log n).

Example 2: PARITY. The parity function is defined as ⊕(x) = Σixi (mod 2).
Consider inputs x, y chosen as follows. Take x, i so that K(x, i) ≥ n+log(n), and
let y = xi (x with the ith bit flipped). It is easy to show that K(i|x) ≥ log(n)
and K(i|y) ≥ log(n).

1. DT(⊕) ≥ Ω(n),
2. RQC(⊕) ≥ Ω(n),
3. QQC(⊕) ≥ Ω(n),
4. d(⊕) ≥ Ω(logn).

Several examples relating to graph properties are also given in [LM04].

4 Kolmogorov Alternative to the Min-Max Principle

Usually, lower bounds for randomized complexity are proven by first applying
Yao’s min-max principle, and proving a lower bounds in the distributional model
where the algorithms are deterministic and the inputs are chosen at random
according to some distribution. We propose an alternative to (or perhaps only
a reformlation of) Yao’s min-max principle, which makes use of Kolmogorov
complexity. (To be precise, we only give an analogue of the “easy direction”
that is generally used for lower bounds.) We illustrate how it can be applied, by
proving a very general statement about one-way communication complexity. In
this case, the proof is somewhat simpler than the previous proof of Bar-Yossef,
Jayram, Kumar and Sivakumar [BYJKS02] that used information theory.

4.1 Yao in the Style of Kolmogorov

Yao’s min-max principle consists in replacing randomness in the algorithm, with
randomness in the inputs. Our approach is to replace randomness in the algo-
rithm by a Kolmogorov random string, resulting in a deterministic algorithm.
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It remains to see that the errors made on this random string are not too many.
This is what is proven in the following lemma. The lemma is stated for private
coin communication complexity but a similar statement can be made for other
models of computation.

We assume, without loss of generality, that the players use a random string
rA, rB taken uniformly at random from finite sets RA, RB, and that this is the
same distribution regardless of the players’ inputs x, y.

Lemma 1. Let f : X × Y → Z. Fix any δ-correct randomized communication
complexity protocol P for f , and consider any subset of inputs S ⊆ X × Y . Fix
(r∗A, r

∗
B) ∈ RA × RB such that C(rA∗, r∗B|P, S) ≥ log(|RA|) + log(|RB|). Then

when the protocol is run using r∗A, r
∗
B as random choices, the output is incorrect

on at most 2δ|S| inputs in |S|.
Proof. For any rA, rB , let S̃ represent the inputs on which the outcome of the
protocol is incorrect, that is, S̃rA,rB = {x̃, ỹ ∈ S : P (x̃, ỹ, rA, rB) �= f(x̃, ỹ)}.
Also define the set of “much-worse-than-average” random choices for inputs in
S to be R̃ = {rA, rB : |S̃rA,rB | > 2δ|S|}.

Because at most half the inputs can have more than double the average
number of errors, |R̃| ≤ |RA||RB|

2 , therefore by incompressibility, r∗A, r
∗
B �∈ R̃.

(Otherwise, describe r∗A, r
∗
B by giving an index into the set R̃. using log(|R|) <

log(|RA|) + log(|RB|) bits, a contradiction.) Therefore |S̃r∗
A,r

∗
B
| ≤ 2δ|S|.  !

4.2 Shatter Coefficients Lower Bound

To give an example of how this method is applied, we give a proof of a general
theorem on one-way communication complexity.

First we define V C dimension and its generalization, shatter coefficients. Let
F be a set of strings of length n, and I be a set of indices, I ⊆ [n], I = i1, · · · , i|I|.
For any string x = x0, · · ·xn−1 of length n, x|I denotes the string xi1 · · ·xi|I| .
Likewise, F |I = {x|I : x ∈ F} A set of strings F is shattered by a set of indices
I if F |I is the set of all possible strings of length |I|. The VC dimension of F ,
denoted V C(F ), is the size of the largest I that shatters F .

The lth shatter coefficient of F (for any l > V C(F )), denoted SC(F, l) is the
maximum, over all I of size l, of |F |I |. Let F ′ ⊆ F be a subset of F for which
F ′|I takes on this maximal number of distinct values. We say that F ′ × I is a
witness for SC(F, l) .

We give a new proof of a well-known result about one-way communication
complexity. Recall that in this model, Alice sends one message to Bob and Bob
produces the output. We use the superscript A→B to specify this model.

Theorem 5 ([KNR99, BYJKS02]). For every function f : X × Y → {0, 1},
every l ≥ V C(f), and every δ > 0, RA→B

δ (f) ≥ log(SC(f |X , l))− lH2(2δ), where
H2(p) = −p log(p)− (1 − p) log(1− p).

Proof. Let rowf (x, Y ′) = f(x, y1) · · · f(x, y|Y ′|) be the string of consecutive val-
ues of f when x is fixed, where Y ′ = {y1, . . . y|Y ′|}. We denote by f |X,Y the set
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of strings {rowf (x, Y ) : x ∈ X}. Let S′ = X ′ × Y ′ be a witness for SC(F, l)
where F = f |X,Y . Fix x∗ ∈ X ′, r∗A ∈ RA, r

∗
B ∈ RB with C(x∗, r∗A, r

∗
B |P, S′) ≥

log(|X ′|) + log(|RA|) + log(|RB |) and let S = {x∗}× Y ′. Notice that |S| = l. By
Lemma 1, when the protocol is run using r∗A, r

∗
B as random choices, the output

is incorrect on at most 2δ|S| inputs in |S|. To correct these errors we can just
describe their location. This requires log(

(
l

2δl

)
) ≈ l ·H2(2δ) additional bits.

All {rowf (x, Y ′) : x ∈ X ′} are unique, so x∗ is uniquely determined within
X ′ by rowf (x, Y ′). This allows us to conclude that

log(SC(f |X , l)) ≤ C(x∗|P, r∗A, r∗B)
≤ C(rowf (x∗, Y ′)|P, r∗A, r∗B)
≤ RA→B

δ (f) + lH2(2δ).  !

5 Concluding Remarks

We have presented two different frameworks based on Kolmogorov complexity
in which many lower bound techniques can be expressed. One might naturally
ask what other models of computation these techniques can be applied to. One
consequence of studying the KI lower bounds is that it brings to light the shared
limitations of these techniques (see for example [LLS05]. Hopefully, understand-
ing these limitations better will be a first step towards breaking the current lower
bound barriers.

In the case of the min-max proofs using Kolmogorov complexity, it turns out
in many cases that after rewriting the proofs in terms of Kolmogorov complex-
ity, one can the remove Kolmogorov complexity entirely. An important role of
Kolmogorov complexity is that the intuition it provides to help highlight the
essential parts of the argument.
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The Jump Classes of Minimal Covers

Andrew E.M. Lewis�

Dipartimento di Scienze Matematiche ed Informatiche, Siena

Abstract. We work in D[< 0′]. Given the jump class of any (Turing)
degree a, the jump classes of the minimal covers of a is a matter which is
entirely settled unless a is high2. We show that there exists a c.e. degree
which is high2 with no high1 minimal cover.

1 Introduction

Simply by relativizing the construction of a minimal degree below any degree
which is c.e. [CY2] it can be seen that in D[< 0′] every degree has a minimal
cover. If we are given the jump class of any degree in D[< 0′], a say, then
the jump classes of the minimal covers of a is a matter which has been almost
entirely settled since 1978. For any n ≥ 1 we regard a degree as being properly
lown if it is in lown − lown−1 and we regard a degree as being properly highn
if it is in highn − highn−1. First let us consider the least degree 0. Since there
are c.e. degrees which are low1, it follows by Yates’ construction of a minimal
degree below any given c.e. degree that there are minimal degrees which are
low1. Sasso [SA], Cooper and Epstein have shown that there minimal degrees
which are properly low2 and it follows by the result of Jockusch and Posner,
that every degree not in GL2 bounds a 1-generic, that all minimal degrees below
0′ are low2. By relativizing we can conclude that any degree which is low1 has
minimal covers which are low1 and minimal covers which are properly low2.
Given a degree in any proper jump class other than low0, low1 and high2 we
may conclude that all minimal covers are of the same proper jump class as that
degree (in considering the minimal covers of degrees in high1 recall that 0′ is
not a minimal cover). Given a degree which is properly high2, however, it is
not known whether this degree will have minimal covers which are high1. In
[AL] we show that there exists a c.e. degree which is high2 and which has no
high1 minimal cover. What appears here is an abbreviated version of that paper,
stopping short of the technical details of the construction. In order to prove the
result we introduce a new technique involving what are called ‘modifiers’, which
enable us to make use of the recursion theorem where it would otherwise be
impossible to do so.

2 The Intuition

Let κ be a computable bijection ω → 2<ω. For any e ∈ ω we say that We specifies
a convergent approximation if � ∃m[∃∞n(n ∈ We ∧ κ(n)(m) ↓= 0) ∧ ∃∞n(n ∈
� The author was supported by EPSRC grant No. GR /S28730/01.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 307–318, 2006.
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We ∧ κ(n)(m) ↓= 1)]. Define Conv to be the set of all those e ∈ ω such that We

specifies a convergent approximation (so that Fin ⊂ Conv). We show that Conv
is Π3 complete as follows. Fix A ∈ Σ3. Now for some computable function g,

n ∈ A↔ (∃m)[Wg(n,m) is infinite].

Given any n ∈ ω we define a set Wf(n) according to the construction below.

Stage 0. Define σ0(0) = 0 and for all m > 0 let σ0(m) be undefined. Let n0 be
such that κ(n0) = σ0 and enumerate n0 into Wf(n).
Stage s > 0. We define a string σs of length s + 1. For all m < s let σs(m) =
σs−1(m) if Wg(n,m),s−Wg(n,m),s−1 = ∅ and let σs(m) = 1− σs−1(m) otherwise.
Let σs(s) = 0. Let ns be such that κ(ns) = σs and enumerate ns into Wf(n).

Clearly f is computable and n ∈ A↔ f(n) /∈ Conv.
In order to construct a c.e. set A which is high2 we shall enumerate a set Sj for

all j ∈ ω. We shall show that there exists f ≤T A′′ such that, for all e ∈ ω, e ∈
Conv iff there exist an infinite number of n such that n ∈ Sf(e) and A(n) = 0.
At stage s of the construction it is convenient to be able to consider strings
defined on all arguments ≤ s. Thus for any e ∈ ω let the computable sequence
of finite binary strings {τe,s}s∈ω be defined inductively as follows. We define
τe,0 = 0. Suppose we are given τe,s. If there does not exist n ∈ We,s+1 −We,s

then for all m ≤ s define τe,s+1(m) = τe,s(m) and define τe,s+1(s + 1) = 0.
Otherwise we assume that there can only be one such n. For all m ≤ min{s+
1, κ(n) − 1} define τe,s+1(m) = κ(n)(m). For all m such that κ(n) ≤ m ≤ s
define τe,s+1(m) = τe,s(m) and if κ(n) ≤ s+1 then define τe,s+1(s+1) = 0. It is
not difficult to see that, for all e ∈ ω, We specifies a convergent approximation iff
∀n∃τ∃s[[τ = n]∧ (∀s′ ≥ s)[τ ⊂ τe,s′ ]]. For all e ∈ ω, if We specifies a convergent
approximation then let Be be the set which the sequence {τe,s}s∈ω approximates,
and otherwise let Be be undefined.

Definition 2.1 Given σ ∈ 2<ω we let σ� be defined as follows; for all n ∈ ω if
σ(2n) ↓ then σ�(n) ↓= σ(2n) and σ�(n) ↑ otherwise. Given C ⊆ ω we let C�

be defined as follows; for all n ∈ ω, C�(n) = C(2n). Let σ† and C† be defined
similarly with 2n+ 1 in place of 2n.

Now suppose that We specifies a convergent approximation and that Be is of
high degree. Then there will exist z ∈ ω such that we enumerate axioms for a
Turing functional Γg, where g = 〈e, z〉, so that if C = ΓA⊕Be

g then C� = A and,

(∀k)(∃σ ⊂ C)[[Ψσk (k) ↓] ∨ (∀σ′ ⊇ σ)[σ′� ⊂ A→ Ψσ
′

k (k) ↑]].
To the parameter z we will be able to apply the recursion theorem relative to an
oracle for Be. We must show that this suffices to prove that if b = deg(Be) and
a = deg(A) then a∨ b is not a minimal cover for a. Let C0 and C1 be defined as
follows.

C0: for all n ∈ ω, C0(2n) = C(2n) and C0(2n+ 1) = C(4n+ 1).
C1: for all n ∈ ω, C1(2n) = C(2n) and C1(2n+ 1) = C(4n+ 3).
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Then C0 and C1 are Turing incomparable and of degree above a and below
a∨ b. In order to see that ΨC0

e �= C1, for example, consider the Turing functional
Ψk such that Ψσk (x) = 1 if ∃m(Ψσ0

e (m) ↓�= σ1(m)) and is otherwise undefined,
where σ0 and σ1 are defined in terms of σ in exactly the same way that we
defined C0 and C1 in terms of C.
2.1 Having outlined the basic framework we shall now explain the intuition
behind the construction by considering a series of simplified situations. In each
case techniques will be described and an approach given which is not yet sufficient
as it stands. We shall attempt to describe the principal ideas required in order
to overcome the basic obstacles - any remaining technical problems are dealt
with in [AL]. So let us begin by supposing that for some e, j ∈ ω we wish to
enumerate a set Sj and that we wish to ensure there are an infinite number of
n ∈ Sj such that A(n) = 0 iff We specifies a convergent approximation. Then
we might proceed simply as follows:
Stage s = 0. Enumerate j into Sj and define Δ0(j) = λ (where λ is the empty
string).
Stage s > 0.
Step 0. For each n that we have enumerated into Sj check to see whether Δ0(n) ⊂
τe,s and if not then enumerate n into A.
Step 1. Let n be the greatest number which we have enumerated into Sj such
that A(n) = 0 and suppose that Δ0(n) = τ . Choose n′ larger than any number
yet mentioned during the course of the construction, enumerate n′ into Sj and
define Δ0(n′) = τ ′, where τ ′ is the initial segment of τe,s of length τ + 1.

2.2 Let us suppose, for now, that for each j ∈ ω we will enumerate Sj and A
so as to ensure that there are an infinite number of n ∈ Sj such that A(n) = 0
iff Wj specifies a convergent approximation. Thus S0 and A are enumerated so
as to ensure that there are an infinite number of n ∈ S0 such that A(n) = 0 iff
W0 specifies a convergent approximation. That this should be the case will be
our requirement of highest priority,H0. The requirement of next highest priority
will be G0, the first of the ‘genericity’ requirements Gh where h = 〈e, z, k〉. The
demands of this requirement are as follows; if Be ↓, is of high degree and if z
is some suitable fixed point when we apply the recursion theorem relative to an
oracle for Be then (∃σ ⊂ ΓA⊕Be

g )[[Ψσk (k) ↓] ∨ (∀σ′ ⊇ σ)[σ′� ⊂ A → Ψσ
′

k (k) ↑]],
where g = 〈e, z〉.
Convention 2.1 We adopt the convention that for any j, σ and any m, Ψσj (m) ↓
only if the computation converges in ≤ σ steps.

In order that the demands of the requirement Gh should be made precise we must
describe what use we intend to make of the recursion theorem. Let us assume
for now that the axioms we enumerate for any Γg will be consistent. If it is the
case that Be ↓ and is of high degree then we might immediately try to make
use of this fact in the following kind of way. Once we have defined the construc-
tion and having fixed such an e ≥ 0 there will exist a computable function fe
such that, for all z and all k, λn.[ΨBe

fe(z)(k, n)] approximates whether there exists
ψ ⊂ ΓA⊕Be

g (where g = 〈e, z〉) and a stage s such that at no stage s′ ≥ s is
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there a string ψ′ ⊇ ψ of length ≤ s′ such that ψ′� ⊂ As′ and such that Ψψ
′

k (k) ↓.
In order to see this we argue as follows. For fixed e such that Be ↓ and is of
high degree we can assume given z0 such that ΨBe

z0 approximates ∅′′. In order to
compute fe(z) first produce z1 such that Ψz1 operates as follows when provided
with an oracle for ∅′ and on input k. It enumerates all ψ ⊂ ΓA⊕Be

g and as it does
so it dovetails through the asking of all questions of the the following form for
any s ∈ ω, ‘does there exist s′ ≥ s such that there is a string ψ′ ⊇ ψ of length
≤ s′ such that ψ′� ⊂ As′ and such that Ψψ

′
k (k) ↓’. If it finds the answer to one of

these questions is ‘no’ then it terminates. Then it is clear how to use z0 in order
to produce fe(z). By the recursion theorem there exists z such that Ψz = Ψfe(z),
so that Ψz will satisfy the (potentially) useful properties satisfied by Ψfe(z).

Before expanding upon these ideas let us introduce some terminology and
methodology that will be used in the construction. When, at any stage s, we
enumerate an axiom Γφ

g = ψ for some φ ⊂ As ⊕ τe,s and g = 〈e, z〉 we shall
declare β = (φ, n) to be a node for g, for some n ∈ ω. The n parameter here is
just a counter and indicates that there are precisely n nodes (φ′, n′) that we have
defined for g such that φ′ ⊂ φ (and n′ < n). So suppose that at some point of the
construction we are working above the node β = (φ, n) that we have declared
for 0 (0 = 〈0, 0〉), since of all the strings φ′ such that we have declared a node
(φ′, n′) for 0 and φ′ ⊂ As ⊕ τ0,s it is the case that φ is the longest, and that we
are looking to satisfy the requirement G0, (0 = 〈0, 0, 0〉). Suppose that we have
already enumerated the axiom Γφ

0 = ψ. If it is the case that Ψψ0 (0) ↓ then we
need do nothing for the sake of requirement G0. So suppose that this is not the
case. At every subsequent stage s at which we work above the node β we might
look to see whether there exists ψ′ ⊃ ψ of length ≤ s such that ψ′� ⊂ As and
Ψψ

′
0 (0) ↓. If so then we enumerate some axiom Γφ′

0 = ψ′, where φ′ ⊃ φ is of at
least the same length as ψ′ and declare another node for 0, β′ = (φ′, n + 1). If
not then we look to see whether there exists n′ > n such that Ψ τ0,s

0 (0, n′) ↓= 1
(here we use Ψ0 since we are considering the case z = 0). If so then we let τ
be some suitable initial segment of τ0,s on which this computation converges. If
n = 0 then we define a node for 0, β′ = (φ′, 1) where φ′ is the initial segment of
As⊕τ0,s of length 2τ . If n > 0 we acknowledge that at any stage s′ ≥ s when we
work above the node β and τ ⊂ τ0,s′ we shall now be prepared to try and satisfy
one of the lower priority requirements Gh such that h = 〈0, 0, k〉 for 1 ≤ k ≤ n
(starting with that of highest priority) before defining another node for 0 and
paying attention to the needs of the requirement G0 again.

2.3 The first and most basic obstacle now presents itself. Let us suppose just
for now that B0 ↓ and is of high degree, that z = 0 is a fixed point of f0 and
that, for β = (φ, n) as above, φ is an initial segment of the final value A ⊕ B0.
It may be the case that at some stage s, when working above the node β we do
find ψ′ ⊃ ψ such that ψ′� ⊂ As and Ψψ

′
0 (0) ↓ and that we declare (φ′, n+ 1) to

be a node for 0. At some subsequent stage s′ we may then find that there is m,
enumerated into S0 before stage s, such that φ′�(m) ↓= ψ′�(m) ↓= 0 but which
we now must enumerate into A for the sake of the requirementH0. It may be the
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case, in fact, that there does not exist ψ′ ⊂ ΓA⊕B0

0 and a stage s such that at
no stage s′ ≥ s is there a string ψ′′ ⊇ ψ′ of length ≤ s′ such that ψ′′� ⊂ As′ and
such that Ψψ

′′
0 (0) ↓, and that there does not exist n′ > n, ΨB0

0 (0, n′) ↓= 1, but
that every time we define a node β′ = (φ′, n+1) for 0 we subsequently find that
this action is spoiled by action we have to take on behalf of H0. The following
eventuality is also possible. It may be the case that there does not exist n′ > n,
ΨB0

0 (0, n′) ↓= 1, so that there are an infinite number of stages s such that there
exists ψ′ ⊃ ψ of length ≤ s, ψ′� ⊂ As and Ψψ

′
0 (0) ↓, but that for all but finitely

many of such stages either we do not work above β but work above β′ = (φ′, n′)
such that φ′ ⊃ φ and n′ > n and φ′ is not an initial segment of the final value
A⊕B0, or we do work above β but look to satisfy a lower priority requirement.
This latter problem is easily dealt with once we have developed a good approach
to the former.

Definition 2.2 For j ∈ ω we define Tj to be the set of all those n enumerated
into Sj such that the final value A(n) = 0.

The following slightly more sophisticated approach takes us closer to a solution.
Firstly we shall demand that a little more should be satisfied by the function fe.
During the course of the construction we make use of various varieties of tuple.
Alpha tuples will be of the form α = (q, i0, .., iy) where q ∈ 2<ω, i0, .., iy ∈ ω
and {j : q(j) ↓= 0} = y + 1. Here q should be thought of as a guess as to which
j < q will satisfy the condition that Tj is infinite. Thus q(j) ↓= 1 corresponds to
the guess that Tj will be infinite while q(j) ↓= 0 corresponds to the guess that
it will not be. Let {j : q(j) ↓= 0} = j0 < .. < jy. For each y′ ≤ y, iy′ reflects the
guess that Tjy′ = Diy′ (and where {Di}i∈ω is some effective listing of all finite
sets of natural numbers).

Definition 2.3 Given an alpha tuple α = (q, i0, .., iy), let {j : q(j) ↓= 0} =
j0 < .. < jy. We say that σ complies with α at stage s if σ� ⊆ As and for all
y′ ≤ y and n ∈ ω, if σ�(n) ↓ and n has been enumerated into Sjy′ then σ�(n) = 0
iff n ∈ Diy′ .

The function fe, then, must satisfy the following for all z, k, j ∈ ω:

a) If Tj is finite then for all n ∈ ω, ΨBe

fe(z)(0, j, n) ↓ and limn→∞ΨBe

fe(z)(0, j, n) ↓= i

such that Tj= Di.
b) Let g = 〈e, z〉 and h = 〈e, z, k〉. For any q of length Σh

i=02
i and any alpha

tuple α = (q, i0, .., iy) we have that λn.[ΨBe

fe(z)(1, k, α, n)] approximates whether
there exists ψ ⊆ ΓA⊕Be

g and a stage s such that at no stage s′ ≥ s is there a
string ψ′ ⊇ ψ of length ≤ s′ which complies with α at stage s′ and such that
Ψψ

′
k (k) ↓. The length of the string q here requires some comment. We have stated

previously that we shall enumerate S0 so as to ensure that T0 is infinite iff W0
specifies a convergent approximation and that the requirement of next highest
priority will be G0. In enumerating S1 and S2, however, it will be the case (for
reasons that will be explained subsequently) that we have to proceed according
to a guess as regards whether the action of G0 satisfies a certain property. Thus
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we enumerate S1 – with corresponding requirement H1 – according to the guess
that the action of G0 does not satisfy this property and S2 according to the
guess that it does. Whether or not the action of G0 does satisfy this (presently
mysterious) property will be a fact deducible from an oracle for A′′. After H2
the requirement of next highest priority is then G1. In enumerating S3, S4, S5
and S6 we have to proceed according to a guess as regards whether the actions
of G0 and G1 each satisfy the property alluded to. Whether or not the action of
G1 satisfies this property will be a fact deducible from an oracle for A′′. After
H6 the requirement of next highest priority will be G2, and so on.

In working above the node β that we have defined for 0 (as above) we shall
proceed for various pairs (h, q) in turn. First we proceed for the pair (0, q) such
that q is the finite binary string which is a single zero (indicating the guess
that T0 will be finite). If it is the case that Ψψ0 (0) ↓ then we need do nothing
for the sake of requirement G0, so suppose that this is not the case. At every
stage s subsequent to that at which we declare β to be a node for 0 and such
that φ ⊂ As ⊕ τ0,s (and irrespective of whether we work above β at stage s) we
look to see whether the value ψ̂(β, 0) is defined – the use of the function ψ̂ is
in the process of being described. The second argument which takes the value
0 here will, in general, take the value of the parameter h = 〈e, z, k〉. If so but
(ψ̂(β, 0))� �⊂ As then make it undefined. If, subsequent to this action, ψ̂(β, 0) is
now undefined we look to see whether there exists ψ′ ⊃ ψ of length ≤ s such
that ψ′� ⊂ As and such that Ψψ

′
0 (0) ↓. If so then we define ψ̂(β, 0) to be the

shortest such string and we try to preserve (ψ̂(β, 0))� as an initial segment of A
for the sake of (0, q) (and with the priority afforded G0). Now let us describe how
to proceed for the pair (0, q) when actually working above the node β. The first
such stage we use Ψ0, which we hope of course is a fixed point of f0, in order to
produce a guess as regards i such that T0 = Di. More precisely we define i, then,
as follows. If there exists n′ such that Ψφ

†
0 (0, 0, n′) ↓ then let n′ be the greatest

such and define i = Ψφ
†

0 (0, 0, n′). Otherwise define i = 0. At every subsequent
stage s at which we work above the node β we look to see whether ψ̂(β, 0) ↓ and
complies with α = (q, i). If so then we enumerate some axiom Γφ′

0 = ψ̂(β, 0),
where φ′ is of at least the same length as ψ̂(β, 0) and declare another node for
0, β′ = (φ′, n + 1). If not then we look to see whether there exists n′′ > n such
that Ψτ0,s

0 (1, 0, α, n′′) ↓= 1. If so then we let τ be some suitable initial segment
of τ0,s on which this computation converges and we acknowledge that at any
stage s′ ≥ s when we work above the node β and τ ⊂ τ0,s′ we shall now proceed
for the pair (0, q′) such that q′ is the finite binary string which is a single one.

Let us briefly discuss the possible outcomes of this activity. Just for now and
only for the sake of simplicity, let us assume that B0 ↓ and is of high degree,
that z = 0 is a fixed point of f0 and that, for β = (φ, n) as above, φ is an initial
segment of the final value A ⊕ B0. Suppose first that there exist an infinite
number of stages at which ψ̂(β, 0) ↓ and complies with α. Then there exists a
stage at which ψ̂(β, 0) is defined and is never subsequently made undefined, so
that (ψ̂(β, 0))� ⊂ A. We shall therefore be able to define a node β′ = (φ′, n+ 1)
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for g such that φ′ ⊂ A ⊕ B0 and ensure that the requirement G0 is satisfied,
unless possibly there exists n′′ > n such that ΨB0

0 (1, 0, α, n′′) ↓= 1. Now suppose
that there exist a finite number of stages at which ψ̂(β, 0) ↓ and complies with
α. Then there exists n′′ > n such that ΨB0

0 (1, 0, α, n′′) ↓= 1 and for some τ ⊂ B0
and at some stage s we shall acknowledge that at any stage s′ ≥ s when we work
above the node β and τ ⊂ τ0,s′ we shall now proceed for the pair (0, q′) such
that q′ is the finite binary string which is a single one.

Definition 2.4 For all j ∈ ω we define e�(j) = μe.(Σe
i=02

i > j). Let j′ be the
least such that e�(j′) = e�(j). We define p�(j) to be the (j − j′ + 1)th string of
length e�(j) (and where 2<ω is considered to be ordered lexicographically).

Definition 2.5 Let {ρj}j∈ω be a uniformly computable sequence of functions
such that for all j, n ∈ ω, ρj(n) is of the form (h, q) where h ≥ e�(j), q is of
length Σh

i=02
i, q(j) = 1 and such that for fixed j and any pair (h, q) of this form

there exist an infinite number of n, ρj(n) = (h, q).

Given j ∈ ω, the value p�(j) should be thought of as the guess that j makes as
regards which of the genericity requirements of higher priority will satisfy the
(still mysterious) property mentioned previously and expanded upon in 2.5. The
value e�(j) tells us that, if this guess is correct, then Tj is infinite iff We�(j)
specifies a convergent approximation. Although we do not directly need these
concepts at this point in the description of the intuition behind the construction,
their definition needs to be made in order that we can properly define those terms
which are in the process of being explained. This approach seems preferable to
that in which definitions are made and then constantly revised.

In order to describe how to proceed for the pair (0, q′), where q′ is the finite
binary string which is a single one, we must explain what shall be meant by the
term ‘modifier’. The basic idea behind the use of modifiers is as follows. Suppose
that n0 is enumerated into S0. When we make this enumeration, suppose that
we define Δ0(n0) = τ for some τ ∈ 2<ω – then we shall declare that n0 is a
modifier for ρ0(τ ). If at a subsequent stage n0 is enumerated into A then we
shall declare that n0 is no longer a modifier (for ρ0(τ )). Now at every stage s
such that φ ⊂ As⊕ τ0,s we decide how and whether ψ̂(β, 0) should be defined, in
the manner described above. If this value is defined then we have stated already
that we try to preserve (ψ̂(β, 0))� as an initial segment of A with the priority
afforded G0, for the sake of the pair (0, q). We also try to preserve this string as an
initial segment of A for the sake of the pair (0, q′) but with a certain advantage.
We shall find n0 which is the least number which has been enumerated into S0,
which is a modifier for (0, q′) and which was declared to be such after stage n
such that β = (φ, n) (if there exists such). For any n1 > n0 which have been
enumerated into S0, such that A(n1) = (ψ̂(β, 0))�(n1) = 0, we then agree that
n1 will not be enumerated into A so long as n0 is not enumerated into A or,
what amounts to the same at this point, so long as (ψ̂(β, 0))� looks to be an
initial segment of A. Of course we must ensure that each n0 which is declared to
be a modifier is responsible for the failure to enumerate only a finite number of
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n1 > n0 into A. This problem will be addressed more thoroughly in subsection
2.4, but the following problem is worth considering now. If we proceed in the
manner described thus far then it may be the case that n0 which is declared to
be a modifier prevents the enumeration of n1 > n0 into A – that, were it not for
the use of n0 as a modifier, n1 would have been enumerated into A. Since n1 will
have been declared to be a modifier it may then be the case that n1 prevents
the enumeration of n2 > n1 into A, and so on. This problem is easily dealt with,
but in order to do so it is convenient to enumerate an auxiliary set A�. A�, then,
will be enumerated in exactly the same manner as A, except that a modifier n0
cannot prevent the enumeration of n1 > n0 into A�. Thus we shall only allow
n0, n1, n2 to be modifiers just so long as they have not been enumerated into A�.

Now let us describe how to proceed for the pair (0, q′) when actually working
above the node β. The first such stage we shall find n0 which is the least number
which has been enumerated into S0, which is a modifier for (0, q′) and which was
declared to be such after stage n such that β = (φ, n). The terminology used in
the construction is that we define Ω1(β, 0, q′) = n0 if there exists such and leave
this value undefined otherwise. Now suppose that we have already proceeded for
the pair (0, q) and that for some τ ⊂ B0 we have acknowledged that at stages s
such that τ ⊂ τ0,s we shall proceed with the pair (0, q′). In what follows, then,
we consider only the stages latterly described. At every subsequent stage s of
the relevant variety we first check to see whether Ω1(β, 0, q′) is still a modifier
and if not, or if this value is undefined, then we proceed as follows. If n = 0 then
we define a node for 0, β′ = (φ′, 1) where φ′ is some initial segment of As ⊕ τ0,s
of length at least 2τ . If n > 0 we acknowledge that at any stage s′ ≥ s when we
work above the node β and τ ⊂ τ0,s′ we shall now be prepared to try and satisfy
one of the lower priority requirements Gh such that h = 〈0, 0, k〉 for 1 ≤ k ≤ n.
Otherwise we proceed in almost exactly the same way as we did for the pair
(0, q). Let α′ = (q′). We look to see whether ψ̂(β, 0) ↓ (and complies with α′). If
so then we enumerate some axiom Γφ′

0 = ψ̂(β, 0), where φ′ is of at least the same
length as ψ̂(β, 0) and declare another node for 0, β′ = (φ′, n + 1). If not then
we look to see whether there exists n′′ > n such that Ψτ0,s

0 (1, 0, α′, n′′) ↓= 1.
If so then we let τ ′ ⊃ τ be some suitable initial segment of τ0,s on which this
computation converges. If n = 0 then we define a node for 0, β′ = (φ′, 1) where
φ′ is the initial segment of As ⊕ τ0,s of length 2τ ′ . If n > 0 we acknowledge that
at any stage s′ ≥ s when we work above the node β and τ ′ ⊂ τ0,s′ we shall now
be prepared to try and satisfy one of the lower priority requirements Gh such
that h = 〈0, 0, k〉 for 1 ≤ k ≤ n.

So once again let us assume, just for now, that B0 ↓ and is of high degree,
that z = 0 is a fixed point of f0, that φ is an initial segment of the final value
A ⊕ B0 and that τ is an initial segment of B0. Hopefully it is clear that it will
be easy to engineer a situation in which we declare an infinite number of nodes
for 0 of the form β′ = (φ′, n′) such that φ′ is an initial segment of the final value
A ⊕ B0. It is convenient to ensure that if β′ = (φ′, n′) and β′′ = (φ′′, n′′) are
nodes of this kind and n′′ > n′ then φ′′ ⊃ φ′. Now if T0 is infinite then it will
be the case for an infinite number of such nodes β′ that Ω1(β′, 0, q′) is defined
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and is never declared not to be a modifier (except that actually we shant bother
defining Ω1(β′, 0, q′) at nodes β′ where the requirement G0 already looks to be
satisfied). So suppose that β is a node of this kind and suppose that there does
not exist n′′ > n such that ΨB0

0 (1, 0, α′, n′′) ↓= 1. Then after the first stage at
which ψ̂(β, 0) becomes defined it will never become undefined. Thus, we shall be
able to declare a node β′ = (φ′, n+ 1) for 0 such that φ′ is an initial segment of
the final value A⊕B0 and enumerate an axiom Γφ′

0 = ψ′ such that Ψψ
′

0 (0) ↓. Of
course this is a particularly simplified situation and in the general context there
will be a little more complexity to deal with.

2.4 If n is a modifier then we must ensure that it is responsible for the failure
to enumerate only a finite number of n′ into A. In the general context we shall
actually have to consider ‘modifier groups’ – in order to proceed for the pair
(h, q) such that q = Σh

i=02
i we shall need a group of modifiers consisiting of one

modifier from each Sj such that q(j) ↓= 1. We must ensure that each group of
modifiers is responsible for the failure to enumerate only a finite number of n′

into A. This will suffice in order to ensure that each modifier is only responsible
for the failure to enumerate a finite number of n′ into A since we shall be able
to ensure that each modifier only belongs to one modifier group at any given
stage of the construction and that, if we change the modifier group to which n
belongs at an infinite number of stages then, for all but a finite number of the
modifier groups to which n is declared to belong at some stage, there is some
modifier in the group which is subsequently declared not to be a modifier. From
what follows it will be clear that this last condition is sufficient to ensure that
the modifier group is not responsible for the failure to enumerate any n′ into A.

We are yet to specify the exact nature of the mechanism by which a modifier
group may prevent the enumeration of n′ into A, but in choosing such a mecha-
nism we must be careful in order to prevent the possibility that, for a given n′,
while it is the case that no single modifier group seems responsible for the failure
to enumerate n′ into A (since, for example, any such group only prevents enu-
meration for a finite number of stages), the combined effect of the action of all
modifier groups is to prevent the enumeration of n′ into A for the entire duration
of the construction. In order to avoid such complications we take the following
approach. Suppose that at stage s we declare some modifier group consisiting of
n0, .., nm and we declare that this is a modifier group for the pair (h, q). Now
suppose that at some subsequent stage we are looking to preserve (ψ̂(β, h))� as
an initial segment of A for the sake of (h, q), where β = (φ, n) is a node that we
have declared for g = 〈e, z〉 (and where h = 〈e, z, k〉). If we are to be able to use
this particular modifier group consisiting of n0, .., nm we insist that it must be
the case n ≤ s. We are only interested that this preservation should be successful
in the case that φ is an initial segment of the final value A ⊕ Be (should it be
the case that Be ↓). Therefore the first thing that we do is to find nm+1 which
has been enumerated into Sj such that e�(j) = e and which will be enumerated
into A� at any subsequent stage s′ such that φ† �⊂ τe,s′ . Let nm+2 be the largest
number which has been enumerated into Sj′ such that q(j′) ↓= 0 and such that
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(ψ̂(β, h))�(nm+2) ↓= 0. Now let nm+3 = max{n0, ..., nm+2} and let σ0, σ1 be
the initial segments of A�, A of length nm+3 + 1 respectively. For each n′ such
that (ψ̂(β, h))�(n′) ↓= 0 and either a) n′ has been enumerated into Sj′ such that
q(j′) ↓= 1 and n′ is greater than the corresponding modifier ni (also enumerated
into Sj′), or b) n′ has been enumerated into Sj′ such that q(j′) ↑, we enumerate
σ0 ⊕ σ1 into the set Δ1(n′) – this means that n′ cannot be enumerated into A
so long as it seems that σ0 ⊕ σ1 is an initial segment of A� ⊕A. Now it is worth
noting that at the end of section 2.3. we were able to remark that, according
to the use of modifiers described up to that point (and in the situation there
described), the first stage at which ψ̂(β, 0) becomes defined it will never become
undefined. This does not reflect the more general situation and approach that we
have now described. All that we actually require, however, is that the following
should be true:
(†) Suppose that Be ↓, β = (φ, n) is a node for g = 〈e, z〉 such that φ ⊂ A⊕Be,
that q ∈ 2<ω is of length Σh

i=02
i, where h = 〈e, z, k〉 and that the alpha tuple

α = (q, i0, .., iy) is ‘correct’ as a guess about A i.e. letting {j : q(j) ↓= 0} =
{j0, .., jy} we have that if q(j) ↓= 1 then Tj is infinite and if q(j) ↓= 0 then
Tj = Diy′ where j = jy′ . If there are an infinite number of stages at which
ψ̂(β, h) is defined and complies with α then there is a stage after which this
value never becomes undefined.

In order to see that (†) will hold we can argue as follows. We are yet to describe
precisely the manner in which modifier groups will be declared, but hopefully it
is clear that if α is correct as a guess about A (according to the precise definition
of this terminology given in the above) then there will be an infinite number of
stages at which we are able to declare a modifier group for (h, q) which will never
subsequently be declared not to be a modifier group. Thus there will be a stage,
s0 say, after which, whenever ψ̂(β, h) is defined and complies with α, the values
n0, .., nm+2 (as defined above) will always take the same value as at the last
such stage. At such stages then, there is a point after which any strings σ0 ⊕ σ1
which we enumerate into some set Δ1(n′) will be of a fixed length, l say. So let
s1 > s0 be large enough such that the initial segment of A�

s1 ⊕ As1 of length
l is an initial segment of A� ⊕ A. Let s2 > s1 be a stage at which ψ̂(β, h) is
defined and complies with α. Then ψ̂(β, h) is never made undefined subsequent
to stage s2.

If n′ ∈ A� − A is enumerated into Sj and a modifier group to which n ∈ Sj
belongs is responsible for the enumeration of σ0⊕ σ1 which is an initial segment
of A� ⊕ A into Δ1(n′) then we say that this modifier group is responsible for
the failure to enumerate n′ into A. If we are looking to preserve (ψ̂(β, h))� when
this enumeration is made we also say that (β, h) is responsible for the failure
to enumerate n′ into A. Now the use of the parameter nm+1 described above in
determining the length of the string σ0 ⊕ σ1 means that (β, h), with β = (φ, n)
say, cannot be responsible for the failure to enumerate n′ into A unless there is a
stage after which it is always the case φ ⊂ As ⊕ τe,s (and where h = 〈e, z, k〉). If
the modifier group is declared at stage s then there can only be a finite number
of nodes β′ = (φ′, n′) declared for g = 〈e, z〉 of this kind such that n′ ≤ s. The
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modifier group is only availble for use at nodes β′ = (φ′, n′) such that n′ ≤ s
and, hopefully it is clear that, any individual node can only be responsible for
the failure to enumerate a finite number of n′ into A.

Definition 2.6 Given strings σ0, σ1 such that σ0 ≤ σ1 , let σ2 be the initial
segment of σ1 of length σ0 . We call σ0 ⊕ σ2 the ‘reduction’ of σ0 ⊕ σ1.

In actual fact, various technicalities mean that it is convenient to be able to
enumerate strings into sets Δ1(n′) of the form σ0 ⊕ σ1 such that σ0 ≤ σ1 .
We agree, however, that the modifier group responsible for such an enumeration
must take responsibility for the failure to enumerate n′ if the reduction of σ0⊕σ1
is an initial segment of A�⊕A. It is then easy to argue that if n′ ∈ A�−A then
there is σ0 ⊕ σ1 enumerated into Δ1(n′) such that the reduction of this string is
an initial segment of A� ⊕A.

2.5 There are two significant problems which remain to be addressed. The first
of these problems we shall consider in this subsection. The second is dealt with
in [AL].

Definition 2.7 Suppose that β = (φ, n) is a node which is declared for
g = 〈e, z〉, that h = 〈e, z, k〉, that at some stage of the construction we define
ψ̂(β, h) = ψ and that ψ� is an initial segment of the final value of A. Then we
say that (β, h) fixes an initial segment of A at stage s. We also say that h fixes
an initial segment of A at stage s.

Now suppose we were to proceed simply by enumerating A and each Sj in order
to try and ensure that Tj is infinite iff Wj specifies a convergent approximation.
The immediate problem arising is that there may be an infinite number of (β, 0),
for example, which fix an initial segment of A and that this may cause infinite
injury to H1. In order to overcome this problem we enumerate A and S1 so as
to ensure that if there are a finite number of stages at which 0 fixes an initial
segment of A then T1 is infinite iff W1 specifies a convergent approximation.
We enumerate A and S2 so as to ensure that if there are an infinite number of
stages at which 0 fixes an initial segment of A then T2 is infinite iff W1 specifies
a convergent approximation.

The enumeration of S1. In order to enumerate S1 we can proceed basically as
decribed in 2.1 except that we now allow elements of S1 which are modifiers to
prevent the enumeration of numbers into A, as described in 2.3. Modifications
which we are about to introduce mean that we have to be a little more careful in
arguing that, if 0 fixes only a finite number of initial segments of A, then there
exist only a finite number of n such that there exists (β, 0) which is responsible for
the failure to enumerate n. These considerations are dealt with in the verification
of [AL].

The enumeration of S2. Let β = (φ, n) be a node which is declared for 0. When
this node is declared and at every subsequent stage s at which φ �⊂ As⊕ τ0,s this
node will be ‘initialized’; for all j, l such that e�(j) > 0 and either 〈j, l〉 > s or
p�(j)(0) = 0 we declare that the pair (j, l) lacks freedom at (β, 0) (the second
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argument here taking the value h = 〈e, z, k〉) and for all other j, l we declare that
the pair (j, l) does not lack freedom at (β, 0). Now suppose that at some stage
s, φ ⊂ As ⊕ τ0,s, we are trying to preserve (ψ̂(β, 0))� as an initial segment of A
for the sake of (0, q) or (0, q′) (as defined previously in 2.3), (ψ̂(β, 0))�(n′) ↓= 0,
n′ has been enumerated into Sj such that j > 0 and that Δ0(n′) = τ for some
τ ∈ 2<ω. Only if the pair (j, τ ) lacks freedom at (β, 0) shall we enumerate
strings into Δ1(n′). If the enumeration of n′ into A subsequently causes ψ̂(β, 0)
to become undefined then we shall declare that the pair (j, τ ) lacks freedom at
(β, 0). Clearly such modifications are unproblematic where the satisfaction of
(†) is concerned – providing only finite injury. In enumerating S2, then, we can
proceed as follows. Suppose that we wish to enumerate some new n′ into S2 and
define Δ0(n′) to be the initial segment of τ1,s of length l. Before doing so we
shall wait for a stage at which it is the case, for all nodes β that we have declared
for 0, ψ̂(β, 0) ↓ or (2, l) does not lack freedom at (β, 0). If it really is the case
that there are an infinite number of stages at which 0 fixes an initial segment of
A then there must exist such a stage s. In fact we must revise the form of the
function Δ0. When we enumerate n′ into S2 at stage s we let σ be the longest
string such that, for some node β that we have declared for 0 and at which (2, l)
lacks freedom, ψ̂(β, 0) = σ and we define Δ0(n′) = (τ, σ) where τ ⊂ τ1,s is of
length l. Then at the first stage s′ ≥ s at which either τ �⊂ τ1,s′ or σ �⊂ A we
shall enumerate n′ into A� – and into A unless prevented from doing so by the
appropriate modifiers.
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Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn,
Beringstraße 1, 53115 Bonn, Germany

Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55,
20146 Hamburg, Germany
bloewe@science.uva.nl

Infinite Time Turing Machines (or Hamkins-Kidder machines) have been intro-
duced in [HaLe00] and their computability theory has been investigated in com-
parison to the usual computability theory in a sequence of papers by
Hamkins, Lewis, Welch and Seabold: [HaLe00], [We00a], [We00b], [HaSe01],
[HaLe02], [We04], [We05] (cf. also the survey papers [Ha02], [Ha04] and [Ha05]).
Infinite Time Turing Machines have the same hardware as ordinary Turing Ma-
chines, and almost the same software. However, an Infinite Time Turing Machine
can continue its computation if it still hasn’t reached the Halt state after in-
finitely many steps (for details, see § 1).

In [Sc03], Schindler started the investigation of the corresponding complexity
theory by defining natural time complexity classes for Infinite Time Turing Ma-
chines. Schindler, Welch, Hamkins and Deolalikar have proved with methods of
descriptive set theory that the big open questions of standard complexity theory
P ?= NP and P ?= NP ∩ coNP have negative answers for Infinite Time Turing
Machines [Sc03, DeHaSc05, HaWe03].

For an ordinary Turing machine that stops in a finite number t of steps, it is
easy to define its space usage: during its computation, it has used at most t cells
of the tape, possibly less. This finite number of used cells can serve as a measure
of space usage. A halting computation will have used a finite amount of time
and space; if, however, time or space usage are infinite, then this corresponds
to usage of order type ω and automatically implies that the computation was
non-halting.

In this paper, we shall consider both Hamkins-Kidder machines and Koepke’s
Ordinal Machines as described in [Ko005a] and [Ko005b]. Koepke machines can
not only extend their computation into transfinite ordinal time, but they also
have ordinal-indexed cells on their tapes. Therefore, there is a natural notion
of space usage for computations on Koepke machines that corresponds to the
classical idea of space constraints on Turing Machines: just count the number
(order type) of cells being used.

� The author thanks Joel Hamkins (New York NY), Peter Koepke (Bonn), Philip
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putation, and the anonymous referees for important comments.
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This is very different for Hamkins-Kidder machines whose space is constrained
to a tape of order type ω whereas time can have arbitrary ordinals as order type.
This asymmetry makes is hard to give a definition of space usage that can be
compared to time usage.

In this paper, we discuss the basics of possible definitions for space constraints
for the mentioned two types of infinitary Turing machine computations. In § 1, we
give all definitions needed in the paper and then briefly discuss space constraints
for Koepke’s machines in § 2 and space constraints for Hamkins-Kidder machines
in § 3. Finally, in § 4, we discuss nondeterministic computation.

This paper raises very general questions about infinitary algorithms. We list
them here and will explain the questions in more detail in the respective sections:

1. Are there any algorithms for Koepke’s ordinal machines that use the ad-
ditional transfinite space in order to compute more than Hamkins-Kidder
machines within time restrictions? (§ 2; Theorem 3 gives an example of a use
of the additional space, but it is not time efficient.)

2. Are there any algorithms for Hamkins-Kidder machines that compute com-
plicated sets with unlimited time but very simple snapshots on the scratch
tape? (§ 3; Question 10 provides a very basic test question.)

3. Are there any nondeterministic algorithms that are space efficient? (§ 4;
Proposition 11 gives a general description of nondeterministic algorithms
that mimic guess nondeterminism, but they are not space efficient.)

1 Definitions

In the following, we shall give a description of both Hamkins-Kidder machines
and Koepke’s ordinal machines.

Like ordinary Turing machines, both types of infinitary Turing machines con-
sist of an input tape, a scratch tape and an output tape, a reading/writing
head, a finite set of states and a program δ that assigns to a state s and the
content of a bit on the scratch tape and the input tape an action. The action
consists of moving the head right, moving the head left, writing on the output
tape, writing on the scratch tape, erasing on the scratch tape, or a combina-
tion of these actions. Note that we may not erase on the output tape; this is
to make sure that the program doesn’t abuse the output tape as a scratch tape
(in our definition of the space complexity, we shall only count the complexity of
snapshots on the scratch tape).1

In the case of the Hamkins-Kidder machines, all of the three tapes have order
type ω (as for ordinary Turing machines), in the case of the Koepke machines,
the tapes are class-sized with a cell for every ordinal. If we have a class-sized
tape, then we have to say what the machine will do if it in a cell indexed with
a limit ordinal and receives the comment “move left”. In that case, we’ll move
the reading/writing head to the 0th cell.
1 Since we’re only discussing decision problems here, i.e., the output is either 0 or 1,

this is equivalent to saying that the output tape has only one bit.
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If we fix a machine T , an input x and an appropriate time α, then we write
sTα(x) for the state that the machine is in and hTα(x) for the position of the
head at time α with initial input x. If β is an index for a cell on the scratch
tape, then we write cTα (x, β) for its content at time α. We also use cTα (x) for the
function β )→ cTα (x, β) which we call the snapshot at time α. Note that this
is a function with domain ω for Hamkins-Kidder machines, and a class function
with domain Ord for Koepke machines.

For finitary computation, the times α mentioned in the last definitions are
always finite. Infinitary Turing machines differ from a normal Turing machines
in that they are allowed to continue their computation beyond ω many stages
of computation. At a limit step of the computation, all the cells on the tape
are adjusted according to the limit behaviour of the entries along the infinite
computation: If 0 occurred cofinally often, the cell will get value 0 in the limit
step, if on the other hand, from a point on, 1 was written in the cell, the cell
will get value 1 (this corresponds to taking the liminf of the cell values). The
state of the machine at a limit stage λ will also be the liminf of the states below
λ. Note that while this is the definition from [Ko005a] for Koepke machines, it
is not the standard definition for Hamkins-Kidder machines: in [HaLe00], these
have a designated limit state that is assumed in all limit stages. In terms of
computational power, the two definitions for Hamkins-Kidder machines don’t
make a difference (as long as we have more than one tape).

The position of the reading/writing head at a limit stage λ is where our two
infinitary models differ: For the Hamkins-Kidder machines, the head will always
be moved to cell 0 at a limit stage: consequently, the head will never move to a
cell indexed with an infinite ordinal. For the Koepke machines, the head will be
moved to

hTλ (x) := lim inf
sT

α (x)=sT
λ (x)

hTα(x).

Let us summarize the behaviour of the three types of machines in the following
table:

time tape(s) cells at limit head at limit

Turing machines ω ω n.a. n.a.

Hamkins-Kidder machines Ord ω lim inf first cell
Koepke machines Ord Ord lim inf lim inf

We say a machine accepts an input x if it reaches the Halt state and has 1
on the output tape at that time. If it yields 0, we say that it rejects the input
x. A set A is (Turing, Hamkins-Kidder, Koepke) decidable if there is a
(Turing, Hamkins-Kidder, Koepke) machine that accepts exactly the elements
of A and rejects exactly the reals not in A. Let us denote the set of Turing
(Hamkins-Kidder, Koepke) decidable sets by DecT (DecHK, DecK).

For all of the three types of machines, there is an obvious definition of time
usage for a halting computation: if T is a machine of the appropriate type that
reaches the Halt state at input x, then we write time(x, T ) for the first α such
that sTα(x) = Halt. If f : R → Ord is a function assigning ordinals to inputs,
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we say that T is an time f machine (or more simply, an f -machine) if for all
x, we have time(x, T ) < f(x).

Following Schindler [Sc03], we write Pf for the class of all sets of reals that
are decidable by f -machines. If f is the constant function f(x) = ξ, we also call
f -machines ξ-machines. We write Pξ for the class of all sets decidable by an
η-machine for some η < ξ. In order to distinguish the time classes for our types
of machines, we write PHK

f and PHK
ξ for the time classes for Hamkins-Kidder

machines and PK
f and PK

ξ for the time classes for Koepke machines.
Note that for Turing machines and Hamkins-Kidder machines, there is only a

set of snapshots, whereas for Koepke machines, there is a proper class of snap-
shots. This simple observation has a portentous consequence for Hamkins-Kidder
machines: they have far more time at their disposal than there are possible com-
putation situations. If there are two limit ordinals λ < λ∗ such that the compu-
tation at λ and λ∗ has the same state and snapshot and none of the cells with
the value 1 at λ changes its value between λ and λ∗, we call this a looping
situation.

Observation 1 (Hamkins-Lewis). A Hamkins-Kidder machine does not halt
if and only if its computation has a looping situation.

Proof. [HaLe00, Corollary 1.2].2 q.e.d.

The analogue of Observation 1 is not true for Turing and Koepke machines, as
they have exactly as much time as there are snapshots. In both cases consider
the empty input and the machine that writes 1 and moves right if it hits a 0.
This machine will never halt nor loop.

Another observation that will be important is that infinitary computations
can be done in initial segments of the constructible hierarchy. For a Hamkins-
Kidder machine T and any time α and input x, let cTα(x) be the content of the
full tape (of order type ω) at time α (with input x and machine T ).

Observation 2. For any Hamkins-Kidder machine T , any ordinals α < ξ such
that ξ is admissible, and any x ∈ 2ω, we have that

cTα(x) ∈ Lξ[x].

2 Koepke’s Ordinal Machines

Koepke’s analysis of ordinal machines from [Ko005a, Ko005b, Ko0Ko1∞] does
not pay attention to either computing resources or real numbers. Whereas we
are interested in decision problems, he is interested in creating (characteristic
functions of) sets on the output tape and allows as input finite sets of ordinals
as parameters.
2 The diligent reader checking this again [HaLe00] might notice that they write “the

cells which are 0 at the limit never subsequently turn into 1 (we allow the 1s to
turn to 0 and back again)”. This is due to the fact that [HaLe00] uses a limsup rule
instead of our liminf rule.
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However, if you restrict your attention to decision problems, Koepke machines
are still more expressive than Hamkins-Kidder machines as the following result
shows:

Theorem 3. The halting problem for Hamkins-Kidder machines is Koepke de-
cidable. Hence, the set of Koepke decidable sets of reals is strictly bigger than
that of Hamkins-Kidder decidable sets.

Proof. By [HaLe00, Theorem 4.1], the Hamkins-Kidder halting problem is not
Hamkins-Kidder decidable but semi-decidable. We only have to give an algorithm
to decide the complement of the Hamkins-Kidder halting problem with a Koepke
machine.

We shall be using Observation 1. In order to find out whether a computation
doesn’t halt, we can just check whether a looping situation occurred in the
computation.

Since a Koepke machine has an unlimited amount of space, and every
Hamkins-Kidder situation can be coded as a real, we can simulate the run
of a Hamkins-Kidder machine while keeping track of the entire computation
on the class-sized tape. It is now easy to check whether a looping situation
occurred. q.e.d.

If you look at the algorithm used to decide the Hamkins-Kidder halting problem
in this proof, you’ll notice that it is neither time nor space efficient. This is a
general problem with complexity theory for Koepke machines: while Theorem 3
proves that you can use the size of the tape to compute more, there is no known
technique to use it in order to compute faster.

As a consequence, we do not know any non-trivial separation results of time
complexity for Hamkins-Kidder machines and Koepke machines.

Proposition 4. If ω2 ≤ α ≤ ωCK
1 , then PK

α = PHK
α .

Proof. Fix η < α. Given a set A that is Koepke decidable by an η-machine, we
will describe how we decide it with a Hamkins-Kidder η-machine. Note that the
original η-machine can never use more than the first η many cells of the class-size
tape.

Since η < ωCK
1 , we can produce a code of η on the scratch tape within ω

steps. After that, we use that code in order to think of the ω-tape as an η-tape
and run the Koepke algorithm on it. This combined algorithm takes ω + η = η
steps. q.e.d.

What if we allow a Koepke machine more than a constant amount of time? Let
f0(x) := ωx1 . Then what is PK

f0
? By [DeHaSc05, Theorem 4.2 (ii)], PHK

f0
= PHK

ωCK

1

;
this was strengthened by Welch [We06, Proposition 2] to the following result:

Proposition 5 (Welch). Every f0-machine is an ωCK
1 -machine.

An analogue of Proposition 5 for Koepke machines together with Proposition 4
would show that PK

f0
= PHK

f0
.
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For a Koepke machine T , an input x and a time α, we write uTα(x) :=
sup{β ; cTα (x, β) �= 0} for the space used at time α. If a Koepke machine with
input x reaches the Halt state at time time(x, T ), we write

space(x, T ) := sup{uTξ (x) ; ξ < time(x, T )}.
If f : R → Ord is a function assigning ordinals to inputs, we say that T is
an space f machine if for all x, we have space(x, T ) < f(x). In analogy to
Schindler’s P-notation for time complexity, we write PSPACEK

f for the class of
all sets decidable by space f machines and PSPACEK

ξ for the class of all sets
decidable by space η machines for some η < ξ.

As for ordinary Turing machines, we immediately get PK
f ⊆ PSPACEK

f (for
all functions f), as each new used cell on the scratch tape requires one unit of
time to be used or skipped.

Since Hamkins-Kidder machines are essentially just space ω Koepke ma-
chines, we can mimic arbitrary Hamkins-Kidder computations with space-boun-
ded Koepke machines:

Proposition 6. DecHK ⊆ PSPACEK
ω+2.

Proof. Let T be a Hamkins-Kidder machine deciding A. Based on T , we con-
struct a Koepke machine that can recognize when it is in a limit stage and that,
whenever it is in a limit stage, moves to cell 0. (If it happens to be in cell ω,
moving one step left will move the head to cell 0.) This machine mimics the
limit behaviour of T and uses the cells up to the ωth cell, i.e., is a space ω + 1
machine. q.e.d.

Corollary 7. P �= PSPACE for Koepke machines, i.e., PK
ωω �= PSPACEK

ωω .

Proof. Propositions 4 and 6 yield this simple separation result as follows:

PK
ωω = PHK

ωω � DecHK ⊆ PSPACEK
ω+2 ⊆ PSPACEK

ωω .

q.e.d.savit

3 Hamkins-Kidder Machines

For Hamkins-Kidder machines, the function uTα(x) := sup{β ; cTα(x, β) �= 0}
as defined above will be equal to ω as soon as the entire tape is being used,
and consequently for almost all non-trivial T and x, we’ll have space(x, T ) = ω.
Thus, we have to use a different approach in order to get an informative measure
for space usage.

In this section, we shall give two different definitions of space usage for
Hamkins-Kidder machines. As above, let cTα(x) be the content of the full tape
(of order type ω) at time α (with input x and machine T ). We can define

�Tα(x) := min{η ; cTα(x) ∈ Lη[x]}, and

space0(x, T ) := sup{�Tξ (x) ; ξ < time(x, T )}.
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As before, we define a notion of space0 f machine for Hamkins-Kidder ma-
chines and derive a definition of the class PSPACEHK,0

f from it. Let us call a
function f : R → Ord admissible if for all x, the ordinal f(x) is x-admissible.

Proposition 8. For any admissible function f , we have PHK
f ⊆ PSPACEHK,0

f .

Proof. Let T be a machine deciding A in time f . That means that for all in-
puts x, the computation has length shorter than f(x). Fix some ξ < f(x). By
Observation 2, we have that cTξ (x) ∈ Lf(x)[x]. q.e.d.

Alternatively, we define

space1(x, T ) := sup
{

ω
cT

ξ (x)
1 ; ξ < time(x, T )

}

+ 1,

and a notion of space1 f machine and the class PSPACEHK,1
f .

Proposition 9. For any admissible function f , we have PHK
f ⊆ PSPACEHK,1

f .

Proof. Let T be a machine deciding A in time f . Fix x, then the computation
with input x has length shorter than f(x). As in the proof of Proposition 8, we
know that {cTξ (x) ; ξ < time(x, T )} ⊆ Lf(x)[x].

Towards a contradiction, assume that space1(x, T ) ≥ f(x), so there must be

some ξ such that ω
cT

ξ (x)
1 = f(x). But then there is a code z for f(x) that is

(Turing)-recursive in cTξ (x) ∈ Lf(x)[x], and hence z ∈ Lf(x)[x], contradicting the
x-admissibility of f(x). q.e.d.

Propositions 8 and 9 are instances of the slogan “Using space costs time”.
This is equally true for classical, finitary complexity theory. Even for finite time
Turing machines, it is not known whether P � PSPACE. This question can be
rephrased as

“Are there space-efficient algorithms for problems that cannot be solved
quickly?”

Of course, this question can be applied to the three relations

PK
f ⊆ PSPACEK

f ,
PHK
f ⊆ PSPACEHK,0

f , and
PHK
f ⊆ PSPACEHK,1

f

as well. The first algorithm that comes to mind is the Hamkins-Lewis algorithm
for deciding Π1

1 sets [HaLe00, Count-Through Theorem 2.2]: it is not in Pf0

for f0 : x )→ ωx1 ; however, it is easily seen that this algorithm produces the
ill-founded part of the relation coded by x on the scratch tape which is not in
general in Lf(x)[x]. As a consequence, the algorithm uses both a lot of time and
a lot of space, and is no answer to the above question.

This example is illustrative in the following sense: looking at the different
infinitary algorithms that are at our disposal, the only way that they use their
infinite time is to produce more complicated reals on the scratch tape. This
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observation might lead to the conjecture that time and space complexity for
infinitary computation are the same.

Let us highlight this bold conjecture with a precise test question: Call a
Hamkins-Kidder machine recursive if it halts on all inputs and for all x and α,
the real cTα(x) is (Turing-)recursive. We define PSPACE� to be the class of sets
of reals that are decidable by recursive Hamkins-Kidder machines. Clearly,

PSPACE� ⊆ PSPACEHK,0
ωω =: PSPACE.

Question 10. Can we prove that PSPACE� ⊆ P := PHK
ωω ?

4 Nondeterministic Computation

Savitch’s Theorem [Pa94, Theorem 7.5] tells us that for Turing computations,
nondeterminism does not increase space efficiency (in other words, PSPACE =
NPSPACE).

In this section, we briefly look at the interaction between nondeterminism
and our space complexity classes for Hamkins-Kidder machines and Koepke
machines.

In [Sc03], Schindler defined the class NPf without introducing a notion of
nondeterministic Hamkins-Kidder computation. For reals x and y, we define as
usual

y ∗ x(n) :=
{
y(k) if n = 2k, and
x(k) if n = 2k + 1.

We call a machine T a ∗-time f machine if it halts for all inputs and for all
x and y, we have that time(y ∗ x, T ) < f(x). A set A is in NPf if there is a
∗-time f machine T such that

x ∈ A ⇐⇒ ∃y(T (y ∗ x)↓ = 1).

If f is a constant function, we can replace the “∗-time f machine” with a “time
f machine”.

Schindler’s notion naturally connects to a notion of nondeterministic com-
putation: a nondeterministic Hamkins-Kidder machine is a machine with the
Hamkins-Kidder architecture but instead of a program δ that is a function it
has a relation that gives a set of allowed actions. A nondeterministic Hamkins-
Kidder machine T is called a nondeterministic time f machine if all possible
T -computations with input x halt before time f(x). A set A is nondeterminis-
tically decidable by a machine T if there is at least one possible T -computation
that accepts x.

Proposition 11. Let f : R → Ord be a function such that for all x, we have
ω · f(x) = f(x). Then the following are equivalent for a set of reals A:

1. A ∈ NPf , and
2. A is nondeterministically decidable by a nondeterministic time f machine.
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Proof. “⇒”: Let T be a ∗-time f machine for deciding A. At input x, we use the
first ω stages of the computation to generate arbitrary witnesses by the simple
program described by “write either 0 or 1 and move on”. Thus, a nondetermin-
istic Hamkins-Kidder machine can produce at stage ω of the computation all
possible values of y on the scratch tape. Now run T on the arrangement of x on
the input tape and y on the scratch tape as if it were y ∗ x on the input tape.
We know that T will reach the Halt state in less than f(x) steps. So the entire
computation uses less than ω+f(x) = f(x) steps and one of the branches of the
computation accepts x.

“⇐”: Let T be a nondeterministic time f machine deciding A. Then we can
see the computation of T at input x as a finitely branching tree of height at most
f(x) < ω1. The branching pattern in each branch b of the tree can be coded into
a real yb (the code is an element of WO coding the length of the computation
in the branch b, thus identifying each step of the computation with a natural
number, and a function assigning the behaviour of T at the computation step
coded by n in the branch b).

We can now define a ∗-time f machine T ∗ as follows: on input y∗x, the machine
checks whether y is a code (in the sense of the previous paragraph) for a T -
computation with input x, and –as long as it is–, follows this computation. Note
that each step of the T -computation may take ω steps in the T ∗-computation,
as T ∗ has to search for the next command to execute in the code y. If at any
point it turns out that y is not a code for a T -computation, the machine Halts
and returns 0.

If b is an accepting branch of T , then yb ∗ x will be accepted by T ∗, and for
each y, the computation with input y ∗ x will take at most ω · f(x) steps. q.e.d.

From the point of view of space constraints, it is easy to see that the proof of
Proposition 11 is highly inefficient: the nondeterministic computation contains
every single real as a potential snapshot of the scratch tape. This raises the
third general question: can we come up with a nondeterministic algorithm that
is space efficient?

More precisely, if T is a nondeterministic Hamkins-Kidder machine and b is a
branch through its computation tree at input x with the sequence 〈bγ ; γ < ξ〉
of snapshots occurring on the scratch tape during the computation along b, we
write

�γ(b) := min{η ; bγ ∈ Lη[x]},
space0(b) := sup{�γ(b) ; γ < ξ}, and

space1(b) := sup{ωbγ

1 ; γ < ξ}+ 1.

For i ∈ {0, 1}, we say that a Hamkins-Kidder machine T is a nondeterministic
spacei f machine if all possible T -computations with input x halt for all
branches b, we have spacei(b) < f(x). We say that A ∈ NPSPACEHK,i

f if it is
decidable by a nondeterministic spacei f machine.

Question 12. For what functions f do we have

PSPACEHK
f = NPSPACEHK,i

f ?
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Analogously, we can define nondeterministic space classes NPSPACEK
f for

Koepke machines. Hamkins and Welch have noticed [HaWe03, Theorem 1.7]
that in general, nondeterministic Hamkins-Kidder computation can be more
powerful than deterministic Hamkins-Kidder computation. Their proof shows
that the Hamkins-Kidder halting problem is in NPHK

ω1
. Combining this result

with Propositions 6 and 11, we get that

PSPACEK
ω+1 � NPSPACEK

ω+1.
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Abstract. We outline a general theory of graph polynomials which cov-
ers all the examples we found in the vast literature, in particular, the
chromatic polynomial, various generalizations of the Tutte polynomial,
matching polynomials, interlace polynomials, and the cover polynomial
of digraphs. We introduce the class of (hyper)graph polynomials de-
finable in second order logic, and outline a research program for their
classification in terms of definability and complexity considerations, and
various notions of reducibilities.

1 Introduction

During the last ten years I have studied questions of computability of graph
polynomials, summarized in [36, 38, 34, 41, 39, 40, 37, 8]. I found uncharted terri-
tory with plenty of amazing theorems, surprising results, and the more I got into
it, the more I was perplexed. I feel that we do not have a comprehensive under-
standing of graph polynomials, although about particular polynomials, such as
the characteristic polynomial, the chromatic polynomial, the matching polyno-
mials and the Tutte polynomial there is more known than what could be told in
several books. It is noteworthy that many authors speak in their papers of the
graph polynomial, suggesting that theirs is the one and only one worth study-
ing. It is also noteworthy, that very few authors who study a particular graph
polynomial P , have more than this particular polynomial and possibly some
immediate relatives of P , in mind.

In this paper I try to sketch a research program of how a general theory of
graph polynomials could be developed. The collection of graph polynomials I
have gathered from the literature looks like a zoo1. There are prominent animals
like the elephant, the giraffe, the gorilla, and there are exotic animals defying
classification, like the lamprey (petromyzon marinus, not really a fish) or platy-
pus (ornithorhynchus anatinus, not really a water bird, not really a mammal).
Some animals look different, but are related, like the elephant and the rock hyrax
(procavia capensis); some look alike, but are not related, like the hedgehog (eri-
naceus europus) and the echidna (tachyglossus aculeatus). Zoology is the science
1 It was T. Zaslavsky who suggested the titel “From a zoo to a zoology” for this

research program.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 330–341, 2006.
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of comparing and classifying animals. Graphpolynomology would be the art of
comparing and classifying graph polynomials.

2 Graph Polynomials

Let G be the class of graphs G = (V,E) without loops and multiple edges. Let
R be a ring and X̄ be a (not necessarily finite) set of indeterminates. A graph
polynomial is a function

p : G → R[X̄ ]

such that for isomorphic graphs G1 6 G2 we have p(G1) = p(G2). If we consider
labeled graphs, the notion of isomorphism has to be correspondingly modified.
If p(G) takes only values 0 or 1 in R we speak of graph properties.

There are plenty of graph polynomials which have been discussed in the lit-
erature, although no systematic treatment on graph polynomials in general is
available2. To put our results into perspective we discuss briefly four classical
graph polynomials, the chromatic polynomial χ(G, λ), the characteristic polyno-
mial P (G, λ), the acyclic generating matching polynomials m(G, λ) and g(G, λ)
and the Tutte polynomial T (G,X, Y ). For historic reasons we also discuss briefly
the very first polynomial introduced into graph theory, the edge difference poly-
nomial. We also add to our discussion two more recent examples, the two inter-
lace polynomials, and the cover polynomial defined on digraphs.

The Edge-Difference Polynomial. The historically first polynomial in graph
theory was introduced by J.J. Sylvester in 1878, [51] and further studied by J.
Peterson in 1891. It is the multivariate polynomial depending on the ordering of
the vertices V = {v1, v2, . . . , vn} and defined as

PG(X1, X2, . . . , Xn) =
∑

i<j
(vi,vj)∈E

(Xi −Xj)

This polynomial is not a graph invariant, but it was used as a tool in studying
regularity and colorability questions of graphs. In particular, N. Alon and M.
Tarsi [3] observed that it can be used to study list colorings. For a survey, cf. Z.
Tuza [55]. In our context, however, the edge-difference polynomial does not play
a prominent rôle.

The Chromatic Polynomial. Let χ(G, λ) denote the number of proper ver-
tex colorings of G with at most λ colors. G. Birkhoff, [7], observed in 1912 that
χ(G, λ) is, for a fixed graph G, a polynomial in λ, which is now called the chro-
matic polynomial of G. The chromatic polynomial is the oldest graph polynomial
to appear in the literature, which is a graph invariant. Since then a substantial
body of knowledge about the chromatic polynomial of graphs and its applica-
tions has been accumulated. The recent book by F.M. Dong, K.M. Koh and
2 I have found over 250 entries in MathSciNet querying “graph polynomial” or “poly-

nomial of a graph” in the review text.
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K.L. Teo [18] gives an excellent and extensive survey. One of the surprising facts
is a theorem of R.P. Stanley, [49], which states that χ(G,−1) is the number of
acyclic orientations of G.

The Tutte Polynomial. Interesting generalizations of the chromatic polyno-
mial were introduced by H. Whitney in 1932 and W.T. Tutte in 1947. The most
prominent among them is now called the Tutte polynomial T (G,X, Y ) which
is a two variable polynomial from which the chromatic polynomial can be ob-
tained via a simple substitution and multiplication with a prefactor. The exact
relationship is given by

χ(G,X) = (−1)r(G)Xk(G)T (G; 1−X, 0)

Here k(K) is the number of connected components of G and r(G) =| V | −k(G).
For a modern exposition the reader is referred to [10, chapter X], [24] or

[58]. Tutte’s own account on how he got involved with his polynomial is very
enjoyable, [54]. For this extended abstract we do not need a full definition of
the Tutte polynomial. We only note that it is a polynomial in two variables
related to the rank generating function of matroids. But we should note that
in the years after 1980 the Tutte polynomial found important interpretations in
statistical mechanics and quantum field theory, knot theory, and biology, cf. [58]
and [48]. F. Jaeger in [29] showed that the Jones polynomial of knot theory on
alternating knots is just an instance of the Tutte polynomial of the knot diagram
viewed as a graph. L. Kauffman in [31] introduced first a generalization of the
Tutte polynomial which gives the Jones polynomial for arbitrary knots. Different
approaches to multivariate versions of the Tutte polynomial are discussed in
[11, 48].

Other univariate graph polynomials were introduced after 1955, often first
motivated by problems from chemistry and physics. The two most prominent are
the characteristic and the matching polynomial (which comes in two versions).

The Characteristic Polynomial of a Graph G, denoted by P (G, λ) is the
characteristic polynomial of the adjacency matrix MG of the graph G, P (G, λ) =
det(λ · 1−MG) and is completely determined by the eigenvalues of MG, which
are all real, as the matrix is symmetric.

The Matching Polynomials. The acyclic polynomial of G is the polyno-
mial m(G, λ) =

∑
k(−1)k · mk(G) · λn−2k, where the coefficients mk(G) count

k-matchings. A chemical point of view of these polynomials is given in [17]
and [53], where algorithmic aspects are also touched. A close relative of the
acyclic polynomial is the matching generating polynomial of a graph G defined
as g(G, λ) =

∑
kmk(G)λk, where m(G, λ) = λng(G, (−λ−2)). An excellent sur-

vey on these two matching polynomials may be found in [25, Chapter 1] and
[35, Chapter 8.5]. We shall refer to both as matching polynomials. Somewhat
surprisingly we have m(G, λ) = P (G, λ) if and only if G is a forest.

The Interlace Polynomials. Two of the more interesting recent graph poly-
nomials were introduced by R. Arratia, B. Bollobás and G. Sorkin in [5, 6]. They
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are called interlace polynomials and there is a univariate and a two-variable ver-
sion. M. Aigner and H. van der Holst [2] studied these polynomials from a matrix
point of view and derived various combinatorial interpretations.

The Cover Polynomial of Directed Graphs. An interesting recent graph
polynomial on directed graphs is the cover polynomial introduced by F.R.K.
Chung and R.L. Graham [14], and independently in the context of rook polyno-
mials, by Gessel, [23]. In [14] it is presented as an attempt to create a Tutte-like
polynomial for directed graphs, and is closely related to the chromatic polyno-
mial. There is also related work by R.P. Stanley [50] and T. Chow [13], and very
recently, by P. Pitteloud [46].

A Zoo of Graph Polynomials. Without giving all the necessary references,
we list a few of the many graph polynomials we found in the literature. There are
variations of matching polynomials, like the rook polynomials, cf. [47]. There are
polynomials counting the number of (induced) subgraphs of a certain kind. Let
H be a graph property and put indH(G, k) be number of induced subgraphs of
size k having propertyH in a given graphG. Then we can look at the polynomial

genH(G, λ) =
∑

k

indH(G, k)λk

For H consisting of all the Kn’s (cliques), En’s (isolated points), Cn’s (cycles),
Pn’s (paths) the corresponding polynomials have been studied. Instead of graph
properties one can also use subsets of graphs with desirable properties such as
vertex covers, coverings with subgraphs of special type etc. Some of these have
been studied in a very general context as Farrell polynomials, cf. [22, 39]. There
are interlace polynomials [5], Go-polynomials [21], Penrose polynomials [1], and
many more. It is worth searching for all these at scholar.google.com.

3 Recursive Definitions

One of the outstanding features of the more prominent graph polynomials are
recursive definitions with respect to some order independent way of deconstruct-
ing the input graph. The main paradigm stems from the chromatic polynomial
and the Tutte polynomial. We first note that for the chromatic polynomial we
have

χ(G) = χ(G− e)− χ(G/e)

where e is an edge and G− e and G/e denotes the deletion respectively contrac-
tion of the edge e. Furthermore, for the disjoint union we have χ(G1 ! G2) =
χ(G1) · χ(G2), for the graph consisting of n isolated verices En χ(En) = λn.
One easily verifies that χ(G − e − f) = χ(G − f − e), χ(G/e/f) = χ(G/f/e),
χ(G − e/f) = χ(G/f − e) and χ(G/e − f) = χ(G − f/e), which is a kind
of Church-Rosser property or confluence property. From this we get a recursive
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definition of χ(G) by choosing any order of the edges. Similarly, for the Tutte
polynomial we have

T (G,X, Y ) =

⎧
⎪⎨

⎪⎩

X · T (G/e,X, Y ) if e is a bridge
Y · T (G− e,X, Y ) if e is a loop
T (G/e,X, Y ) + T (G− e,X, Y ) else

together with multiplicativity for disjoint unions and T (En, X, Y ) = 1. Again
one can verify the Church-Rosser property, and gets a recursive defintion for the
Tutte polynomial. In [11] this recursive defintion was used as the starting point
for the defintion of the colored Tutte polynomial.

In [5, 6] similar but more complicated recursive definitions are given for the
various interlace polynomials. Here the recursion also involves a pivot operation
Gab on a graph G and two vertices a, b. In [14] such recursive definitions are
given for the cover polynomial of directed graphs. Even for the matching poly-
nomial one can give such rules: for the acyclic polynomial we have m(En) = λn,
multiplicativity for disjoint unions and, for an edge e = (u, v)

m(G, λ) = m(G− e)−m(G− u− v, λ)

It is a curious fact that the literature does not explore this aspect of the match-
ing polynomial further, and does not even note the Church-Rosser property,
although it is easily verified.

The recursive definition of a graph polynomial gives an easy but slow way of
computing the graph polynomial. As the recursion unwinds a number of sub-
tasks exponential in the size of the graph has to be computed. But the nature of
the recursion usually gives deeper insights. Furthermore, the various Tutte and
interlace polynomials can be proven to be, in a certain sense, the most general
graph polynomials satisfying their specific recursion scheme. Similar character-
izations very recently shown for generalizations of the cover and the matching
polynomials in [15].

Although some particular recursion schemes based on the behaviour of the
graph polynomial under deletion of vertices or edges, contractions of edges, piv-
oting, etc. are well studied, no general theory has emerged so far, and it re-
mains an interesting challenge to develop a satisfactory framework for recursion
schemes for graph invariants.

4 Complexity

It is natural to ask how difficult it is to compute the various graph polynomials.
The characteristic polynomial is computable in polynomial time using classical
algorithms for the determinant of a matrix. Computing the chromatic polynomial
is �P-hard due to its connection to counting colorings. This also makes computing
the Tutte polynomial �P-hard. The same is true for the acyclic polynomial due
to its connection to counting matchings, cf. [57]. Furthermore, F. Jaeger, D.
Vertigan and D. Welsh, [30], have characterized completely the points (a, b)
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in the complex plane C2, where evaluating the Tutte polynomial T (G, a, b) is
difficult for arbitrary graphs. J. Oxley and D. Welsh [45] also noted that the
Tutte polynomial for series–parallel graphs, which are graphs of tree-width at
most 2, can be computed in polynomial time. This was extended to arbitrary
fixed tree-width k independently by A. Andrejak [4] and S. Noble [43], and
therefore also holds for the chromatic polynomial. Actually, they showed that
computing the Tutte polynomial is fixed parameter tractable FPT on graph
classes of tree-width at most k. In other words, it is computable in time f(k)nd,
where d is independent of k and n is the size of the input. For an extensive
discussion of the complexity class FPT, cf. [19].

5 Enter Logic

Already B. Courcelle in [16] observed that graph properties definable in Monadic
Second Order Logic (MSOL) are in FPT on graph classes of tree-width at most
k, cf. also [19]. This approach was extended to graph polynomials by the author
in [37]. The fact that the Tutte polynomial is in FPT also follows from [37],
which also covers the acyclic and the matching polynomial and a wide range of
other graph polynomials where summations are restricted to families of subsets
of edges which are definable in MSOL. Without going into the more delicate
details, such polynomials are in a polynomial ring R[X̄] and are of the form

g(G, X̄) =
∑

A:φ(A)

∏

v:v∈A
t(v)

where A is a unary relation variable, φ(A) is an MSOL-definable property of the
graph, and t(v) is a term in R[X̄ ] which may depend uniformly on v. We speak
here of MSOL-polynomials.

In the same paper [37], it is shown that, in combination with the work of P.
Seymour and S. Oum [44], graph polynomials, where summations are restricted
to families of subsets of vertices which are MSOL-definable, are in FPT for
graph classes of clique-width at most k. However, this method does not apply to
the chromatic polynomial, the Tutte polynomial and the matching polynomials.

6 The Need for a General Framework

Although there is a large zoo of graph polynomials, there is no general zoology.
We offer here an outline of what such a zoology could look like. Our general
framework is somewhat inspired by [26], but both the scope and the emphasis
are quite different. Initial work in this direction may be found in [41].

The literature on Turing complexity or algebraic complexity does not provide
a natural framework to develop a complexity theory of graph polynomials. In
particular there is no agreed upon notion of efficient reducibility between graph
polynomials. The existing framworks do allow the formulation of hardness results
by reductions to �P-hard instances which are easily recognizable as polynomial
time computable in an intuitive sense. But in the existings frameworks no hardest
graph polynomial could be identified.
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6.1 SOL-Polynomials as a Complexity Class

We propose a class of graph polynomials which covers all the examples, so far,
from the literature, which has sufficient closure properties, and which guarantees
that all its members are computable in exponential time in the unit cost compu-
tational model over the underlying ring R, in the sense of the Blum-Shub-Smale
model of computation, [9]. For this purpose we allow (full) Second Order Logic
in the definition of the polynomials:

g(G, X̄) =
∑

R:ψ(R)

∏

v̄:v̄∈R
t(v̄)

R now can be a relation variable of any fixed arity, and ψ any formula of Second
Order Logic (SOL). We speak then of SOL-polynomials. If L is a sublogic of
SOL and ψ is an L formula, we speak of L-polynomials.

7 Towards a General Framework

The purpose of the general framework is to initiate a comparative study of the
many graph, digraph and hypergraph polynomials which have appeared in the
literature. For an extensive list of references cf. [37] and [39]. In particular, we
address the following:

Universality. All the polynomials we have encountered in the literature can be
put into the framework of SOL-polynomials. Sometimes this is obvious. The
matching polynomial can be written as

g(G, λ) =
∑

M :M⊆E
M is a matching

∏

e:e∈M
λ

Sometimes this needs a non-trivial proof, which is the case for the interlace
polynomial.

Definability. Not all SOL-definable properties of graphs are MSOL-definable,
though, and sometimes it is useful to look at variations of MSOL which
allow quantification over edge sets or subsets of fixed relations, which we call
MSOL-2. Guarded Second Order Logic is the fragment of Second Order Logic
in which the relation variables have to range over subsets of the relations
specified in the vocabulary. If the edge relation of the graph is the only
relation specified by the vocabulary Guarded SOL is just MSOL-2.
As graph properties can be viewed as polynomials with constant value true
or false (or 1 or 0) this gives (too) easy examples of SOL-polynomials which
are not MSOL-polynomials. The definition of the matching polynomial given
above shows it is an MSOL-2-polynomial. It is hard to believe that it could be
an MSOL-polynomial, but we do not know how to prove this. The interlace
polynomial is an SOL-polynomial, of which we do not know whether it is an
MSOL-polynomial. In [15] it shown to be definable in MSOL with a parity
quantifier, but we do not know whether this can be avoided.
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Recursion schemes and definability. The existence of a recursion scheme
and SOL-definability both garantee that a graph polynomial is computable in
exponential time. In the examples we know, every graph polynomial defined
by a recursion scheme is also SOL-definable. Is this always true?
On the other hand it is unlikely that every SOL-polynomial has such a
recursion scheme. How can we prove that for a given SOL-polynomial no
recursion scheme exists? Can we give sufficient conditions which assure that
an SOL-polynomial has a certain recursion scheme?

Comparability. Given two graph polynomials f(G, x̄) and g(G, x̄), we say that
g is weaker than f , and write g 3 f , if for any two graphs G1, G2 with
f(G1, x̄) = f(G2, x̄) we also have g(G1, x̄) = g(G2, x̄). If g 3 f and f 3 g,
we say the polynomials are graph-equivalent. Comparability of graph poly-
nomials is undecidable. This follows from the undecidablity of the conse-
quence problem of First Order Logic if restricted to finite graphs, which was
proven by M. Taitslin [52] and sharpened by I. Lavrov [32], cf. [27, Theorem
5.5.1]. We note that the two matching polynomials m(G, λ) and g(G, λ) are
graph equivalent, but incomparable with respect to the characteristic poly-
nomial P (G, λ), and also with respect to the chromatic polynomial, and the
Tutte polynomial. The study of this partial order among SOL-polynomials,
MSOL-polynomials, or other restricted classes of graph polynomials is a nat-
ural topic of investigation. In particular, one can ask: is there a strongest
SOL-polynomial, what are its additional structural properties, is it a lattice,
etc.

Complexity. For a logic L which captures a complexity class C on ordered
structures3, we speak also of C-polynomials. Interesting cases for C are de-
terministic and non-deterministic Log-Space, denoted by L and NL respec-
tively, and determinsitic polynomial time P. All examples in the literature
actually are P-polynomials, most actually are NL-polynomials. For example,
to see that the matching polynomial

g(G, λ) =
∑

M :M⊆E
M is a matching

∏

e:e∈M
λ

is a P-polynomial, it suffices to note that “M ⊆ E is a matching” is a
property recognizable in polynomial time.
We have seen before that the chromatic polynomial is �P-hard to compute,
hence P-polynomials are usually not computable in polynomial time. Neither
are they in �P, as they can have arbitrary values in the polynomial ring. We
propose two classes of graph polynomials as natural complexity classes for
graph polynomials: the class of P-polynomials which we call P−POL, and
the class of SOL-polynomials, which we call SOL− POL. Clearly we have,
P − SOL ⊆ SOL − POL. Is the inclusion proper? Do these classes have
complete problems with respect to some notion of reduction (see below)?

3 In the sense of descriptive complexity, [28, 20, 33].
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On the other hand we have seen that the characteristic polynomial P (G, λ)
is computable in polynomial time over the ringR. Therefore it is computable
in polynomial time in the unit cost model BSS over the ring R in the sense
of Blum, Shub and Smale, in short, it is in PR, [9]. Can we characterize the
graph polynomials in P-POL which are in PR?

Reducibilities. Reducibilities have now two components:
(i) Computations in the ring, performed on the polynomial, in the uniform

computational model BSS, or in the non-uniform model of L. Valiant
[56, 12]. Algebraic circuits (straight-line programs) or PR-programs are
natural choices, where R is the underlying ring.

(ii) Transductions of the graphs (relational structures), expressible in the
logic L for suitably chosen L, or computable by Turing machine trans-
ducers in the corresponding complexity class C.

For P-polynomials over R, PR and P-transductions, respectively transduc-
tions definable in Fixed Point Logic, are natural choices. For details see
[28, 20, 33]. In this case we speak of P-reducibility between two graph poly-
nomials f, g and write g 3P f . The comparability and reducibility rela-
tions between graph polynomials do not coincide. The chromatic polynomial
χ(G, λ) is P-reducible to the Tutte polynomials, but it is not comparable to
the Tutte polynomial. This can be easily seen from the formula

χ(G,X) = (−1)r(G)Xk(G)T (G; 1−X, 0)

Recall that k(K) is the number of connected components of G and r(G) =|
V | −k(G). The formula shows that the chromatic polynomial is computable
in polynomial time from the Tutte polynomial, but the Tutte polynomial
remains invariant under the addition of isolated vertices to the graph G,
whereas the chromatic polynomial does not.
It is open whether the matching polynomials m(G, λ) and g(G, λ) are P-
reducible to the Tutte polynomial.

Easy loci. The Tutte polynomial is �P-hard to evaluate on all the points of the
complex plane with the exception of a quasi-algebraic set of lower dimen-
sion, cf. [30]. M. Bläser and J.A. Makowsky, [8], have generalised this for
the colored Tutte polynomial studied in [11]. Is a similar phenomenon also
observable for arbitrary SOL-polynomials for which evaluation is �P-hard at
least at some point?

Graph invariants. We say a graph polynomial g is a graph invariant, if, when-
ever G1 and G2 are isomoprphic, then g(G1) = g(G2). We say g is a complete
graph invariant, if additionally, whenever g(G1) = g(G2), then G1 and G2
are isomorphic. There are artificial graph polynomials even in one variable,
which are complete graph invariants. They are artificial, because they use
coding tricks, are expensive to compute, and computing other graph invari-
ants from such a complete polynomial may be very hard. It remains open
whether there are “natural” complete graph invariants, in particular, it is
not obvious what we could mean by “natural”.

Reduction-complete polynomials. A graph polynomial is reduction com-
plete in a complexity class C equipped with a notion of reducibility, if every
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other C-polynomial is reducible to it. To speak about reduction-complete
polynomials it may be reasonable to fix the number of variables of the polyno-
mials under consideration. Are there any reduction-complete P-polynomials?
Is the Tutte polynomial reduction-complete? We note that the Tutte polyno-
mial has been shown to be the most general graph polynomial with respect to
certain reduction rules (contraction and deletion of edges), cf. [10, Chapter
X]. But this excludes the matching polynomial from the discussion.
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P. Bürgisser, B. Courcelle, B. Dubrov, E. Fischer, B. Godlin, M. Lotz, J. Mariño,
A. Matsliach, K. Meer, E. Ravve, and U. Rotics. In particular, I would like to
thank B. Courcelle for inviting me in February 2006 to spend time in Bordeaux
working with him on graph polynomials.

Certain passages in section 2 of the paper are, with the explicit consent of my
co-author, literally taken from [42]. I thank T. Zaslavsky for suggesting the title
of the paper. I am also indebted to two anonymous referees for many valuable
suggestions for improving the clarity of the presented ideas, and to the editors
of the proceedings, who allowed me to exceed the space limit originally alloted
for my contribution.

References

1. M. Aigner. The Penrose polynomial of graphs and matroids. In Surveys in Combi-
natorics, 2001 (Sussex), volume 288 of London Mathematical Society Lecture Note
Series, pages 11–46. Cambridge University Press, 2001.

2. M. Aigner and H. van der Holst. Interlace polynomials. Linear Algebra and Ap-
plications, 377:11–30, 2004.

3. N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica,
12:125–134, 1992.

4. A. Andrzejak. An algorithm for the Tutte polynomials of graphs of bounded
treewidth. Discrete Mathematics, 190:39–54, 1998.

5. R. Arratia, B. Bollobás, and G.B. Sorkin. The interlace polynomial: a new graph
polynomial. Journal of Combinatorial Theory, Series B, 92:199–233, 2004.

6. R. Arratia, B. Bollobás, and G.B. Sorkin. A two-variable interlace polynomial.
Combinatorica, 24.4:567–584, 2004.

7. G.D. Birkhoff. A determinant formula for the number of ways of coloring a map.
Annals of Mathematics, 14:42–46, 1912.
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Abstract. Hell and Nešetřil proved that the H-colouring problem is
NP-complete if, and only if, H is bipartite. In this paper, we investigate
the complexity of the quantified H-colouring problem (a restriction of
the quantified constraint satisfaction problem to undirected graphs). We
introduce this problem using a new two player colouring game. We prove
that the quantified H-colouring problem is:

1. tractable, if H is bipartite;
2. NP-complete, if H is not bipartite and not connected; and,
3. Pspace-complete, if H is connected and has a unique cycle, which is

of odd length.

We conjecture that the last case extends to all non-bipartite connected
graphs.

1 Introduction

A very natural generalisation of graph colouring problems is defined in terms
of graph homomorphism; the problem takes as input a graph G and accepts it
if, and only if, there exists a homomorphism into a fixed graph H . This prob-
lem is known as the H-colouring problem. In [1], Hell and Nešetřil proved that
the class of H-colouring problems exhibits dichotomy: the problem is tractable
if H is bipartite and NP-complete otherwise. Constraint satisfaction problems
(CSPs) are closely related to H-colouring problems. In the case of CSPs with
boolean domains, known as generalised satisfiability, Schaefer used an exhaus-
tive analysis of the types of relations expressible to prove a dichotomy between
those cases that are tractable and those that are NP-complete [2]. An algebraic
approach has been successful in identifying certain tractable and NP-complete
cases (see for example [3, 4]), and has enabled Schaefer’s dichotomy to be ex-
tended to domains of size three [5]. However, the dichotomy conjecture [6], that
states that every (non-uniform) CSP is either tractable or NP-complete, is still
open. Building on the result from [2], dichotomy results were proved indepen-
dently in [7] and [8] for quantified generalised satisfiability problems without
constants (in [2], the result was proved only in the case where the boolean con-
stants were included): they are either tractable or Pspace-complete. The algebraic
approach to the CSP has successfully been applied to quantified constraint sat-
isfaction problems (QCSPs), to determine sufficient conditions for tractability
and Pspace-completeness (see [9, 10]). A partial trichotomy result was proved for
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QCSPs in [9]: for a restricted class the authors prove that every problem is ei-
ther tractable, NP-complete or Pspace-complete. A full classification for QCSP

appears to be even harder than the classification for CSP. Hell and Nešetřil’s
dichotomy motivates us to concentrate on the restriction of QCSPs to graphs,
which we call quantified H-colouring. We introduce quantified H-colouring by
means of a natural game. We show that the quantified H-colouring problem is
tractable if H is bipartite; NP-complete if H is not bipartite and not connected;
and, Pspace-complete if H is connected and contains a unique cycle which is of
odd length. Thus, as a corollary, we obtain the main contribution of this paper:
a trichotomy when H is a graph with at most one cycle. In the NP-complete
and tractable cases, we prove that if certain paths are present in the input then
it must necessarily be rejected, otherwise the problem collapses to NP. More-
over, when H is a bipartite graph, we provide a reduction to 2-colourability,
which demonstrates our problem’s tractability. Note that bipartite graphs are
not closed under majority functions [11], and are not known to be closed under
any of the functions of [9, 10] that would guarantee QCSP tractability. When H
is not connected and not bipartite, we derive from Hell and Nešetřil’s theorem
that the quantified H-colouring problem is NP-complete. In the Pspace-complete
case, we first study odd Catherine wheels, which are graphs that consists of an
odd cycle together with disjoint paths, where each path is attached to a different
vertex of the cycle. Using some structural properties of these graphs, we prove
that a variant of quantified satisfiability, known also to be Pspace-complete,
reduces to the quantified H-colouring problem, whenever H is an odd Cather-
ine wheel. As a corollary, we prove that the quantified H-colouring problem is
Pspace-complete, whenever H has only one cycle, which is of odd length. The
paper is organised as follows. In Section 2, we introduce a new colouring game
and use this game to define the quantified H-colouring problem. In Section 3,
we study cases where the quantified H-colouring problem is in NP. In Section 4,
we prove that the quantified H-colouring problem is Pspace-complete, whenever
H is a connected graph with a unique cycle which is of odd length. Finally, in
Section 5, we derive the main result and conclude with a conjecture.

2 A New Colouring Game

In this paper, we only ever consider finite undirected graphs without self-loops.
Given graphs G and H , a homomorphism f from G to H , denoted G

f−→H , is
a function f : V (G) → V (H) such that {x, y} ∈ E(G) implies {f(x), f(y)} ∈
E(H). We write G−→H if there exists a homomorphism from G to H . The H-
colouring problem takes as input a graph G, which is a yes-instance if, and only
if, there exists a homomorphism from G to H . For n ≥ 0, an n-partitioned graph
G consists of a graph G together with a partition {U1, X2, . . . , U2n+1, X2n+2} of
V (G). In the following, G will always designate the underlying graph of G . Let G
be an n-partitioned graph and H a (non-partitioned) graph. The (G , H)-game
is a two-player game, that pitches Adversary (male) against Prover (female).
Adversary plays on the universal partitions (the sets Ui) and Prover plays on the
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existential partitions (the sets Xi). They play alternate partitions, in ascending
order, until all the partitions have been played. The game goes as follows. For
0 ≤ i ≤ n:

– for every vertex in partition U2i+1, Adversary chooses a vertex in H : i.e. he
gives a function fU2i+1

: U2i+1 → V (H); and,
– for every vertex in partition X2i+2, Prover chooses a vertex in H : i.e. she

gives a function fX2i+2
: X2i+2 → V (H).

Prover wins if, and only if, the function f := fU1
∪ fX2

∪ . . . ∪ fX2n+2
is a

homomorphism from G to H . A strategy for Prover (resp., Adversary) tells her
(resp., him) how to play a partition given what has been played before. A strategy
for Prover is winning if it beats all possible strategies of Adversary.

We say there is an alternating-homomorphism from the n-partitioned graph
G to the (non-partitioned) graph H , and we write G

alt−→H if, and only if, for all
functions fU1

: U1 → V (H), there exists a function fX2
: X2 → V (H), such that,

. . ., for all functions fU2n+1
: U2n+1 → V (H), there exists a function fX2n+2

:
X2n+2 → V (H), such that, fU1

∪ fX2
∪ . . . fU2n+1

∪ fX2n+2
is a homomorphism

from G to H .
If the n-partitioned graph G is viewed as a quantified sentence, then our game

is exactly a model-checking, or Hintikka, game [12] over the model H . In this
guise our game is closely related to that used in the analysis of QCSP by Chen
[10]. In any case, the following is a direct consequence of the above definitions.

Proposition 1. Let G be an n-partitioned graph and H be a graph. G
alt−→H if,

and only if, Prover has a winning strategy in the (G , H)-game.

We define the quantified H-colouring problem as the decision problem which
takes as input a partitioned graph G (n-partitioned, for some n) and whose
yes-instances are those G for which G

alt−→H . We refer to H as the problem’s
template.

2.1 Restricting Partitions

We will be particularly interested in templates H whose quantified H-colouring
yes-instances are partitioned inputs G that in some way collapse to NP. We will
now formalise that notion of collapse.

Let G be a partitioned graph. We say that G is in Π2-form (resp., Σ1-form),
if the only non-empty partitions are among {U1, X2} (resp., {X2}). If G is in
Π2-form and there is at most one vertex in U1, then we say that G is in Π2-fan
form. Finally, we say that G is in Π2-multifan form, if G is the finite disjoint
union of graphs in Π2-fan form.

Theorem 1. The restriction of the quantified H-colouring problem to parti-
tioned graphs in Π2-multifan form is in NP.

Proof. Let G be the disjoint union of G1,G2, . . . ,Gm, all in Π2-fan form. Note
that G

alt−→H if, and only if, Gi
alt−→H , for every 1 ≤ i ≤ m. To test whether
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Gi
alt−→H we may consider all possible maps for the vertex in U1 (if there is one)

and then guess the remainder of the homomorphism and verify in polynomial
time.  !
We describe two partitioned graphs G and G ′ as problem-equivalent if, and only
if, for all templates H , G

alt−→ H iff G ′ alt−→ H . From a partitioned graph G ,
we derive the reduced graph G by collapsing all universal partitions to U1 and
all existential partitions to X2. Note that G and G share the same underlying
graph G.

3 Cases in NP

In this section, we will find that, for certain H , every input which is not essen-
tially in Π2-multifan form can be discarded.

Let H be either a bipartite graph or a non-connected graph, and let G be
a partitioned graph. We first prove that certain paths are forbidden in yes-
instances G of the quantified H-colouring problem. Later, we show that if G
does not have such paths then it must essentially be inΠ2-multifan form. Finally,
we use this important structural property to prove that, for such instances, the
quantifiedH-colouring problem essentially collapses to the H-colouring problem.
The following lemma begins with a special non-connected case.

Lemma 1. Suppose H has an isolated vertex, then: if there is an edge in G
between x in Ui and y in Xj (for any i, j), or between x in Ui and y in Uj (for

any i, j) then G
alt−→/ H.

Let H be any bipartite or non-connected graph. If there is a path in G between
any x in Xi and y in Uj (for i < j) then G

alt−→/ H. If there is a path in G between

any x in Ui and y in Uj (x �= y; any i, j), then G
alt−→/ H.

Proof. (Isolated vertex.) Let s be an isolated vertex of H . Regardless of what is
played before, when Adversary plays x on s he wins.

(Bipartite.) We prove the first claim; the second may be done similarly. Let
a be any vertex in H on which Prover plays x. If a is isolated then Adversary
plays y on a and wins. Assume that a is not isolated. If the path in G between
x and y is of even length then Adversary plays y on b, where b is adjacent to
a. A winning strategy for Prover would imply the existence of an odd cycle in
H , which would contradict the fact that H is bipartite. Thus, it follows that
Adversary wins. If the path in G is of odd length then Adversary plays y on a
and wins by the same argument.

(Non-connected.) We prove the first claim; the second may be done similarly.
Wherever Prover plays x in H , Adversary answers y in a different connected
component of H . Since there is no path between these vertices in H , Adversary
wins.  !
Theorem 2. If H has an isolated vertex then the quantified H-colouring prob-
lem is equivalent to the H-colouring problem under logspace reduction.
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Proof. The H-colouring problem reduces trivially to the quantified H-colouring
problem. We define the converse reduction as follows. Let N be a fixed no-
instance of the H-colouring problem (say,H augmented with one vertex adjacent
to every vertex of H). If G has an edge as in the previous lemma then we know
that it is a no-instance and we reduce G to N (with all vertices in X2). If G
has no such edge then any vertex in a universal partition is isolated, and G is
essentially in Σ1-form. We may reduce G to its underlying graph G.  !
The following result shows that every partitioned graph that does not have the
paths mentioned in Lemma 1 is essentially in Π2-multifan form.

Lemma 2. If there is no path in a partitioned graph G between any x in Xi and
y in Uj (for i < j), or between any x in Ui and y in Uj (x �= y; any i, j), then
G is in Π2-multifan form and is problem-equivalent to G .

Proof. It suffices to prove, for every connected component G ′ of G , that G ′ is in
Π2-fan form and is problem-equivalent to G ′. Let G ′ be such a component and let
0 < i ≤ n be the largest integer such that U2i+1 is non-empty. Take x in U2i+1,
and let y be any element of G ′ connected to x via a path. It follows from the
second assumption that y can not be in a universal partition (U2i+1 included).
Thus, it follows from the first assumption that y belongs to an existential parti-
tion of index at least 2i+ 2. It is not hard to see that we can move x to U1 and
all other [existential] vertices of G ′ to X2, preserving problem-equivalence, and
generating G ′ in Π2-fan form.  !
The following result is essential. We show that, provided the input is in Π2-
fan form and H has no isolated vertex, the quantified H-colouring problem
essentially coincides with the K2-colouring problem.

Lemma 3. Let H be a bipartite graph that has no isolated vertex and let G be
in Π2-multifan form. The following are equivalent:

(i) G
alt−→H

(ii) G
alt−→K2

(iii) G−→K2

Proof. In the following, for any a in H , let a′ be some adjacent vertex. Note that
H is homomorphically equivalent to K2, and thus (iii) is equivalent to G−→H .
Denote by 0 and 1 the two vertices of K2. Let H h−→K2 be some homomorphism

such that h(a) = 0 and h(a′) = 1. Let K2
h′−→H be the homomorphism defined

by h′(0) = a and h′(1) = a′.
It suffices to prove the result for each connected component of G . Thus, assume

w.l.o.g. that G is in Π2-fan form. If G has no vertex in U1 then the result holds
trivially. Otherwise, let x be the unique vertex in U1.

– (i) ⇒ (ii): Consider a winning strategy for Prover in the (G , H)-game, where
Adversary plays x on a (resp., on a′). Since G

alt−→H , there exists a homomor-
phism G

sa−→H such that sa(x) = a (resp., G
sa′−→H such that sa′(x) = a′).
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We now construct a winning strategy for Prover, in the (G ,K2)-game, as
follows. If Adversary plays x on 0 (resp., on 1) inK2 then all remaining moves
are Prover’s: she plays every vertex y in X2 on h ◦ sa(y) (resp., h ◦ sa′(y))
and wins.

– (ii) ⇒ (i): Consider a winning strategy for Prover in the (G ,K2)-game,
where Adversary plays x on 0. Since G

alt−→K2, there exists a homomorphism
G

s0−→K2 satisfying s0(x) = 0.
We now construct a winning strategy for Prover in the (G , H)-game. When
Adversary plays x on some a in H , then Prover plays each vertex y of X2
according to h′ ◦ s0(y), and wins.

– (ii) ⇒ (iii): clear.
– (iii) ⇒ (ii): follows from the symmetry of K2.

 !
Theorem 3. Let H be a bipartite graph. The quantified H-colouring problem is
tractable.

Proof. We propose the following algorithm to solve the quantified H-colouring
problem. If H has an isolated vertex then by Theorem 2 the problem reduces in
logspace to the H-colouring problem, known to be tractable by Hell and Neše-
třil’s theorem. If H has no isolated vertex then we use the following algorithm.
The input G is first scanned to check whether it has any of the forbidden paths
of Lemma 1. If there are any then the input is rejected. Otherwise, the algorithm
accepts the input if, and only if, it is bipartite.

This algorithm is clearly polynomial. We now prove its correctness. We know
that if G has none of the forbidden paths, then it is problem-equivalent to the
reduced G in Π2-multifan form, by Lemma 2. Thus, G

alt−→ H iff G
alt−→ H iff

G−→K2 (by Lemma 3), and we are done.  !
Remark 1. It is well-known that two graphs H and H ′ give rise to identical
H-colouring and H ′-colouring problems iff they are homomorphically equivalent
(alternatively, that they have the same core). Let H be a bipartite graph. There
are precisely two possible H-colouring problems, corresponding to the cores K1
and K2. It follows immediately from Theorem 2 and Lemma 3 that there are
precisely three possible quantified H-colouring problems, corresponding to K1,
K2 and, say, K2 7K1.

Theorem 4. Let H be a non-connected graph. The quantified H-colouring prob-
lem is in NP. Moreover, if H is not bipartite then the quantified H-colouring
problem is NP-complete.

Proof. (Membership of NP.) Let G be the input partitioned graph. If G has
any of the paths of Lemma 1 then we know it is a no-instance. Otherwise, by
Lemma 2, G is problem-equivalent and in Π2-multifan form, and we can use the
algorithm of Theorem 1.

(NP-hardness.) If H is not bipartite then, by Hell and Nešetřil’s theorem [1]
the H-colouring problem is NP-complete. Since it reduces trivially to the quan-
tified H-colouring problem, the NP-hardness of that problem follows.  !
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4 Pspace-Complete Cases

In this section, we prove that the quantified H-colouring problem is Pspace-
complete whenever H is a connected graph with a unique cycle, which is of odd
length. Firstly, we study the special case of what we call odd Catherine wheels.
Secondly, we reduce a variant of the quantified satisfiability problem that is also
Pspace-complete, quantified not-all equal 2k + 1-sat (qnae 2k + 1-sat) to the
quantified H-colouring problem, where H is an odd Catherine wheel. Finally,
we extend this reduction to any connected graph with a unique cycle, which is
of odd length.

4.1 Odd Catherine Wheels

LetW be a graph that consists of an odd cycleC2k+1 (where k > 0) together with
2k + 1 disjoint paths P 0, P 1, . . . , P 2k, each of any finite length (but potentially
trivial, i.e. the path of length 0 consists of a single vertex) such that the end
of each path is identified with a different vertex of the odd cycle. We say that
W is an odd Catherine wheel. Ordering the cycle and choosing an initial vertex,
we represent W by the corresponding sequence of path lengths, which we call a
listing. For any distinct vertices u and v, we denote by d(u, v) the length of the
shortest path from u to v. Set

ω := min{D({u, v}) : {u, v} is an edge on the cycle of W}
where D({u, v}) := max{min{d(u,w), d(v, w)} : w ∈ V (W )}, for any {u, v}
in E(W ). We say that a listing of W is minimal if D({k, k + 1}) = ω. We
need the following two lemmas to prove the completeness of the quantified W -
colouring problem. The proofs, though technical, present no difficulties and due
to restrictions on space are omitted.

Lemma 4. Let W be an odd Catherine wheel with a cycle of size 2k + 1. Let
P 0, P 1, . . . , P 2k be a minimal listing of W . There exists t in V (W ) such that
there is an ω-walk from t to k, but no ω-walk from t to k + 1, and there exists
s in V (W ) such that there is an ω-walk from s to k + 1, but no ω-walk from s
to k.

Lemma 5. Let W be an odd Catherine wheel with a cycle of size 2k + 1. Let x
and y be any vertices on this cycle. There is a walk from x to y of length 2k− 1
if, and only if x is distinct from y.

4.2 Reduction from Quantified Not-all-Equal 2k + 1-sat

Let W be an odd Catherine wheel with a cycle of size 2k+ 1. In this section we
prove that the quantified W -colouring problem is Pspace-complete. The proof
involves a reduction from the problem qnae 2k+ 1-sat, inspired by that given in
[9]. This problem takes as input a formula ϕ of the form

Q1v1, Q2v2, . . . , Qnvn

c∧

i=1

N(vi1 , vi2 , . . . , vi2k+1
),
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where n, c ≥ 1 and for every 1 ≤ j ≤ n, Qj is either the quantifier ∃ or ∀ and vj
is a variable symbol. Such a formula is accepted if, and only if, it is true, where
the semantics of N is “not-all-equal” (that is, under a Boolean valuation a clause
is satisfied if, and only if, at least two variables are given different values).

Let ω be defined as in the previous section. Throughout this section, let ϕ be
an input of qnae 2k + 1-sat. We build a partitioned graph G as follows.

The Underlying Graph

– For each variable vi of ϕ, we add a copy of C2k+1; we fix a vertex wi and two
adjacent vertices xi and yi, both at distance exactly k from wi; and, we add
a path of length ω which we attach at the vertex yi, and call zi the other
extremity of this path. We call this graph, together with the specified vertices
xi, yi and wi, the variable gadget associated with vi. Next, we identify every
vertex wi, of every variable gadget, as a single vertex w, common to every
cycle of every variable gadget.

– For each clause N(vi1 , vi2 , . . . , vi2k+1
) of ϕ, we add a copy of C2k+1, whose

vertices are labelled by 1, 2 . . . , 2k + 1; each vertex of the cycle represents
a position in the clause; and, for 1 ≤ j ≤ 2k + 1, we add a path of length
2k − 1 from the vertex j of the cycle to the vertex xij . We call this graph
the clause gadget associated with N(vi1 , vi2 , . . . , vi2k+1

).

The Partition. We set U1 to be empty. We add w to X2. Next, we read the
quantifiers in ϕ from left to right, and proceed inductively. Let Xli be the current
last (existential) partition used. Let vi be the next quantified variable. There are
two cases:

1. vi is universally quantified. We add a universal partition Uli+1 and set
Uli+1 := {zi}; and, we add an existential partition Xli+2 and add to Xli+2
the rest of the variable gadget associated with vi: that is, the rest of zi’s
path, and every vertex of the cycle C2k+1 (apart from wi = w, already in
X2).

2. vi is existentially quantified. We add the rest of the variable gadget associated
with vi to Xli : that is, zi, its path, and the rest of the corresponding C2k+1
(just like above wi = w is already in X2).

Once we have read all the quantifiers of ϕ, we add all of the remaining vertices,
i.e. those in the cycles and paths that encode clauses, to the last existential
partition Xl.

Preliminary Observations. The construction specified is well-defined and the
partitioned graph can be built in time polynomial in the size of the formula ϕ.
It remains for us to prove that it is indeed a reduction. We may assume that ϕ
has at least one universal variable, since qnae 2k+ 1-sat reduces trivially to this
restriction, under the reduction which adds a dummy universal variable.

Note that almost all vertices of G are in existential partitions: the only vertices
in universal partitions are the zi that belong to the variable gadgets associated
with universal variables vi of ϕ. Recall that Prover plays these existential vertices
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and wants to build a homomorphism to W , for each choice made by Adversary.
In particular, every cycle must be played to the cycle of W , whether they are
cycles from a clause gadget or a variable gadget, otherwise we would not have a
homomorphism. Moreover, since C2k+1 is a core (see [13]) every endomorphism
of C2k+1 is an automorphism. Thus, distinct elements of a cycle in G must be
played on distinct elements of the cycle in W .

We will need only to consider the case where w is played on the vertex labelled
by 0 in some minimal listing of W . Indeed, if Prover has a winning strategy then
w must be played on such a vertex. Otherwise, by minimality of ω, there would
exists a vertex u in W that does not have an ω-walk to either k or k + 1 and if
Adversary plays a vertex zi (from a variable gadget associated with a universal
variable vi) on this vertex u then Prover would not be able to map yi to k or
k + 1 (which she has to, see previous remark on the play of cycles), and she
would lose. Conversely, as we shall prove shortly, if ϕ is a yes-instance then we
can build a winning strategy for Prover, where w is played on the vertex labelled
by 0 in some minimal listing of W .

Assignment vs. Homomorphism. In the following we assume that w is played
on the vertex labelled 0, according to some minimal listing of W . Consider
the variable gadget associated with a variable vi of ϕ and ignore, for now, the
variable zi and its path of length ω. A homomorphism from this partial gadget to
W corresponds to a truth assignment of vi according to the following encoding:
if the vertex xi is played on k then the variable is assigned to true and if the
vertex xi is played on k+ 1 then the variable is assigned to false. Note that this
encoding establishes a one-to-one correspondence between assignments to the
variables of ϕ and the homomorphism h from the partial variable gadgets that
satisfy h(w) = 0. Thus, under the assumption that w is played on the vertex
labelled 0, for notational simplicity, given such a homomorphism h, we feel free
to also write h for the corresponding boolean assignment. The following may be
derived from Lemma 5.

Lemma 6. Let N(vi1 , . . . , vi2k+1
) be a clause of ϕ. N(vi1 , . . . , vi2k+1

) is satisfied
by h if, and only if, there exists a homomorphism from the clause gadget associ-
ated with N(vi1 , . . . , vi2k+1

) together with the partial gadgets associated with the
variables vi1 , . . . , vi2k+1

such that not all the vertices xi1 , . . . , xi2k+1
are mapped

on the same vertex in W .

Correctness of the Reduction. Assume that ϕ is a yes-instance. We build a win-
ning strategy for Prover accordingly, such that she plays w on the vertex 0 in a
minimal listing of W . For every vertex zi in a variable gadget that corresponds
to a universal variable vi of ϕ, no matter where zi is played by Adversary in
W , by definition of ω, there exists an ω-walk from this vertex to one of the
vertices k or k + 1. Thus, Prover may play xi on k or k + 1 and ensure that the
correspondence with boolean assignment still holds. However, by Lemma 4, by
choosing carefully the vertex on which he plays, Adversary can force h(vi) to be
false or true, at his will. Similarly, if a variable is quantified existentially then it
follows from Lemma 4 that Prover can play zi on a vertex such that xi is played
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on k or k + 1, at her will. This extends the correspondence between boolean
assignments and homomorphisms to take the quantifiers into account. Assume a
homomorphism h has been played by Adversary and Prover, where Prover mim-
ics the assignment induced by the fact that ϕ is a yes-instance. Since h satisfies
ϕ, for every clause, not all variables have the same value and by Lemma 6, we
can extend h to the whole graph.

Conversely, assume that G
alt−→W . We have already observed that Prover must

play w on [some] 0. We build a winning assignment h for ϕ accordingly. This
time we use the converse implication in Lemma 6.

Theorem 5. Let H be a connected graph that has a unique cycle, which is odd.
Then the quantified H-colouring problem is Pspace-complete.

Proof. The problem qnae 3-sat is Pspace-complete [9] and reduces trivially to
the problem qnae 2k+ 1-sat. Together with the reduction presented above, this
proves that if W is an odd Catherine wheel then the quantified W -colouring
problem is Pspace-complete.

Let H be a connected graph with a unique cycle that is odd. H induces an
odd Catherine wheel W as follows. For every tree T i attached to the odd cycle,
replace T i by a path P i of the same length as the height of T i. If ϕ is an
instance of qnae 2k+ 1-sat, we build G as above, and we claim that G

alt−→H if,
and only if G

alt−→W . This is due to the fact that in G any vertex zi in a universal
partition lies on the tip of a path that lies in the next existential partition. Thus,
if Adversary plays zi in some path P ′ within a tree T i, at distance d from the
cycle of H , then Prover can forget every other path and act as if Adversary had
played on the vertex at distance d from the cycle in the path P i of W . The
converse holds trivially and the result follows.  !

5 Conclusion

Combining the results of this paper in a single statement, we get a trichotomy
for the quantified H-colouring problem, when H has at most one cycle.

Theorem 6 (main result). Let H be a graph with at most one cycle. The
quantified H-colouring problem exhibits a trichotomy.

– If H is bipartite then the quantified H-colouring problem is tractable.
– If H is not bipartite and not connected then the quantified H-colouring prob-

lem is NP-complete.
– If H is not bipartite and connected then the quantified H-colouring problem

is Pspace-complete.

Proof. The first case follows from Theorem 3 and the third case follows from
the previous theorem. The second case remains. Membership of NP follows from
Theorem 4. For completeness, note that the core of H is some odd cycle C2k+1:
there is a trivial reduction from the C2k+1-colouring problem, known to be NP-
complete (e.g. [1]).  !
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We note that the method of forbidden paths, which allowed us to derive results
for templates that are either bipartite or non-connected, can not be extended
further. This is because, for a non-bipartite connected H , there exists a number
M such that, for all vertices x, y ∈ V (H) and for all m ≥M , there is an m-walk
from x to y. This leads us to the following conjecture that would imply a full
trichotomy for quantified H-colouring.

Conjecture 1. IfH is not bipartite and connected then the quantifiedH-colouring
problem is Pspace-complete.
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1 Introduction

Effective fractal dimension was defined by Lutz [13] in order to quantitatively
analyze the structure of complexity classes. The dimension of a class X inside
a base class C is a real number in [0,1] corresponding to the relative size of
X ∩ C inside C. Basic properties include monotonicity, so dimension 1 classes
are maximal and dimension 0 ones are minimal, and the fact that dimension is
defined for every class X , making effective dimension a precise quantitative tool.

The first goal of such quantitative methods is to extend existence results of
the form “there is a problem in C that is in X” to abundance results of the form
“a non-negligible part of the problems in C are in X” formally expressed as “the
class X has positive dimension in C”. Another application is in relation with
the probabilistic method, proving that X has positive dimension can be simpler
than proving non-emptiness, the easiness here comes from proving abundance as
opposed to constructing a particular object. A third aspect of effective dimension
is as a formal tool in Computational Complexity, allowing us to consider new
working hypothesis such as “NP has positive dimension in exponential time”,
that can imply plausible consequences that haven’t been derived from P�=NP.

The concept of effective dimension is a generalization of classical fractal or
Hausdorff dimension, one of the most powerful tools of fractal geometry, an
extensively developed subfield of geometric measure theory with applications
throughout the sciences [5, 7, 6]. Tricot [19] and Sullivan [18] independently de-
veloped a dual of Hausdorff dimension called packing dimension, that now rivals
Hausdorff dimension’s importance in such investigations.

In 2000 Lutz proved a new characterization of Hausdorff dimension in terms
of gales [13], that are betting strategies that generalize martingales. The most
important benefit of this characterization is that it enables one to define effective
versions of fractal dimension by imposing various computability and complexity
constraints on the gales. Four years later Athreya, Lutz, Hitchcock and May-
ordomo [3] proved that packing dimension also admits a gale characterization,
with a different notion of gale success. We can now define versions of Hausdorff
and packing dimensions that are meaningful inside complexity classes such as
exponential time and exponential space.

� This research was supported in part by Spanish Government MEC project TIN
2005-08832-C03-02.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 353–359, 2006.
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Effective dimension has indeed proven to be very fruitful in Computational
Complexity for obtaining useful results in the three aspects mentioned above. A
very recent summary of the main achievements can be found in [10].

In this note we propose two interesting open problems on Computational
Complexity, both related to polynomial-time reductions. Complete or partial
solutions of these problems imply a big advance in what we know on the classes
NP and BPP. In both cases quantitative methods such as resource-bounded
measure have given initial answers in the past, and the fact that dimension is
defined for every class can overcome non-measurability obstacles.

2 Effective Dimension

For the sake of completeness we include the basic definitions of resource-bounded
or effective dimension, based on the notion of s-gale. A more detailed treatment,
motivation, references and historical introduction can be found in [10], [15], and
[14].

We work in the Cantor space C that is the set of all infinite binary sequences.
{0, 1}∗ is the set of finite binary strings.

Formally, if s ∈ [0,∞), then an s-gale is a function d : {0, 1}∗ → [0,∞)
satisfying the condition

d(w) = 2−s[d(w0) + d(w1)] (1)

for all w ∈ {0, 1}∗ [13]. A martingale is a 1-gale.
A gale d succeeds on a sequence S if

lim sup
w→S

d(w) = ∞

and succeeds strongly on S if

lim inf
w→S

d(w) = ∞.

The success set S∞[d] of a gale d is the set of all sequences on which d succeeds.
The strong success set S∞

str[d] is the set of all sequences on which d succeeds
strongly.

Intuitively, we think of a gale d as a strategy for betting on the successive
bits of a sequence S. The quantity d(w) is interpreted as the capital (amount of
money) that a gambler using the strategy d has after betting on the successive
bits of the prefix w of S. The parameter s regulates the fairness of the payoffs via
identity (1). If s = 1, the payoffs are fair in the usual sense that the conditional
expectation of the gambler’s capital d(wb), given that w has occurred, is precisely
d(w), the gambler’s actual capital before betting on the last bit of wb. If s < 1,
then the payoffs are unfair, and the smaller s is, the more unfair the payoffs are.

Theorem 1. (Gale characterization of fractal dimension) Let X be a set of
sequences.
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1. (Lutz [13]) dimH(X) = inf{s | there is an s-gale d such that X ⊆ S∞[d]}.
2. (Athreya et al. [3]) dimP(X) = inf{s | there is an s-gale d such that

X ⊆ S∞
str[d]}.

Intuitively, Theorem 1 says that the fractal dimension of a set X of sequences
is the most hostile environment (i.e., most unfair payoff parameter s) in which a
gambler can win on every sequence in X . Of course, the word “win” here means
“succeed” in the case of Hausdorff dimension and “succeed strongly” in the case
of packing dimension.

It is easy to see that 0 ≤ dimH(X) ≤ dimP(X) ≤ 1 holds in any case.
Both of these fractal dimensions are monotone (i.e., X ⊆ Y implies dim(X) ≤
dim(Y )), countably stable (i.e., dim(

⋃∞
i=0 Xi) = supi dim(Xi)), and nonatomic

(i.e., dim({S}) = 0 for each sequence S) [6]. In particular, every countable set
of sequences has Hausdorff and packing dimension 0.

We say that a gale d : {0, 1}∗ → [0,∞) is p-computable if there is a function
d̂ : {0, 1}∗×N → Q such that d̂(w, r) is computable in time polynomial in |w|+r

and |d̂(w, r)−d(w)| ≤ 2−r holds for all w and r. Gales that are p
2
-computable are

defined analogously, with d̂(w, r) required to be computable in 2(log(|w|+r))O(1)

time.
We are finally ready to bring this all home to complexity classes. We iden-

tify each language (i.e., decision problem) A ⊆ {0, 1}∗ with its characteristic
sequence, whose nth bit is 1 if the nth string in {0, 1}∗ (in the standard enumer-
ation λ, 0, 1, 00, 01, . . .) is an element of A, and 0 otherwise. We say that a gale
succeeds on A if it succeeds on the characteristic sequence of A and similarly for
strong success. We now show how to define fractal dimension in the complexity
classes E = TIME(2linear) and EXP = TIME(2polynomial).

Definition 1. [13, 3] Let X be a set of languages.

1. If Δ is any of the resource bounds p, p
2
, then the Δ-dimension of X is

dimΔ(X) = inf{s | there is a Δ-computable s-gale d such thatX ⊆ S∞[d] },

and the strong Δ-dimension of X is

DimΔ(X) = inf{s | there is a Δ-computable s-gale d such thatX ⊆ S∞
str[d]}.

2. The dimension of X in E is dim(X | E) = dimp(X ∩ E).
3. The dimension of X in EXP is dim(X | EXP) = dimp

2
(X ∩ EXP).

4. The strong dimensions Dim(X | E), Dim(X | EXP) are defined analogously.

By Theorem 1, dim(X | C) and Dim(X | C) are analogs of Hausdorff and packing
dimension, respectively. It was shown in [13, 3] that these analogs are in fact well-
behaved, internal dimensions in the classes C that we have mentioned. In all these
classes, 0 ≤ dim(X | C) ≤ Dim(X | C) ≤ 1 hold, with dim(C | C) = 1.
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2.1 Scaled Dimension

Scaled dimension [9] are versions of resource-bounded dimension that have been
“rescaled” to better fit the phenomena that they are measuring. They correspond
to the concept of generalized dimension already suggested by Hausdorff.

Scaled dimension arises using more general factors than 2−s in the definition
of gale in equation 1. In the general theory, there is a natural hierarchy of scales
gi(s, n), one for each integer i ∈ Z, built around the standard scale

g0(m, s) = ms.

The ith scale gives us ith-order scaled dimension.
The first scales are the following, for 0 ≤ s ≤ 1,

g3(m, s) = 22(log log m)
s

g2(m, s) = 2(logm)s

g1(m, s) = ms

g0(m, s) = ms
g−1(m, s) = m+ 1−m1−s

g−2(m, s) = m+ 2− 2(logm)1−s

g−3(m, s) = m+ 22 − 22(log log m)
1−s

We refer to [9] for a justification of the choice of these scales, related for instance
to complexity classes such as SIZE(2nα) and SIZE(2n

α

).
An s(i)-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−gi(|w|+1,s)+gi(|w|,s)[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
The concept of success and strong success of an s(k)-gale on a sequence is

defined exactly as in the previous section, the corresponding limsup (liminf)
must be infinity.

Definition 2. [9] Let X be a set of languages.

1. If Δ is any of the resource bounds p, p
2
, then the ith-order scaled

Δ-dimension of X is

dim(i)
Δ (X) = inf{s | there is a Δ-computable s(i)-gale d such that

X ⊆ S∞[d]}.

2. The ith-order scaled dimension of X in E is dim(i)(X | E) = dim(i)
p (X ∩ E).

3. The ith-order scaled dimension of X in EXP is dim(i)(X | EXP) =
dim(i)

p
2

(X ∩ EXP).

The ith-order scaled strong Δ-dimension of X , written Dim(i)
Δ (X), is defined in

the same way, instead requiring strong success of the scaled-gale. We also define
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Dim(i)(X | E) = Dim(i)
p (X ∩ E), Dim(i)(X | EXP) = Dim(i)

p
2

(X ∩ EXP), etc.
(analogously to the definitions in Section 2).

The 0th-order scaled dimension is the standard (unscaled) dimension. The
other scaled dimensions have similar properties. For example, 0 ≤ dim(i)

Δ (X) ≤
Dim(i)

Δ (X) ≤ 1 and if dim(i)
Δ (X) < 1, then X has Δ-measure 0. The following

theorem states two important facts about the scaled dimensions.

Theorem 2. [9] The scaled dimension dim(i)
Δ (X) is nondecreasing in the order

i. There is at most one order i for which dim(i)
Δ (X) is not 0 or 1.

In particular, the sequence of scaled dimensions must have one of the following
four forms.

(i) For all i, dim(i)
Δ (X) = 0. (ii) For all i, dim(i)

Δ (X) = 1.

(iii)
There is an order i∗ such that
– dim(i)

Δ (X) = 0 for all i ≤ i∗ and
– dim(i)

Δ (X) = 1 for all i > i∗.
(iv)

There is an order i∗ such that
– dim(i)

Δ (X) = 0 for all i < i∗,
– 0 < dim(i∗)

Δ (X) < 1, and
– dim(i)

Δ (X) = 1 for all i > i∗.

We find (iv) to be the most interesting case. Then i∗ is the “best” order at
which to measure the Δ-dimension of X because dim(i∗)

Δ (X) provides much more
quantitative information about X than is provided by dim(i)

Δ (X) for i �= i∗.

3 Small Span Theorems and BPP

We classify an apparently intractable problem A by identifying and studying the
class of all problems that are efficiently reducible to A. Efficiently reducible can
be taken as polynomial-time many-one reducible (≤P

m-reductions), polynomial-
time Turing reducible (≤P

T-reductions) or any of the intermediate reductions
obtained by restricting the query mechanism in polynomial-time Turing re-
ducibilities.

The lower ≤P
m-span of A is the set of problems that are ≤P

m-reducible to A

Pm(A) =
{
B
∣
∣
∣B≤P

mA
}

and similarly for other reductions, and the upper ≤P
m-span is the set P−1

m (A)
consisting of those decision problems B to which A is ≤P

m-reducible.
A Small Span Theorem for a reduction ≤P

r in a class C is the assertion that
for every A ∈ C it must be the case that either Pr(A) or P−1

r (A) have minimal
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size. This kind of result implies that the degree structure of C is very fine, so
whenever a subclass is not minimal it must contain problems in several degrees.

Juedes and Lutz [12] obtained the first Small Span Theorem for the reduction
≤P

m and both classes E and EXP, using resource-bounded measure. Other authors
pushed this result to ≤P

k−tt in E and ≤P
no(1) in EXP [2, 4].

In dimension the situation is far more complicated, sice Ambos-Spies et al. [1]
and later Hitchcock [8] proved that for scales i ≥ −2 there are degrees of maximal
p-dimension 1. For scale -3, Hitchcock [8] proved a Small Span Theorem for ≤P

m
and E.

An important application of Small Span Theorems is related to BPP, the class
corresponding to probabilistic polynomial time, since the class of hard problems
for BPP has maximal size in all quantitative settings (Martin-Löf tests, resource-
bounded measure, effective dimensions) also when restricted to the subclass of
hard sets for BPP in EXP. The existence of a Small Span Theorem for ≤P

T or
≤P

tt would imply the separation of BPP and EXP, since the degree of Turing-
complete sets for EXP would then be minimal size.

Open question. Prove that for every A ∈ EXP

dim(−3)(PT(A) | EXP) = 0 or dim(−3)(P−1
T (A) | EXP)

Alternatively prove that dim(−3)(degP
T(A) | EXP) = 0. Similar questions for

E in the place of EXP and for ≤P
tt in the place of ≤P

T are relevant.
Notice that a solution to this question would be the least exigent form of a

Small Span Theorem for dimension and polynomial-time reductions. Any state-
ment about other scaled or strong dimensions is either false or would imply an
affirmative answer to this. It is also weaker, thus an affirmative answer is more
plausible, than a resource-bounded measure version.

4 Completeness Separations

Even if we assume that P �=NP, many open questions in Computational Com-
plexity remain open. Lutz [17] proposed investigation of various strong, measure-
theoretic hypothesis, the most notable of which is the hypothesis that NP does
not have resource-bounded measure 0 in EXP, that is known now to have many
interesting consequences (not known to follow from P �=NP).

One of these consequences is the separation of the notions of ≤P
m and ≤P

T-
completeness for the class NP [16], a statement that seems far stronger than P
versus NP.

The answer to each of the following questions would be an improvement over
the result in [16].

Open questions. Prove that dimp(NP ) > 0 implies the separation of ≤P
T and

≤P
tt completeness notions for NP.
Hitchcok et al. have proven in [11] that the separation of ≤P

m and
≤P

T-completeness for NP can be obtained from the hypothesis dim(−3)
p (NP ) > 0,

which is weaker than the original measure hypothesis. Can this be improved to
a bigger scale (-2, -1, 0, . . . )?
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Abstract. We outline some current work in real number complexity
theory with a focus on own results. The topics discussed are all located
in the area of polynomial system solving. First, we concentrate on a com-
binatorial optimization problem related to homotopy methods for solving
numerically generic polynomial systems. Then, approximation problems
are discussed in relation with Probabilistically Checkable Proofs over the
real numbers.

1 Introduction

Whereas the classical theory of computability focuses on discrete problems (over
bits, integers, or fractions that is), Turing’s original goal of introducing ‘his’
machine was the issue of real number computability [24] — the birth of Recursive
Analysis [25]. Here, computing some x ∈ R amounts to the generation of an
infinite sequence of rational numbers qn converging to x with error at most 2−n.
We point out that the approach is thus based both on discrete computability on
the set of fractions Q, regarded as an ordered field, and on its approximations to
R as a topological space. This bi-categority raises the question for an intrinsic
approach to real and complex computability formulated in terms of R or C only.

Indeed, a natural yet very different type of real/complex number algorithm
is illustrated by the Gaussian elimination method for linear equations and ma-
trices: a finite sequence of operations +,−,×,÷ and branches based on com-
parisons (pivoting). The latter approach reflects the modus operandi of both
mathematicians and computer algebra systems. Its formalization [5, 4], now re-
ferred to as Blum-Shub-Smale or BSS model, has exhibited a rich variety of
structural properties analogous to (though often by entirely different arguments
than) well-known results for discrete (i.e., Turing-) computation. Many of them
pertain the area of Algebraic Complexity Theory [6], that is, they focus on com-
plexity aspects such as real/complex counter-parts to the classical NP ?= P and
similar class separation questions [21, 7].

The present work will review some of the author’s (and his coworkers) recent
contributions to this field. We discuss different aspects related to certain opti-
mization and approximation problems that are important in the BSS setting.
In Section 2 the focus is put on the question whether a polynomial system has
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a real solution and how to compute solutions numerically. Currently used nu-
merical methods naturally lead to the combinatorial problem of computing the
minimal multi-homogeneous Bézout number for a given system. We discuss some
negative results concerning that problem obtained in [17]. In Section 3 we turn
to structural complexity results involving probabilistically checkable proofs over
the reals. Again, starting point will be the question whether a given polynomial
system is solvable.

We suppose the reader to be familiar with the basics of real number com-
putability as given in [5, 4]. For the interested reader the two volumes [22] and
[12] give a good insight into further research topics.

2 Computation of Solutions of Polynomial Systems

The main result in the seminal paper of Blum, Shub, and Smale [5] is the in-
troduction of real and complex analogues of the classical P versus NP question
together with the proof that in this framework both NPR- and NPC-complete
problems exist and are decidable. More precisely, the following is shown

Theorem 1. ([5]) a) Given n,m ∈ N and a quadratic polynomial system

p1(x) = 0 , . . . , pm(x) = 0,

where each pi ∈ R[x1, . . . , xn], all pi of degree at most 2, the question whether a
common real solution x∗ ∈ Rn exists is NPR-complete.

b) All decision problems in class NPR are decidable in the real number model
by an algorithm that runs in simple exponential time.

c) Analogous statements hold for computations over the complex numbers.

In particular statement b) is much more involved than its classical counterpart.
Since the search space becomes uncountable deep results about quantifier elimi-
nation algorithms in real and algebraically closed fields are needed. For more on
this see the recent textbook [3] and the literature cited in there.

The above theorem indicates how real and complex number complexity theory
is closely related to a lot of classical problems that have been studied at least
during decades, if not centuries. This includes both theoretical results about
quantifier elimination as well as the huge area of practical algorithms for poly-
nomial systems solving. Let us first concentrate on the latter.

In many practical applications one is not only interested in the existence of
solutions of a polynomial system but also in their (numerical) computation.
Numerical methods of choice that have turned out to be successfull in such
applications are homotopy methods, see [14]. For target systems f : Cn → Cn of
a certain generic structure the idea is to first choose a simple start system g for
which all the zeros (solutions) are known. Then the zeros of g are (hopefully)
followed by a Newton method along the linear (or another) homotopy H(x, t) =
(1− t) · g(x)+ t · f(x) into the zeros of f. Though this principle idea sounds easy
there are a lot of interesting and difficult problems related to it, both from the
theoretical and from the practical side. For more on this see [14, 11, 23].
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We shall now focus on one such problem related to the choice of a good start
system g above. One general aim is to fit the zero structure of the start system as
good as possible to that of the target system f. An easy way would be to apply
Bézout’s theorem and construct g such that it has as many (isolated) zeros in
Cn as Bézout’s theorem would give as upper bound. Whereas such a g is easy to
compute because Bézout’s bound is given as the product of the degrees of the
involved polynomials, the number of zeros can be far away from the correct one,
thus resulting in many superfluous paths that are followed by the homotopy
approach. On the “opposite end” of the scale we find start systems that are
computed according to the requirement to have the same mixed volume as the
target system. For generic polynomial systems the mixed volume gives exactly
the number of solution in (C \ {0})n; however, it is extremely hard to compute.

A third way to design a suitable start system are multi-homogeneous Bézout
numbers. They are based on a variant of Bézout’s theorem where the set of
variables is divided into several groups and Bézout’s theorem then is applied
to each such group. It is used quite successfully in practice. Multi-homogeneous
Bézout numbers as well have very interesting relations to analyzing interior point
methods as recently shown in [13]. However, until recently [17] the complexity of
computing the best multi-homogeneous partition of a generic polynomial system
was not known. Let us now describe the main results obtained in [17].

Definition 1. Let n ∈ N and a finite A ⊂ Nn be given as input. Find the
minimal multi-homogeneous Bézout number, among all choices of a multi-homo-
geneous structure for a polynomial system with support A.

⎧
⎪⎨

⎪⎩

f1(z) =
∑

α∈A f1αz
α1

1 zα2

2 · · · zαn
n

...
fn(z) =

∑
α∈A fnαz

α1

1 zα2

2 · · · zαn
n

(1)

where the fiα are non-zero complex coefficients.
Here, the multi-homogeneous Bézout numbers of the above system are defined

as follows.
A multi-homogeneous structure is given by a partition of {1, . . . , n} into (say)

k sets I1, . . . , Ik. Then for each set Ij , 1 ≤ j ≤ k, we consider the group of
variables Zj = {zi : i ∈ Ij}.

The degree of each fi in the group of variables Zj is

dj
def
= max

α∈A

∑

l∈Ij

αl

When for some j the maximum dj is attained for all α ∈ A, we say that
(1) is homogeneous in the variables Zj. The dimension of the projective space
associated to Zj is

aj
def
=
{

#Ij − 1 if (1) is homogeneous in Zj, and
#Ij otherwise.
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We assume that n =
∑k

j=1 aj. Now the multi-homogeneous Bézout number
Béz(A; I1, . . . , Ik) related to partition (I1, . . . , Ik) is defined as1

Béz(A; I1, . . . , Ik) =
(

n
a1 a2 · · · ak

) k∏

j=1

d
aj

j (2)

where the multinomial coefficient
(

n
a1 a2 · · · ak

)
def
=

n!
a1! a2! · · · ak!

is the coefficient of
∏k

j=1 ζ
ak
j in (ζ1 + · · ·+ ζk)n (recall that n =

∑k
j=1 aj).

Though our starting question arose from BSS complexity theory over R and C
the above question is a purely combinatorial optimization problem. The main
result now states that this problem is not only hard to solve exactly unless P
equals NP classically, but also hard to approximate.

Theorem 2. ([17]) Computing the minimal multi-homogeneous Bézout number
of a generic polynomial system f, when given n ∈ N and a support set A ⊂ Nn

as above, is classically NP-hard. Moreover, even approximating this minimal
number within an arbitrary fixed constant C is NP-hard, i.e. the problem does
not belong to class APX unless P=NP (for a definition of class APX see [2]).

The proof of the theorem is based on a reduction from the three coloring problem
of graph theory. Given a graph a polynomial system is constructed such that the
support of the latter reflects nodes, edges, and triangles in the given graph in
a particular way. For the non-approximability part a special multiplicativity
structure of multi-homogeneous Bézout numbers has to be established.

For practical purposes it has to be decided whether one prefers to design a
start system according to the mixed volume approach or wants to use a heuristic
for approximating the best multi-homogeneous Bézout number. For some such
heuristics see [15, 16]

3 Probabilistically Checkable Proofs

The optimization problem discussed in the previous section of course is only one
particular problem related to polynomial system solving. Theorem 1 substanti-
ates that deciding existence of zeros of polynomial systems is computationally
hard, Theorem 2 showed that already in a generic situation computing the exact
number of solutions is hard – even when restricting the computational goal to
approximate that number only. A bunch of similar other questions are of im-
portance and lead to different problems and methods. For example, instead of
1 We remark that a more general definition is possible for systems where each poly-

nomial has its own support. However, since our complexity results are negative the
restricted version of polynomial systems considered here is sufficient.
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approximating the number of zeros for generic systems one can ask for a concise
structural complexity theory of counting geometric quantities. A real number
version #PR of Valiant’s class #P of counting problems was introduced in [18]
and studied under a logical point of view. It is not surprising (nor hard to see)
that counting the number of zeros for arbitrary polynomials is a hard problem
in class #PR. In a series of papers Bürgisser, Cucker, and Lotz recently started
a concise development of analyzing the computational complexity of the above
and further real and complex counting problems [8, 9, 10]. They obtained a lot
of interesting completeness results both in the full BSS model and its linearly
restricted version. Most of their results are centered around important problems
from algebraic and semi-algebraic geometry such as computing the (modified)
Euler characteristic of a semi-algebraic set or the degree of an algebraic variety.
In view of developing a theory of approximation algorithms for the BSS model it
would be interesting to ask for the complexity of approximating these quantities.

Yet another problem related to approximation algorithms is the following.
Once again, it is closely related to another area, namely Probabilistically Check-
able Proofs over the reals. As before, consider a system of polynomial equations
p1(x) = 0, . . . , pm(x) = 0 over n real variables x ∈ Rn to be given. We know
already that deciding solvability or computing the number of solutions are hard
problems, and thus also the following is NPR-hard: Compute the maximal num-
ber of polynomials among p1, . . . , pm that have a zero x∗ ∈ Rn in common. But
what about approximating that number? For general polynomial systems we
cannot expect efficient algorithms that approximate this maximal number up to
a constant factor due to the result below.

Theorem 3. [20] Consider the following approximation problem over the reals:
Given a system of polynomials p1, . . . , pm ∈ R[x1, . . . , xn] in n variables such
that

- each pi has degree 2 and
- the total number of non-vanishing terms in all pi’s is bounded by O(m2).

Then there is no polynomial time BSS algorithm approximating the value
max
x∈Rn

|{i|pi(x) = 0}| within a constant factor C > 1 unless PR = NPR.

However, the question is more interesting for restricted systems like the ones
that actually are already sufficient for the completeness result of Theorem 1. An
example would be to restrict each pi to depend on at most 3 variables. Let us
denote the related decision problem by QPS and its maximization version by
MAX-QPS.

As it is the case in classical combinatorial optimization, questions like the
above directly lead into the area of PCPs, i.e. probabilistically checkable proofs.
In the BSS setting the first PCP result was given in [19]. Let us briefly recall
the crucial definitions from [19] necessary to understand the further discussion.

Definition 2. a) Let r, q : N )→ N be two functions. A (r(n), q(n))-restricted
verifier V in the BSS model is a particular randomized real number algorithm
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working as follows. For an input x ∈ R∗ of algebraic size n and another vector
y ∈ R∗ representing a potential membership proof of x in a certain language,
the verifier first produces a sequence of O(r(n)) many random bits (under the
uniform distribution on {0, 1}O(r(n))). Given x and these O(r(n)) many random
bits V computes in a deterministic fashion the indices of O(q(n)) many compo-
nents of y. Finally, V uses the input x together with the values of the chosen
components of y in order to perform a deterministic polynomial time algorithm
(in the BSS model). At the end of this algorithm V either accepts or rejects x.
For an input x, a guess y and a sequence of random bits ρ we denote by V (x, y, ρ)
the result of V supposed the random sequence generated for (x, y) was ρ.
b) Let R,Q be two classes of functions from N )→ N; a real number decision
problem L ⊆ R∗ is in class PCPR(R,Q) iff there exist r ∈ R, q ∈ Q and a
(r(n), q(n))-restricted verifier V such that conditions i) and ii) below hold:

i) For all x ∈ L exists a y ∈ R∗ such that for all randomly generated strings
ρ ∈ {0, 1}O(r(sizeR(x))) the verifier accepts: V (x, y, ρ) = ′accept′. In other
words:

Pr
ρ
{V (x, y, ρ) = ′accept′} = 1

ii) For any x �∈ L and for each y ∈ R∗

Pr
ρ
{V (x, y, ρ) = ′reject′} ≥ 1

2

The distribution is the uniform over all random strings ρ ∈ {0, 1}O(r(sizeR(x))).

Then the existence of transparent long proofs for QPS can be established:

Theorem 4. [19] The NPR-complete decision problem QPS belongs to class
PCPR(poly, 1). Here, poly denotes the class of polynomials and 1 denotes the
class of constant functions.

The proof is based on a new technique for self-testing linear functions on arbi-
trary finite subsets of some RN . The challenging open question is

Problem 1. Is NPR = PCPR(log, 1)? (with log the class of functions const · log).

Coming back to the optimization version MAX-QPS a positive answer to the
above problem would have impact on the (non)-existence of efficient algorithms
approximating the maximal number of polynomials in a QPS instance that have
a zero in common.

Theorem 5. [20] If NPR = PCPR(log, 1) was true, then there exists no fully
polynomial time approximation scheme for MAX-QPS in the BSS model unless
PR = NPR.

Problem 2. Can the above theorem be extended to conclude the
non-existence of a polynomial time approximation scheme for MAX-QPS if
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NPR = PCPR(log, 1) is assumed? More generally: What kind of efficient ap-
proximation algorithms at all can be designed for MAX-QPS?

Just as it is the case with the MAX-3-SAT maximization problem in the Tur-
ing model [1] there are maximization problems in the BSS setting for which the
existence of polynomial time approximation schemes is equivalent to the full
PCPR conjecture of Problem 1 above. One such example involving algebraic cir-
cuits was given in [20]. However, a concise analysis of approximation algorithms
in the real number model is still waiting to be started.
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Abstract. Most of the existing work in real number computation the-
ory concentrates on complexity issues rather than computability aspects.
Though some natural problems like deciding membership in the Mandel-
brot set or in the set of rational numbers are known to be undecidable
in the Blum-Shub-Smale (BSS) model of computation over the reals,
there has not been much work on different degrees of undecidability. A
typical question into this direction is the real version of Post’s classical
problem: Are there some explicit undecidable problems below the real
Halting Problem?

In this paper we study three different topics related to such questions:
First an extension of a positive answer to Post’s problem to the linear
setting. We then analyze how additional real constants increase the power
of a BSS machine. And finally a real variant of the classical word problem
for groups is presented which we establish reducible to and from (that
is, complete for) the BSS Halting problem.

1 Introduction

We consider the model of real number computation introduced by Blum, Cucker,
Shub, and Smale [BSS89, BCSS98]. As opposed to Type-2 machines [Wei01],
these so-called BSS machines treat each real (or complex) number as an entity
which can be processed (read, stored, compared, added, and so on) exactly and
in a single step. They are thus sometimes referred to as algebraic model of real
number computation.

It seems fair to state that most of the research in this model so far has been on
complexity issues. We on the other hand are interested in associated computabil-
ity questions. It is well known that the real version H of the Halting Problem, i.e.
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asking whether a given BSS machine terminates on a given input, is undecidable
in this model. Other undecidable decision problems such as membership to the
Mandelbrot set or to the rational numbers have been established, basically by
taking into account structural properties of semi-algebraic sets and their close
relation to decidable sets in the BSS model over the reals. A few more results of
that type where given in [Cuc92], namely an investigation of the real counterpart
to the classical arithmetical hierarchy, that is an infinite sequence of (classes of)
problems of strictly increasing difficulty extending beyond H. Our present focus
is on undecidable real number problems below (and up to) H:

• Regarding the question (raised by Emil Post in 1944) whether there actually
are undecidable problems strictly easier than the Halting problem, Section 2
reviews and extends classical and recent affirmative results.

• The capability of a BSS machine to store a finite number of real constants
in its code makes it more powerful than a Turing machine. Section 3 proves
that the power of the BSS model indeed increases strictly with the number
of constants it is allowed to store.

• As opposed to classical recursion theory, undecidability proofs in the BSS
framework (of the Mandelbrot set, say) typically do not (and, at least for the
rationals, cannot) proceed by reduction from H. Section 4 presents a natural
problem reducible both to and from (that is, equivalent to) H.

2 Post’s Problem in the Linear BSS Model

In 1944 Emil Post [Pos44] asked whether there exist problems in the Turing
machine model which are undecidable yet strictly easier than the discrete Halting
Problem H . Here a problem P is considered easier than H if H cannot be
solved by a Turing machine having access to an oracle for P . Post’s question was
answered in the affirmative independently by Muchnik [Muc58] and Friedberg
[Fri57]. However, so far there are no explicit problems with this behaviour known.

In [MZ05] the authors began to study Post’s problem over the real numbers.
The real Halting problem H is known to be BSS-undecidable [BSS89]. Thus
Post’s question makes perfect sense here as well, asking for the existence of
BSS–undecidable problems which are semi-decidable but strictly easier than the
real Halting Problem. It has turned out that the answer is not only positive, as
in the discrete case, but even constructively witnessed by an explicitly statable
problem. In fact, the following can be shown:

Fact 1 ([MZ05]). No BSS algorithm can decide the real Halting Problem, even
given access to an oracle for membership to the (undecidable) set Q of rationals.

Since the rationals are easily shown to be semi- yet undecidable over R we thus
have an explicit problem which is easier than H. In [MZ05] it is also explicitly
given an infinite number of incomparable problems below H.
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Remark1 2. BSS- or, more generally, algebraic [TZ00, Sections 6.3+6.4]
computability, reducibility, and particularly degree theory are of course sensitive
to the class of operations—including the (number of) constants, cf. Section 3—
permitted.

In the last ten years, the linearly restricted version (R,+,−, 0, 1, <) of the full
BSS model over R has received increasing interest [Koi94, CK95] due to its
relation with the classical (i.e., discrete) “P=NP?” question [FK00]. Here only
additions, subtractions and comparisons as well as the constants 0 and 1 are
allowed but no multiplication × nor division ÷. Thus, all computed intermediate
results on inputs x ∈ R have the form ax + b for some a, b ∈ Z. Analogously
to the full model, the Halting Problem H	 for linear machines is undecidable by
a linear machine; and Post’s problem as well makes sense in the linear version.
The main result of the present section is an explicit solution to it.

Theorem 3. Let SQ := {q2 : q ∈ Q} denote the set of quadratic rationals.
Then SQ 	 Q 3	 H	, where “3	” and all similar notions refer to Turing
reducibility in the linear model.

We have space to handle the easy claims: Both Q and SQ are undecidable in
the linear model since this already holds in the full model. Both sets are semi-
decidable: For input x ∈ R enumerate all pairs (r, s) ∈ Z×N and check for each
pair whether x · s = r. Note that both the enumeration and the ‘multiplication’
x · s can be performed in (R,+,−, 0, 1, <); similarly for semi-deciding SQ by
enumerating all pairs (r2, s2) based for instance on the recursion (r + 1)2 =
r2 + r + r + 1. Next, SQ 3	 Q: On input x ∈ R, first check x ≥ 0 and ask the
Q-oracle whether x ∈ Q. If this is the case use the above enumeration to find
(r, s) ∈ N2 with xs = r. Then test whether some of the (finitely many) pairs
(r̃2, s̃2) ≤ (r, s) satisfies x · s̃2 = r̃2 or not.

Note that in the full BSS model the converse relation Q 3 SQ is also valid:
Having access to a SQ–oracle one can decide Q by simply squaring the input
x ∈ R. By the nontrivial claim of Theorem 3, this reduction does not hold in the
linear model.

Question 1. In the linear setting, is Q as hard as the Halting Problem?

In the full BSS model, Question 1 has a negative answer according to Fact 1.

3 The Benefit of Additional Real Constants

Already the paper [BSS89] revealed that the capability of BSS machines to
store a finite number of arbitrary real constants gives it super-recursive power.
Specifically, any A ⊆ N and in particular the discrete Halting Problem H can
be encoded into some r ∈ R and thus decided by a BSS machine.

This raises the question whether and to what extent real or complex constants
may be exploited in terms of complexity as well, that is, in order to accelerate
1 We gladly follow an anonymous referee’s suggestion to point this out explicitly.
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solution of computational problems. We briefly mention some interesting results
in that respect. In the complex BSS model for rational decision problems one
can eliminate complex constants in potential decision algorithms with a polyno-
mial slow down only, see [BCSS98, Koi96]. For the real number model it is an
important open question whether real constants can be eliminated without too
a high increase of the running time. Some aspects of this question are discussed
in [Cha99, BMM00]. In certain restrictions of the BSS model, however, it was
shown that the use of real constants introduces non-uniformity, see [Koi93]. Sim-
ilar results where obtained for several complexity classes, for example in [CG97].

The present section deals with the computational power of BSS machines. We
want to gauge the degree of super-recursiveness yielded by one, two, or more real
constants. In the discrete realm, a pairing function like 〈x, y〉 := (2x + 1) · 2y
admits a computable en- and decoding of several integers into a single one. This
significantly differs from the real case where, as a consequence to the domain-
invariance theorem in Algebraic Topology [Dei85, Theorem 4.3], a bijection
R × R → R cannot be locally continuous, not to mention BSS-computable2.
Thus the impossibility to effectively en- and decode two reals into a single one
should, at least intuitively, imply that two constants yield strictly more power
than a single one.

Our first result is based on a tool related to [TZ00, Sections 6.3+6.4]:

Lemma 4. For A ⊆ R∞ and c1, . . . , ci ∈ R, consider the following claims:

a) A is semi-decidable by a BSS Machine with constants c1, . . . , ci ∈ R.
b) There is an integer sequence (dn)

n
such that A is a countable union A =⋃

nAn of sets An ⊆ Rdn semi-algebraic over the field extension Q(c1, . . . , ci).
c) There exists ci+1 ∈ R such that A is semi-decidable by a BSS Machine with

constants c1, . . . , ci, ci+1.

Then a) implies b) from which in turn c) follows.

Proof. implicit in [Cuc92, Theorem 2.4 and Remark 2.5]; cf. also [Mic90].  !
Theorem 5. a) Let (pi)i

= (2, 3, 5, 7, 11, . . .) denote the sequence of primes
and ci := exp(

√
pi) ∈ R. Then, c1, . . . , ci are algebraically independent.

b) Let c1, . . . , ci be algebraically independent. The finite set A := {c1, . . . , ci} ⊆
R is decidable with i real constants but not semi-decidable with i − 1 real
constants.

In other words, the computational power of the BSS model strictly increases
with every further admitted constant.

Proof. a) Apply Lindemann-Weierstraß [Bak75, Theorem 1.4] to the linearly in-
dependent numbers

√
pi (math.niu.edu/~rusin/known_math/00_incoming/sqrt_q).

b) Suppose A is semi-decidable by a machine with i − 1 real constants. By
Lemma 4 (a⇒b), it is semi-algebraic over some rational field extension K =
Q(c̃1, . . . , c̃i−1). A finite discrete set, inequalities can be eliminated revealing
2 Although (x, n) �→ 〈�x�, n〉 + (x − �x�) is a bi-computable bijection R × N → R.
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that A is even algebraic over K—contradicting that A’s transcendence degree
exceeds that of K.  !
Next, let Hi denote the real Halting Problem for BSS-machines with i constants.
Obviously Hi is no harder than Hi+1—simply choose ci+1 = ci. We want to
show that Hi is in fact strictly easier than Hi+1. This claim does not follow from
Theorem 5 because the (anyway a bit artificial) sets Ai constructed there are
neither reducible to nor from any Hj . Formally:

Definition 6. Let different versions of the Halting Problem be defined as
H := {〈M〉 : M is a Turing machine that terminates on input 0}

H0 := {〈M〉 : M is a constant-free BSS machine that terminates on input 0}
H1 := {〈M, c1〉 : M is a BSS machine with constant c1 terminating on 0}
H2 := {〈M, c1, c2〉 : BSS machine M with constants c1, c2 terminating on 0}
and so on. Here, 〈M〉 ∈ N denotes a reasonable encoding of (the discrete, i.e.
control part of) machine M by an integer number [BSS89, Section 8].

Note that indeed the control part of a BSS machine (except for the machine
constants, that is) can easily be coded by a single integer. In particular, the code
of an instance for Hi varies piecewise continuously with the machine constants
c ∈ Ri used. Since Hi ⊆ Ri by virtue of footnote 2, Definition 6 describes the
dimensional decomposition of the real BSS Halting Problem H =

⋃
i Hi ⊆ R∞.

That Hi is strictly easier than Hi+1 has the interesting consequence of yielding,
in addition to the set Q of rationals according to [MZ05], a vast variety of further
explicit solutions to Post’s Problem over the Reals:

Corollary 7. Fix i ∈ N and let A ⊆ Ri be undecidable yet recursively enumer-
able. Then A is strictly easier than H ⊆ R∞. In particular, unbounded dimension
is unavoidable for any BSS-complete problem.

For the underlying notion of reducibility to make sense here, the use of real
constants must be limited in computing the corresponding reduction function.

Definition 8. Let A,B ⊆ R∞ be two real decision problems. A is called many-
one reducible to B with i constants if there exists a BSS machine M having
constants c1, . . . , ci ∈ R that reduces A to B in the usual sense. We denote
this by “A 3i

m B”; similarly for equivalence “≡i
m”. Regarding Turing-reduction,

write “A 3i
T B” if a BSS machine with at most i constants can decide A given

oracle access to B.

It is well-known that the three basic classical characterizations of recursive enu-
merability of some A ⊆ N—halting set of a Turing machine (semi-decidability),
many-one reducibility to H , and range of a computable integer function—carry
over to the real setting3 [Mic91]. The same holds for H’s single ‘slices’ Hi:

Lemma 9. For any decision problem A ⊆ Rn, the following are equivalent:

a) A is the halting set of some BSS machine with i real constants;
b) A 3i

m Hi+n;
3 Notice that enumerability of a countable A ⊆ R does not mean A = range(f) for a

computable f : N → R; compare Lemma 9c).
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c) A = range(f) for some partial function f :⊆ Rn → Rn computable by a BSS
machine with i real constants.

For the rest of this section, we show that the hierarchy Hi from Definition 6 is
indeed strict. For the lowest two levels it is not hard to show

Proposition 10. H ≡0
m H0

0
T H1.

The next result applies to all levels of the hierarchy but takes into account only
many-one reductions (or, more generally, Turing-reductions permitted only one
oracle query).

Theorem 11. For all i ∈ N it is Hi+1 �0
m Hi and Hi+1 �0

T [1] Hi.

Proof. Suppose that a constant-free machine M∗ decides Hi+1 making a single
oracle call to Hi. Consider an instance (M, c∗1, . . . , c

∗
i+1) for Hi+1, where all c∗i are

algebraically independent. Then in a small ball U(c∗) around c∗ := (c∗1, . . . , c∗i+1)
the reduction algorithm will use the same path for inputs of the form (M, c), c ∈
U(c∗) and thus it computes instances of Hi having the form (M ′,P(c∗)). Here,
M ′ will be the same machine for all c ∈ U(c∗) due to the remark preceding the
theorem, and P : Ri+1 → Ri is a polynomial map, say P = (p1, . . . , pi).

The main task of the proof now is to construct a situation where we can
guarantee that both a yes- and a no-instance of the given problem Hi+1 have
to be reduced to the same instance of Hi. This can be achieved by using the
implicit function theorem together with the cylindrical algebraic decomposition
of semi-algebraic sets.

The above arguments hold for any machine M having i+1 machine constants
which are algebraically independent. We now specify M to be a machine that
uses machine constants (c1, . . . , ci+1) and halts on input 0 iff all its constants
are algebraically independent. There are two cases to analyze:

Case 1. In U(c∗) there exists a point c̃ such that detDP(c̃) �= 0. Without loss
of generality we can assume that the components of such an c̃ are algebraically
independent. Otherwise, continuity of the determinant and of P together with
density of the tuples of algebraically independent numbers in Ri+1 would yield
a contradiction.

According to the implicit function theorem there exist a neighborhood V of
c̃i+1 and an implicit function g : V → Ri such that for all ci+1 ∈ V the vector
P(g(ci+1), ci+1) is constantly equal to P(g(c̃i+1), c̃i+1) . It is then clear that
there is a rational point ci+1 in V such that the yes-instance (M, c̃) and the
no-instance (M, g(ci+1), ci+1) both are mapped to the same instance of Hi by
the reduction algorithm. Thus the reduction fails.

Case 2. Now suppose that the above matrix is singular in all points of U(c∗).
Since P is a polynomial and since U(c∗) as ball is semi-algebraic the image
P(U(c∗)) is semi-algebraic as well. By Sard’s theorem the image P(U(c∗)) has
measure 0 in Ri and thus is of dimension m for some 0 ≤ m < i. For notational
simplicity below we set m = i+ 1− j for a j > 1.
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Using the well known properties of semi-algebraic sets, in particular the exis-
tence of a cylindrical algebraic decomposition we can find a set W ⊂ P(U(c∗))
of dimension m such that the following holds:

• W is semi-algebraic in Ri and its projection onto the, say,m final components
is an open ball in Rm;

• thus W is diffeomorphic to a ball K ⊆ Rm via a map φ : W → K;

• there exists a ĉ ∈ P−1(W ) such that the matrix
{
∂(φ ◦ P)k

∂c	
(ĉ)
}

1≤k≤j
1≤	≤j

has

rank j in a neighborhood of ĉ. Using the same argument as for Case 1 we
can without loss of generality assume all components of ĉ to be algebraically
independent.

Once again, the implicit function theorem yields existence of a neighborhood
V ⊂ Rm of (ĉj+1, . . . , ĉi+1) and a function g : V → Rj such that

φ ◦ P(g(cj+1, . . . , ci+1), cj+1, . . . , ci+1) = φ ◦ P(g(ĉj+1, . . . , ĉi+1), ĉj+1, . . . , ĉi+1)

for all (cj+1, . . . , ci+1) ∈ V. Again, this neighborhood V contains a point with a
rational component ci+1 and the reducing machine will fail on either ĉ or that
point with rational last component.  !
The above proof cannot be applied to yield the same result with respect to
Turing reductions. It would only be possible to “fool” as many oracle calls of
a reduction machine as the dimension of the image P(U) is. Thus we have the
following open

Question 2. Does Theorem 11 generalize to arbitrary Turing reductions?

4 Completeness and the Real Word Problem: An Outline

Classical recursion theory knows a variety of natural problems equivalent (that is,
reducible from and to) the discrete Halting Problem H : Post’s Correspondence
Problem, Hilbert’s Tenth Problem, and the Word Problem for finitely presented
groups [Nov59, Boo58] all are undecidable. The corresponding proofs proceed by
reduction from H .

In the real setting of BSS machines on the other hand, most undecidability
proofs involve algebraic and/or topological arguments. This is the case with the
Mandelbrot set [BCSS98, Theorem 2.4.2], convergence of Newton’s iteration
[BCSS98, Theorem 2.4.4], and the sets Q and A of rationals and of algebraic
reals, respectively [MZ05]. And indeed, these problems are (provably for the lat-
ter, the others probably as well) strictly easier than the real Halting Problem
H; cf. Section 2. This raises the question for BSS-complete problems other than
H, that is, for further systems capable of universal real number computation.
Observe that the above discrete examples all are BSS-decidable by [BSS89, Ex-

ample 6]. In the present section we present a natural extension of the classical
word problem to the reals which is provably many-one reducible to and from
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H, that is, a new BSS-complete problem in the sense of universal computation.
Here we basically only present the formulation of the related problem. It is in
full length discussed in [MZ06].

Definition 12. a) Let X be a set. The free group generated by X, denoted
by F = (〈X〉, ◦) or more briefly 〈X〉, is the set (X ∪ X−1)∗ of all finite
sequences w̄ = xα1

1 · · ·xαn
n with n ∈ N, xi ∈ X, αi ∈ {−1,+1}, equipped with

concatenation ◦ as group operation subject to the rules

x ◦ x−1 = 1 = x−1 ◦ x ∀x ∈ X (1)

where x1 := x and where 1 denotes the empty word, that is, the unit element.
b) For sets X and R ⊆ 〈X〉, consider the quotient 〈X〉/〈R〉n =: 〈X |R〉 of 〈X〉

with respect to the normal subgroup 〈R〉n of 〈X〉 generated by R. If both X
and R are finite, the tuple (X,R) will be called a finite presentation of G.

c) The word problem for 〈X |R〉 is the task of deciding, given w̄ ∈ 〈X〉, whether
w̄ = 1 holds in 〈X |R〉.

The famous work of Novikov and, independently, Boone establishes
Fact 13. a) The word problem for any fixed finitely presented group is semi-

decidable by a Turing Machine.
b) There is a finitely presented group whose associated word problem is many-

one reducible by a Turing machine from the discrete Halting Problem H.

Proof. a) is immediate. For b) see e.g. the great textbook [LS77].  !
The word problem for discrete groups is decidable by a BSS-machine. Therefore
we now consider real groups and their associated word problems. This approach
differs significantly from other work dealing with groups G in the BSS setting
which treat such G as underlying structure of the computational model, that is,
not over the reals R and its arithmetic structure. [Tuc80] considers the question
of computational realizing G and its operation, not of deciding properties of
(elements of) G. [DJK05] does consider BSS-decidability (and -complexity) of
properties of a real group, but given by some matrix generators and lacking
completeness results. For instance, finiteness of the multiplicative subgroup of C
generated by exp(2πi/x), x ∈ R, is equivalent to x ∈ Q and thus undecidable;
whereas any fixed such group is isomorphic either to (Z,+) or to some (Zn,+),
both with easy word problem.

Regarding that the BSS-machine is the natural extension of the Turing ma-
chine from the discrete to the reals, the following is equally natural a general-
ization of Definition 12b):
Definition 14. Let X ⊆ RN for some N ∈ N and R ⊆ (X ∪ X−1)∗. We call
the group G = 〈X |R〉 effectively presented if both X and R are BSS-decidable.

Remark 15. a) Though X inherits from RN algebraic structure, Definition 12a)
of the free group G = (〈X〉, ◦) considers X as a plain set only. Thus, (group-)
inversion in G must not be confused with (multiplicative) inversion: 5 ◦ 1

5 �=
1 = 5 ◦ 5−1 for X = R. This difference may be stressed by writing ‘abstract’
generators xā indexed with real vectors ā; here, ‘obviously’ x−1

5 �= x
1/5

.
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b) BSS-computation of course refers to encoding input (and, if present, also
output) as (finite sequences of) vectors of real numbers, that is, of w̄ ∈ (X ∪
X−1)∗ as, e.g., (w1, α1, . . . , wn, αn) ∈ (RN × Z)n.
c) While Definition 12c) requires the set X of generators to be finite, it must in
the real setting be a finite-dimensional subset of R∞. Considerable effort in the
proof of Theorem 18b) is spent on asserting this condition.  !
Example 16. Let S denote the unit circle in C with complex multiplication. The
following is an effective presentation 〈X |R1 ∪ R2〉 of S (with decidable word
problem):

X :=
{
xr,s : (r, s) ∈ R2 \ {0}} ,

R1 :=
{
xr,s ◦ x−1

a,x : (r, s), (a, b) �= 0, rb = sa ∧ ar > 0
}
,

R2 :=
{
xr,s ◦ xa,b ◦ x−1

u,v : (r, s), (a, b), (u, v) �= 0,

r2 + s2 = 1 ∧ a2 + b2 = 1 ∧ u = ra− sb ∧ v = rb + sa
}  !

Example 17. (Undecidable) real membership “t ∈ Q” is reducible to the word
problem of an effectively presented real group: Consider X = {xr : r ∈ R},
R =

{
xnr = xr, xr+k = xk : r ∈ R, n ∈ N, k ∈ Z

}
; then xr = x0 ⇔ r ∈ Q.  !

The latter example does not establish BSS-hardness of the real word problem
because Q is provably easier than the real Halting Problem H [MZ05]. It is the
main result of the present section to provide a BSS counterpart to Fact 13.

Theorem 18. a) For any effectively presented real group G = 〈X |R〉, the as-
sociated word problem is BSS semi-decidable.

b) There exists an effectively presented real group 〈X |R〉 whose associated word
problem is many-one reducible from H by a BSS machine.

Notice that already Claim a) requires Tarski’s quantifier elimination. We also
point out that, in accordance with Definition 14 and as opposed to X , the set
R of relations in b) lives in R∞, that is, has unbounded dimension.
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l’equipe de logique mathématique de Paris 7 (1990).

[Mic91] C. Michaux: “Ordered rings over which output sets are recursively enu-
merable”, pp. 569–575 in Proceedings of the AMS 111 (1991).

[Muc58] A.A. Muchnik: “Solution of Post’s reduction problem and of certain other
problems in the theory of algorithms”, pp. 391–405 in Trudy Moskov Mat.
Obsc., vol.7 (1958).

[MZ05] K. Meer, M. Ziegler: “An explicit solution to Post’s problem over the
reals”, pp. 456–467 in Proc. 15th International Symposium on Fundamen-
tals of Computation Theory, Lübeck, LNCS vol. 3623 (2005).
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Abstract. Wegner and Eberbach[16] have argued that there are funda-
mental limitations to Turing Machines as a foundation of computability
and that these can be overcome by so-called superTuring models. In this
paper we contest their claims for interaction machines and the π-calculus.

1 Introduction

The Turing machine (TM) [1] has been the dominant paradigm for Computer
Science for 70 years: Ekdahl[12] likens an attack on it to a “challenge to the
second law of thermodynamics”.

The roots of Turing’s work lie in debates about the notion of computability
in the pre-computer age[10]. Just before the Second World War, in an outstand-
ing period of serendipity, Turing, Church and Kleene all developed independent
notions of computability which were quickly demonstrated to be formally equiv-
alent. These seminal results form the basis for the Church-Turing Thesis that
all notions of computability will be equivalent. Until now, the Church-Turing
Thesis has remained unshaken.

A central concern of these pre-computer Mathematical Logicians was to for-
malise precisely the concept of effective computation. For Church, this is a mat-
ter of definition, explicitly identifying effective calculability with recursive or
lambda-definable functions over the positive integers. Church[5] states that:

If this interpretation or some similar one is not allowed it is difficult to
see how the notion of an algorithm can be given any exact meaning at
all.(p356)

Turing subsequently outlined a proof of the equivalence of his notion of “com-
putability” with Church’s “effective calculability”.

A fundamental distinction of Turing’s approach is that he identifies a human-
independent mechanism to embody his procedure, by explicit analogy with a
human being:

We may compare a man in the process of computing a real number
to a machine which is only capable of a finite number of conditions...
([1]Section 1).
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In a 1939 paper discussing the unity of these different approaches, Turing is
explicit about the mechanical nature of effective calculation:

A function is said to be “effectively calculable” if its values can be found
by some purely mechanical process ... We may take this statement lit-
erally, understanding by a purely mechanical process one which may
be carried out by a machine. It is possible to give a mathematical de-
scription, in a certain normal form, of the structures of these machines.
([2]p166).

In a late paper he makes the same point with reference to digital computers:

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer. ([3]Section 4).

For Church and Kleene the presence of a human mathematician that applies
the rules seems to be implicit, but the ability to give an explicit procedure for
applying rules to symbols and to physically realise these procedures, was central
to all three conceptions of effectiveness. The corollary is that a computation
which is not physically realisable is not effective.

2 Wegner and Eberbach’s SuperTuring Computers

There has been robust debate in Mathematics, Philosophy, Physics and, lat-
terly, Computer Science about the possibility of hypercomputation which seeks
to transcend the limits of classic computability. Copeland [6] and Cotogno[8]
provide useful summaries.

Thus, Wegner and Eberbach[16] assert that the fundamental limitations to
the paradigmatic conception of computation can be overcome by more recent
“superTuring” approaches. They draw heavily on the idea of an algorithm as
an essentially closed activity. That is, while the TM realising an algorithm may
manipulate an unbounded memory, the initial memory configuration is pre-given
and may only be changed by the action of the machine itself. Furthermore,
an effective computation may only consume a finite amount of the unbounded
memory and of time, the implication being that an algorithm must terminate to
be effective.

They say that the TM model is too weak to describe the Internet, evolution or
robotics. For the Internet, web clients initiate interactions with servers without
any knowledge of the server history.

Wegner and Eberbach claim that there is a class of superTuring computations
(sTC) which are a superset of TM computations. That is sTC includes computa-
tions which are not realisable by a TM. A superTuring computer is “any system
or device which can carry out superTuring computation”. They give discursive
presentations of interaction machines (IM), the π-calculus and the $-calculus,
and explore why they transcend the TM. here, we do not consider the $-calculus
as its sTC properties appear to depend on those alleged for interaction machines
and π-calculus.
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3 How Might the TM Paradigm Be Displaced?

In general, a demonstration that a new system is more powerful than a C-
T system involves showing that while all terms of some C-T system can be
reduced to terms of the new system, there are terms of the new system which
cannot be reduced to terms of that C-T systemMore concretely, we think that
requirements for a new system to conclusively transcend C-T are, in increasing
order of strength:

1. demonstration that some problem known to be semi-decidable in a C-T
system is decidable in the new system;

2. demonstration that some problem known to be undecidable in a C-T system
is semi-decidable in the new system;

3. demonstration that some problem known to be undecidable in a C-T system
is decidable in the new system;

4. characterisations of classes of problems corresponding to 1-3;
5. canonical exemplars for classes of problems corresponding to 1-3.

Above all, we require that the new system actually encompasses effective com-
putation; that is, that it can be physically realised in some concrete machine.
While we are not unduly troubled by systems that require potentially unbounded
resources such as an unlimited TM tape, we reject systems whose material re-
alisations conflict with the laws of physics, or which require actualised infinities
as steps in the calculation process.

4 Physical Realism and Computation

A key point about the Universal Computers proposed by Turing is that they
are material apparatuses which operate by finite means. Turing assumes that
the computable numbers are those that are computable by finite machines, and
initially justifies this only by saying that the memory of a human computer is
necessarily limited.

Turing is careful to construct his machine descriptions in such a way as to
ensure that the machine operates entirely by finite means and uses no techniques
that are physically implausible. His basic proposition remained that :”com-
putable numbers may be described briefly as the real numbers whose expressions
as a decimal are calculable by finite means.”

Turing rules out computation by infinite means as a serious proposition.
Most proposals for superTuring computation rest on the appeal of the infinite.
Copeland[6] proposes the idea of accelerating Turing machines whose operation
rate increases exponentially so that if the first operation were performed in a
microsecond, the next would be done in 1

2μs, the third in 1
4μs, etc. The result

would be that within a finite interval it would be able to perform an infinite
number of steps. This evades all possibility of physical realisation. A comput-
ing machine must transfer information between its component parts in order to
perform an operation. If the time for each operation is repeatedly halved. then
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one soon reaches the point at which signals traveling at the speed of light have
insufficient time to propagate from one part to another within an operation step.
Hamkins[14] discusses what could be computed on Turing machines if they were
allowed to operate for an infinite time. He hypothesises a relativistic experiment
in which a researcher moving near the speed of light experiences a finite duration
whilst back on Earth his graduate student has an infinite duration to solve a
problem. Hamkins fails to suggest which immortal graduate student he has in
mind for this task. Another theme of those advocating Super-Turing computa-
tion is the use of analogue computation over real numbers. For a review see [7].
The idea of being able to physically represent real numbers is highly questionable
in view of the quantum of action h. This poses fundamental and finite limits on
the accuracy with which a physical system can approximate real numbers.

distance x

1 meter

Slider

Fig. 1. An analogue representation of a real number using a physical version of the
real number line

Suppose we want to use analogue encoding real numbers as spatial separation,
as shown in Figure 1,to encode a real number x that could be used by some Super
Turing analogue computational process. We first set up the the distance x and
then measure it during the process of the computation.This raises two questions:

1. How precisely can we, in principle at least, measure the distance x?
2. How stable is such an analogue memory. For how long can it store the infor-

mation?

Because of Heisenberg’s equation

ΔpΔx =
h

4π

there is a tradeoff between the accuracy to which x can be represented as dis-
tance and the period for which x can be stored. If the mass of the slider is m
the uncertainty in its velocity is given by Δv = h

4πmΔx . This implies that the
persistence time of the analogue store Tp is constrained such that

Tp ≈ Δx

Δv
=

4πmΔx2

h

It is clear that for a practical device, Tp must be chosen exceed the time taken to
measure the distance x. This in turn, must be greater than 2x

c , since any distance
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measurement will involve at least one reflection off the slider. If Tp < 2x
c then

the computer would be unable to read the real. We thus have the constraint

2x
c
<

4πmΔx2

h

which implies

Δx2 >
2xh

4πmc
For a 1 kilo slider adjustable over a range of 1 meter which allows the represen-
tation of reals in the range 0..1 as x±Δx, we find that Δx > 5.93×10−22meters.

This corresponds to a real number stored with about 70 bits of precision.
To add an additional bit of precision to our real number we would have to

quadruple the mass of the slider. The analogue encoding of the reals requires a
mass which grows with Oe2b where b is the number of bits of precision to which
the reals are stored. For a Turing Machine the mass required grows linearly with
the number of bits. Thus proposals to incorporate the full mathematical abstrac-
tion of real numbers into computing devices so as to allow them to outperform
Turing machines are physically implausible.

5 Interaction Machines

Wegner and Eberbach claim that a Turing Machine is restricted by having to
have all its inputs appear on the tape prior to the start of computation. Inter-
action machines on the contrary can perform input output operations to the
environment in which they are situated. Interaction Machines, whose canonical
model is the Persistent Turing Machine(PTM) of Goldin [9], are not limited to
a pre-given finite input tape, but can handle potentially infinite input streams.
These arguments have been thoroughly criticised by Ekdahl[12]. Rather than
rehearse his arguments we shall focus on additional weaknesses of Wegner and
Eberbach’s claims.

5.1 Turing’s Own Views

Turing’s Test for machine intelligence is probably as well known as his original
proposal for the Universal Computer. He proposed in a very readable paper[3],
that a computer could be considered intelligent if it could fool a human observer
into thinking they were interacting with another human being. It is clear that
his putative intelligent machine would be an Interaction Machine in Wegner’s
sense. Rather than being cut off from the environment and working on a fixed
tape, it receives typed input and sends printed output to a person.

Turing did not find it necessary to introduce a fundamental new class of com-
puting machine for this Gedankenexperiment. He describes the machine using
what is a paraphrase (Turing 1950, page 436) of his description of the computing
machine in his 1936 paper. It is clear that Turing is talking about the same gen-
eral category of machine in 1950 as he had in 1936. He says he is concerned with
discrete state machines, and that a special property of such digital computers
was their universality:
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This special property of digital computers, that they can mimic any
discrete state machine, is described by saying that they are universal
machines. The existence of machines with this property has the impor-
tant consequence that, considerations of speed apart, it is unnecessary
to design various new machines to do various computing processes. They
can all be done with one digital computer, suitably programmed for each
case. It will be seen that as a consequence of this all digital computers
are in a sense equivalent.( Turing 1950, page 442)

This is clearly a recapitulation of the argument in section 6 of his 1936 paper
where he introduced the idea of the Universal Computer. Turing argued that
such machines were capable of learning and that with a suitable small generalised
learning program and enough teaching, then the computer would attain artificial
intelligence.

5.2 Equivalence of Interaction Machines and Turing Machines

Consider first a digital computer interacting in the manner forseen by Turing in
his 1950 paper, with teletype input/output. Suppose then we have a computer
initialised with a simple learning program following which it is acquires more
sophisticated behaviour as a result of being ’taught’. As the computer is taught
we record every keystroke onto paper tape.

We initialise a second identical computer with the same program and at the
end of the first computer’s working life we give to the second machine as an
input, the tape on which we have recorded all the data fed to the first machine.
With the input channel of the second machine connected to the tape reader it
then evolves through the same set of states and produce the same outputs as the
original machine did. The difference between interactive input from a teletype
and tape input is essentially trivial.

A small modification to the program of a conventional TM will transform it
into a PTM. Like Goldin we will assume a 3 tape TM, M1 with one tape T1
purely for input, one tape T2 purely for output and one tape T3 used for working
calculations. We assume that tapes T1, T2 are unidirectional, T3 is bidirectional.
M1 has a distinguished start state S0 and a halt state Sh. On being set to work
it either goes into some non-terminating computation or eventually outputs a
distinguished termination symbol τ to T2, branches to state Sh and stops. We
assume that all branches to Sh are from a state that outputs τ . Once τ has been
output, the sequence of characters on T2 up to to τ are the number computed
by the machine.

We now construct a new machine M2 from M1 as follows: replace all branches
to Sh with branches to S0. From here it will start reading in further characters
from T1 and may again evolve to a state where it outputs a further τ on T2.
Machine M2 now behaves as one of Goldin’s PTMs. It has available to it the
persisting results of previous computation on T3and these results will condition
subsequent computations. It is still a classic TM, but a non-terminating one.
It follows that PTM’s, and thus Interaction Machines of which they are the
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canonical example, are a sub-class of TM programs and do not represent a new
model of computation.

6 π-Calculus

The π-calculus is not a model of computation in the same sense as the TM:
there is a difference in level. The TM is a specification of a material apparatus
that is buildable. Calculi are rules for the manipulation of strings of symbols and
these rules will not do any calculations unless there is some material apparatus
to interpret them.

Is there any possible physical apparatus that can implement the π-calculus
and, if so, is a conventional computer such an apparatus. Since it is possible to
write a conventional computer program that will apply the formal term re-write
rules of the π-calculus to strings of characters representing terms in the calculus
[15], then it would appear that the π-calculus can have no greater computational
power than the von Neumann computer. A possible source of confusion is the
language used to describe the π-calculus: channels, processes, evolution which
imply that one is talking about physically separate, but communicating entities
evolving in space/time. There is a linguistic tension between what is strictly laid
down as the rules of a calculus and the rather less specific physical system that
is suggested by the language. One has to be very careful before accepting that
the existence the π-calculus as a formal system implies a physically realisable
distributed computing apparatus.

Consider two of the primitives: synchronisation and mobile channels.
Is π-calculus synchronisation in its general sense physically realistic?
Does it not imply the instantaneous transmission of information - faster than

light communication if the processes are physically separated?
If the processors are in relative motion, there can be no unambiguous syn-

chronisation shared by the different moving processes. It thus follows that the
processors can not be physically mobile if they are to be synchronised with at
least 3 way synchronisation (see [11] pp 25-26).

Suppose we have the following pi calculus terms

α ≡ (āv.Q) + (by.R[y]) (1)

β ≡ (b̄z.S) + (ax.T [x]) (2)

In the above α and β are processes. The process α tries to either output
the value v on channel a or to read from channel b into the variable y. The +
operator means non deterministic composition, so A + B means that either A
occurs or B occurs but not both. The notation āv means output v to a, whilst
av would mean input from a into v. If α succeeds in doing an output on channel
a it then evolves into the abstract process Q, if alternatively, it succeeds in doing
an input from b into y, then it evolves into the process R[y] which uses the value
y in some further computation.
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We can place the two processes in parallel:

(āv.Q) + (by.R[y])|(b̄z.S) + (ax.T [x]) (3)

This should now evolve to

(Q|T [v]) or to (S|R[z]) (4)

where either Q runs in parallel with T [v] after the communication on channel
a or where S runs in parallel with R[z] after the value z was transfered along
channel b from process βto process α.

Since the two processes are identical mirror images of one another any deter-
ministic local rule by which process β commits to communication on one of the
channels, must cause α to commit to the other channel and hence synchronisa-
tion must fail.

Thus if α commits to communication on channel a then its mirror image β
must commit to communicate on b leading to: T [x]|R[y], but this is not permitted
according to the π-calculus.

The argument is a variant of the Liar Paradox, but it is not a paradox within
the π-calculus itself. It only emerges as a paradox once you introduce the con-
straints of relativity theory prohibiting the instantaneous propagation of infor-
mation. Nor does abandoning determinism help. If the commitment process is
non-deterministic, then on some occasions synchronisation will succeed, but on
other occasions the evolution both processes will follow the same rule, in which
case synchronisation will fail.

A global arbitration machine solves the problem at the loss of parallelism. A
worse loss of parallelism, in terms of complexity order, is entailed by distributed
broadcast protocols such as Asynchronous Byzantine Agreement[4].

In conclusion it is not possible to build a reliable mechanism that will imple-
ment in a parallel distributed fashion any arbitrary composition of π-calculus
processes.

6.1 Wegner and Eberbach’s Argument

Wegner’s argument for the super-Turing capacity of the π-calculus rests on there
being an implied infinity of channels and an implied infinity of processes. Taking
into account the restrictions on physical communications channels the implied
infinity could only be realised if one had an actual infinity of fixed link computers.
At this point we are in the same situation as the Turing machine tape - a finite
but unbounded resource. For any actual calculation a finite resource is used, but
the size of this is not specified in advance.W&E then interprets ’as many times
as is needed’ in the definition of replication in the calculus as meaning an actual
infinity of replication. From this he deduces that the calculus could implement
infinite arrays of cellular automata for which he cites Garzon [13] to the effect
that they are more powerful than TMs.
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7 Conclusion

In Section 3, we gave criteria that must be met for the Church-Turing thesis to
be displaced. In general, a demonstration that all terms in C-T systems should
have equivalent terms in the new system, but there should be terms in the new
system which do not have equivalents in C-T systems. In particular, the new
system should be able to solve decision problems that are semi-decidable or
undecidable in C-T systems. Finally, we require that a new system be physically
realisable. We think that, under these criteria, Wegner and Eberbach’s claims
that Interaction Machines, the π-calculus and the $-calculus are super-Turing
are not adequately substantiated.

First of all, Wegner and Eberbach do not present a concrete instance of terms
in any of these three systems which do not have equivalents in C-T systems.
Secondly, they do not identify decision problems which are decidable or semi de-
cidable in any of these systems but semi-decidable or undecidable respectively in
C-T systems. Finally, they do not explain how an arbitrary term of any of these
three systems may be embodied in a physical realisation. We have shown that
the synchronisation primitive of the calculus is not physically realistic. The mod-
eling of cellular automata in the calculus rests on this primitive. Furthermore,
the assumption of an infinite number of processes implies an infinity of mobile
channels, which are also unimplementable. We therefore conclude that whilst
the π-calculus can be practically implemented on a single computer, infinite dis-
tributed implementations of the sort that W&E rely upon for their argument
can not be implemented.
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Martingale Families and Dimension in P
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Abstract. We introduce a new measure notion on small complexity
classes (called F -measure), based on martingale families, that gets rid of
some drawbacks of previous measure notions: it can be used to define di-
mension because martingale families can make money on all strings, and
it yields random sequences with an equal frequency of 0’s and 1’s. As ap-
plications to F -measure, we answer a question raised in [1] by improving
their result to: for almost every language A decidable in subexponen-
tial time, P

A = BPP
A. We show that almost all languages in PSPACE

do not have small non-uniform complexity. We compare F -measure to
previous notions and prove that martingale families are strictly stronger
than Γ -measure [1], we also discuss the limitations of martingale fam-
ilies concerning finite unions. We observe that all classes closed under
polynomial many-one reductions have measure zero in EXP iff they have
measure zero in SUBEXP. We use martingale families to introduce a nat-
ural generalization of Lutz resource-bounded dimension [13] on P, which
meets the intuition behind Lutz’s notion. We show that P-dimension lies
between finite-state dimension and dimension on E. We prove an ana-
logue to the Theorem of Eggleston in P, i.e. the class of languages whose
characteristic sequence contains 1’s with frequency α, has dimension the
Shannon entropy of α in P.

1 Introduction

Resource-bounded measure has been successfully used to understand the struc-
ture of the exponential time classes E and EXP, see [12] for a survey. Recently
resource-bounded measure has been refined via effective dimension which is an
effectivization of Hausdorff dimension, yielding applications in a variety of topics,
including algorithmic information theory, computational complexity, prediction,
and data compression [13, 17, 14, 4, 2, 6].

Unfortunately both Lutz’s resource-bounded measure and dimension formu-
lations [10, 13] only work on classes containing E (apart from finite-state dimen-
sion). One reason for this is that when a martingale is to bet on some string
x depending on the history of the language for strings y < x, the history itself
is exponentially larger than the string x. Thus even reading the history is far
above the computational power of P.

One way to overcome this difficulty was proposed in [1], with a measure notion
(called Γ -measure) defined via martingales betting only on a sparse subset of
� This work was partially supported by Programa Europa CAI-Gobierno de Aragón
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strings of the history, with the drawback that the class of sparse languages does
not have measure zero. Nevertheless it seems that sparse languages and more
generally languages whose characteristic sequences satisfy some frequency prop-
erty should be small for an appropriate measure notion on P, because there exists
simple (exponential-time computable) martingales always making the same fixed
bet that succeed on such languages. Such martingales are relatively ”simple”:
exponential computational power is only required to keep track of the current
capital. This also shows how important it is for a martingale to be able to bet on
all strings, in order to succeed. This ”betting on all strings” property becomes
crucial in Lutz’s recent formulation of effective Hausdorff dimension [13].

A stronger measure notion called dense martingale measure (denoted Γd) was
then proposed in [22], with the surprising result that the polynomial time version
of Lutz’s hypothesis ”NP does not have measure zero in E” does not hold [3]. Γd-
measure does not satisfy the finite union property though; it was then shown that
a restricted version (denoted Γ/(P)) of it does, unfortunately Γ/(P)-measure has
some unnatural properties: a language with infinitely many easy instances can
still be random.

Another limitation of previous martingale-based measure notions on P from
[1, 22] and on PSPACE [18] is the inability of the corresponding martingales to
bet on all strings. Γ -martingales can only bet on a polynomial number out of
the exponentially many strings of length n, whereas Γd and Γ/(P) martingales
can only double their capital a polynomial number of times while betting on
(the exponentially many) strings of size n, with the direct consequence that
neither can be used to define a dimension notion, because the ability to bet on
every string is essential for this purpose (notice that simply keeping track of the
capital won by a martingale doubling its capital on every string is impossible
in polynomial time). Moreover the random sequences yielded by either of those
two measure notions do not necessarily have an equal frequency of 0’s and 1’s in
the limit, whereas this property is captured by Lutz’s resource-bounded measure
notion on E, corresponding to the intuitive idea of a random sequence.

In this paper we introduce a measure notion on P based on martingale fami-
lies (called F -measure), where martingale families can double their capital on all
strings, thus enabling us to define dimension in P. F -measure gets rid of the un-
natural random sequences of Γ/(P)-measure [22], and yields random sequences
with an equal frequency of 0’s and 1’s, similarly to Lutz resource-bounded mea-
sure [10]. Moreover F -measure is strictly stronger than Γ -measure. United, we
stand; divided, we fall is the key idea behind F -measure, i.e. whereas a single
polynomial time computable martingale is not able to make money on all expo-
nentially many strings of size n, a family of martingales working together and
sharing their capital can. The idea is to separate the exponentially many strings
of size n into groups of polynomial size, where each member of the family bets
on one of these groups of strings. The family shares a common bank account:
When such a martingale bets on a string x, the capital at its disposal amounts to
the capital currently gathered by its family on predecessors of x, although it has
no information about how much this (possibly) exponentially large capital is.
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Constructing the perfect measure on P has turned out to be much more diffi-
cult as previously thought; it is now widely admitted that this perfect measure
on P might be very difficult to achieve, and that for any measure notion on P
some desirable properties must be abandoned; and F -measure is no exception.
Similarly to Γd-measure [22], martingale families do not satisfy the finite union
property, but only satisfy the union property in some non-general sense: we can
only guarantee the union property for families with the same bank account struc-
ture; however this is usually enough to prove theorems where the union property
is needed.

We show in Section 3.1 that except for general unions, martingale families
satisfy the basic measure properties, i.e. every single language has measure zero,
and the whole class P does not have measure zero, we then introduce uniform
P-unions and show that the union property holds for those. We observe that it is
easy to derive a F -measure notion on classes between P and E like QUASIPOLY,
SUBEXP and PSPACE; for BPP see [20].

Next we show that the concept of randomness yielded by F -measure is optimal
regarding frequency: every language L such that there are infinitely many n with
|L[1 · · ·n]| ≤ εn (with ε < 1/2), has measure zero in P (Section 3.2).

As applications to F -measure, we answer a question raised in [1], improving
their result to: almost all (all except a measure zero class) languages computable
in subexponential time, are hard enough to derandomize BPP, i.e. a polynomial
time algorithm can use almost every language L ∈ SUBEXP to derandomize
every probabilistic polynomial time algorithm, even if the probabilistic algorithm
has also oracle access to L.

We also investigate the nonuniform complexity of languages of PSPACE, and
show that almost all languages in PSPACE do not have small nonuniform com-
plexity, thus reducing the resource-bounds of a similar result in [11].

Next we compare F -measure to previous measure notions on P, and show
that F -measure is strictly stronger than Γ -measure, i.e. every Γ -measure zero
set has F -measure zero, and there are classes with Γ -measure non-zero that
have F -measure zero. Due to their intrinsic differences, we cannot compare Γd-
measure and Γ/(P)-measure [22] to F -measure. Nevertheless all sets proved to
be small for Γ/(P)-measure in [22] are also small for F -measure. Regarding
density arguments, F -measure performs better; indeed a (Lebesgue) random
language has (1/2− o(1))2n words of length n (with high probability), and this
property is captured by F -measure, whereas for Γ/(P)-measure, the set of lan-
guages having o(2n) words of length n has Γ/(P)-measure zero. The advantage
of Γ/(P)-measure over F -measure is that it satisfies the finite union property.
Concerning Γd-measure and F -measure, both their respective strengths are dif-
ferent, whereas Γd-measure cannot be used to define dimension in P, F -measure
fails to capture the Γd-measure zero sets in [3].

We also show that all classes closed under polynomial many-one reductions
have measure zero in EXP iff they have F -measure zero in Eα, which reduces
the time bounds of many results [8, 23, 8, 7] from measure on E to measure on
SUBEXP.



Martingale Families and Dimension in P 391

The second part of the paper is devoted to dimension in P. Lutz resource-
bounded dimension [13], has been introduced on a wide variety of complexity
classes ranging from finite state automata, exponential time and space up to
the class of recursively enumerable languages [17], with the exception of small
classes like P.

Hausdorff dimension is a refinement of Lebesgue measure, where every mea-
sure zero class of languages is assigned a real number between 0 and 1, called its
Hausdorff dimension. The key idea of Lutz is to receive a tax after each round
(even if the martingale did not bet during that round): the largest tax rate which
can be received without preventing the martingale from succeeding on a given
class represents the dimension of the class.

Trying to bridge the gap between finite state automata and exponential time
requires a measure notion which is able to bet and double the capital at every
round. Whereas all previous measure notions on P [1, 22] are unable to do so, it
is not a problem for martingale families. This leads to a natural generalization of
Lutz resource-bounded dimension [13] on P, which meets the idea behind Lutz’s
notion.

We give some evidence that P-dimension is a natural extension to P of previ-
ously existing dimension notions, by showing that it lies exactly between finite-
state dimension and dimension on E, i.e. we show that for any sequence S,
dimFS(S) ≥ dimP(S) ≥ dimE(S).

Finally we prove an analogue to the Theorem of Eggleston [5] in P, i.e. the
class of languages whose characteristic sequences contain 1’s with frequency α,
has strong dimension the Shannon entropy of α in P.

2 Preliminaries

s0, s1, s2 . . . denotes the standard enumeration of the strings in {0, 1}∗ in lex-
icographical order, where s0 = λ denotes the empty string. Note that |w| =
2O(|s|w||). A sequence is an element of {0, 1}∞. If F is a string or a sequence and
1 ≤ i ≤ |w| then w[i] and w[si] denotes the ith bit of F . Similarly w[i . . . j] and
w[si . . . sj ] denote the ith through jth bits.

For two string x, y, the concatenation of x and y is denoted xy. If x is a string
and y is a string or a sequence extending x i.e. y = xu, where u is a string or a
sequence, we write x � y. We write x � y if x � y and x �= y.

A language is a set of strings. A class is a set of languages. The cardinal of a
language L is denoted |L|. Let n be any integer. The set of strings of size n of
language L is denoted L=n. Similarly L≤n denotes the set of strings in L of size
at most n.

We identify language L with its characteristic function χL, where χL is the
sequence such that χL[i] = 1 iff si ∈ L. Thus a language can be seen as a
sequence in {0, 1}∞. L  sn denotes the initial segment of L up to sn given by
L[s0 · · · sn].

We use standard notation for traditional complexity classes; see for instance
[21]. For ε > 0, denote by Eε the class Eε =

⋃
δ<ε DTIME(2n

δ

). SUBEXP is
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the class ∩ε>0Eε, and quasi polynomial time refers to the class QUASIPOLY =
∪k≥1DTIME(nlogk n).

Lutz measure on E [11] is obtained by imposing appropriate resource-bounds
on a game theoretical characterization of classical Lebesgue measure, via mar-
tingales. A martingale is a function d : {0, 1}∗ → R+ such that, for every
w ∈ {0, 1}∗, 2d(w) = d(w0) + d(w1).

3 A New Measure on P Via Martingale Families

The following equivalent alternative to martingales will be useful.

Definition 1. A rate-martingale is a function D : {0, 1}∗ → [0, 2] such that for
every w ∈ {0, 1}∗ D(w0) +D(w1) = 2.

A rate-martingale outputs the factor by which the capital is increased after the
bet, whereas a martingale outputs the current capital.

The key idea to define our measure on small complexity classes is that in-
stead of considering a single martingale as usual, we consider families of rate-
martingales which share their wins. These rate-martingales are computed by
Turing machines that have oracle access to their input and can query any bit
of it. To enable such machines to compute the length of their input F with-
out reading it, we also provide them with s|w|; this convention is denoted by
Mw(s|w|). We assume their output to be two binary numbers (a, b) correspond-
ing to the rational number a

b . With this convention, rational numbers such as
1/3 can be said to be computed exactly. Here is a definition of such a family of
rate-martingales.

Definition 2. A P-family of rate-martingales ({Di}i, {Qi}i, ind), is a family
of rate-martingales {Di}i, where Qi : N → P({0, 1}∗) are disjoint polynomial-
printable query sets (i.e. there is a Turing machine that on input (i, 1n) outputs
all strings in Qi(n) in time polynomial in n), i.e. Qi(n)∩Qj(n) = ∅ and Qi(m) ⊆
Qi(n) for m < n, ind : {0, 1}∗ → N is a polynomial time computable function,
such that Di(L  x) is computable by a random access Turing machine M in
time polynomial in |x| i.e. ML�x(x, i) = Di(L  x) where M queries its oracle
only on strings in Qi(|x|), and ind(x) is an index i such that x �∈ Qj(|x|) for
every j �= i.

For simplicity we omit the indexes and denote the family of rate-martingales by
(D,Q, ind), unless needed. Each rate-martingale Di of the family only bets on
strings inside its query setQi. The function ind on input a string x, outputs which
rate-martingale is to (possibly) bet on x. The idea is that the rate-martingales
share their wins, and have the ability to divide the bets along all members of
the family. We are interested in the total capital such a family wins.

Definition 3. Let (D,Q, ind) be a P-family of rate-martingales such that Di(λ)
≤ 1 for every i. The wins of a P- family of rate-martingales is the function
WD : {0, 1}∗ → Q, where WD(L  x) =

∏
i≤2|x|

∏
y≤xDi(L  y).
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For simplicity we simply write i for the index of the first product, unless needed.
Remember that Di(L  x) is the factor by which the capital is multiplied after
the bet on x. Thus the product in Definition 3 is exactly the total capital the
whole family of rate-martingales would win, would they be able to share their
wins after each bet. Note that the function WD is not polynomial, but only
exponential time computable. This is a major difference to previous measure
notions on P: computing the global wins of the family of rate-martingales is
above the computational power of P.

A class has measure zero if there is a family of rate-martingales whose wins
on the languages of the class are unbounded. Here is a definition.

Definition 4. A class C of languages has P-measure zero, denoted μP(C) = 0,
if there is a P-family of rate-martingales (D,Q, ind) such that for every L ∈ C,
lim supn→∞WD(L  sn) = ∞.

Whenever D’s capital grows unbounded on L, we say that the family of rate-
martingales succeeds on L, and write L ∈ S∞[D]. We call our measure notion
F -measure.

It is easy to see that at higher complexity levels such as EXP, F -measure is
equivalent to Lutz’s measure notion [10], by taking a family containing a unique
rate-martingale.

To prove a non-general union property we consider win-functions that succeed
whatever small the starting capital of the corresponding rate-martingales is.

Definition 5. The independent success set of a P-family of rate-martingales
(D,Q, ind) denoted S∞

I [D] is the set of languages L such that for every α > 0,
lim supn→∞

∏
i α
∏

y≤sn
Di(L  y) = ∞.

It is sometimes more convenient to output the current capital of a rate-
martingale, rather than the factor of increase. It is easy to check that De-
finition 2 can be reformulated by taking families of martingales instead of
rate-martingales. We call such a family a P-family of martingales. Both de-
finitions are equivalent, i.e. if (D,Q, ind) is a P-family of rate-martingales
then (d,Q, ind) with di(L  x) =

∏
{y|y≤x and y∈Qi(|x|)}Di(L  y) is a P-

family of martingales with the same win function. For the other direction take
Di(L  x) = di(L�x)

di(L�x−1) . Since both definitions are equivalent we shall switch from
one to the other depending on which is the most appropriate in a given context.

Sometimes we need approximable martingales instead of exactly computable
ones. Here is a definition.

Definition 6. A P-approximable family of martingales ({di}i, {Qi}i, ind), is a
family of martingales {di}i, where Qi and ind are as in Definition 2 and such
that di(L  x) is k-approximable by a random access Turing machine M in time
polynomial in |x|+ k, i.e. |ML�x(x, i, k)− di(L  x)| ≤ 2−k where M queries its
oracle only on strings in Qi(|x|).
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3.1 The Basic Measure Properties

We can show the union property for the following non-general case, where the
query sets Qi are the same for each family of rate-martingales to be considered
for the union.

Definition 7. A P-union of measure zero sets is a family of classes {Cj}j such
that there exists a P-family of rate-martingales ({Di,j}i,j , {Qi}i, ind) such that
for every j ≥ 1, Cj ⊆ S∞

I [{Di,j}i].
As the following result shows, the basic measure properties hold for
F -measure, as long as we restrict ourselves to P-unions.

Theorem 1. 1. Let L be any language in P, then {L} has P-measure zero.
2. P does not have P-measure zero.
3. Let {Cj}j be a P-union of measure zero sets, and let C =

⋃
j Cj , then C has

P-measure zero.

It is easy to check that F -measure on P can be extended to a measure notion
on QUASIPOLY, Eε, and PSPACE, by taking the corresponding time and space
bounds. For a measure on BPP we refer the reader to [20].

3.2 Applications: Some Classes of Measure Zero

3.3 Smallness of Languages with Low Density

As mentioned earlier, martingale families can bet on every string, thus yielding
a randomness notion which is optimal in terms of density of random languages.

Theorem 2. Let 0 ≤ ε < 1/2. The set Dε of languages L such that for infinitely
many n |L[s1, s2, · · · , sn]| ≤ εn, has P-measure zero.

An immediate Corollary of Theorem 2 is that the class SPARSE of languages
containing few information is small in P, as opposed to Γ -measure [1].

Corollary 1. SPARSE has P-measure zero.

3.4 Almost Every Language in SUBEXP Can Derandomize BPP

We improve a former result of [1] by showing that almost every language A in
Eε can derandomize BPPA.

Theorem 3. For every ε > 0, the set of languages A such that PA �= BPPA has
Eε -measure zero.

3.5 Almost Every Language in PSPACE Does Not Have Small
Circuit Complexity

The following result shows that almost every language in PSPACE does not have
small nonuniform complexity.

Theorem 4. Let c > 0, SIZE(nc) has PSPACE-measure zero.
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3.6 Comparison with Previous Measure Notions

The following result shows that F -measure is strictly stronger than Γ -measure
[1].

Theorem 5. μP is stronger than μΓ , i.e. for every class C, μΓ (C) = 0 implies
μP(C) = 0 and there are classes C such that μΓ (C) �= 0 and μP(C) = 0.

We cannot compare F -measure to Γ/(P)-measure [22] directly, due to their in-
trinsic differences: a language L is said to have Γ/(P)-measure zero if there exists
a ”game strategy” which succeeds on any subsequence of L. This leads to the
unnatural situation where for any random language L, L ∪ {0}∗ does not have
Γ/(P)-measure zero, although there are infinitely many easy instances. It is easy
to check that such a set has P-measure zero. Nevertheless all sets proved to be
small for Γ/(P)-measure in [22] are also small for F -measure. Regarding density
arguments, F -measure performs better; indeed a (Lebesgue) random language
has with high probability (1/2− o(1))2n words of length n, and this property is
captured by F -measure in Theorem 2, whereas for Γ/(P)-measure, the set of lan-
guages having o(2n) words of length n has Γ/(P)-measure zero. The advantage
of Γ/(P)-measure over F -measure is that it satisfies the finite union property.
Since Γ/(P)-measure is derived from Γd-measure [22], we cannot compare Γd-
measure to F -measure, and both their respective strengths are different: whereas
Γd-measure cannot be used to define dimension in P, F -measure fails to capture
the Γd-measure zero sets in [3].

3.7 Equivalence Between Measure on EXP and SUBEXP

Many results have been obtained from the plausible hypothesis μE(NP) �= 0 see
for instance [16, 8], and the E-measure of all classes ZPP,RP,BPP, SPP is now
well understood, [23, 8, 7]. The following theorem shows that all these results
follow from the a priori weaker assumption in terms of measure in Eε.

Theorem 6. Let C be a class downward closed under ≤p
m-reducibilities, and let

α > 0. We have μEα(C) �= 0 iff μEXP(C) �= 0.

4 Dimension on P

To define a dimension notion from F -measure, we need some minor modifica-
tion for technical reasons. From now on we only consider P-families where the
query sets of Definition 2 cover all strings of some size, and where the number
of martingales allowed to bet on strings of size n is bounded, i.e. we require
∪i≤2n/nQi(n) = {0, 1}≤n.

Lutz’s key idea to define resource-bounded dimension is to tax the martin-
gales’ wins. The following definition formalizes this tax rate notion.

Definition 8. Let s ∈ [0, 1] and (D,Q, ind) be a P-family of rate-martingales,
and let L be a language. We say D s-succeeds on L, if lim supn→∞ 2(s−1)nWD(L 

n) = ∞.
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Similarly D s-succeeds on class C, if D s-succeeds on every language in C.
The dimension of a complexity class is the highest tax rate that can be

received on the martingales’ wins without preventing them from succeeding on
the class.

Definition 9. Let C be a class of languages. The P-dimension of C is
defined as dimP(C) = inf{s : ∃ a P-family of rate-martingales D that s-succeeds
onC}.
We say C has dimension s in P denoted dim(C|P) if dimP(C ∩P) = s. If lim sup
is replaced with lim inf in Definition 8, we say strongly s-succeed, and denote by
DimP the associated dimension notion. This is similar to the packing dimension
notion from [2].

P-dimension satisfies a non-general union property, as shown in the following
result.

Theorem 7. Let {Cj}j be a family of classes, and let {sj}j with sj ∈ [0, 1] such
that for every ε > 0 there exists a P-family of martingales {di,j}i,j
such that {di,j}i (sj + ε)-succeeds on Cj . Let C =

⋃
j Cj, then dimP(C) ≤

supj{sj}.
It is easy to check that P-dimension can be extended to classes above P like
QUASIPOLY, subexponential time and PSPACE; for BPP see [20].

4.1 Finite-State Dimension Versus P-Dimension

The following result gives some evidence that P-dimension is a natural extension
of previous dimension notions to the class P.

Theorem 8. Let S be a language. Then dimFS(S) ≥ dimP(S) ≥ dimE(S).

4.2 Application: Connecting Frequency and Shannon Entropy

In this section we show a polynomial time version of the Theorem of Eggleston
[5], i.e. we prove that the class of languages with asymptotic frequency α have
strong dimension the Shannon entropy of α in P. Analogue version of the theorem
of Eggleston have been proved for various resource bounds [4, 13].

Let us introduce the following notations. First the Shannon entropy refers
to the following continuous function H : [0, 1] → [0, 1], H(α) = α log 1

α +
(1− α) log 1

1−α .

For a language A and n ∈ N, let freqA(n) = #(1,A[0...n−1])
n , where

#(1, A[0 . . . n − 1]) is the number of 1’s in A[0 . . . n − 1]. For α ∈ [0, 1], let
FREQ(α) = {A ∈ {0, 1}∞| limn→∞ freqA(n) = α}.

The following is a polynomial time version of the Theorem of Eggleston [5].

Theorem 9. For all E-computable α ∈ [0, 1], we have Dim(FREQ(α)|P) =
H(α).
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Rényi Institute of Mathematics, Budapest P.O. Box 127, H-1364 Hungary
nemeti@renyi.hu, andreka@renyi.hu

http://www.renyi.hu/pub/algebraic-logic/nhompage.htm

Abstract. - Can general relativistic computers break the Turing bar-
rier? - Are there final limits to human knowledge? - Limitative results
versus human creativity (paradigm shifts). - Gödel’s logical results in
comparison/combination with Gödel’s relativistic results. - Can Hilbert’s
programme be carried through after all?

1 Aims, Perspective

The Physical Church-Turing Thesis, PhCT, is the conjecture that whatever phys-
ical computing device (in the broader sense) or physical thought experiment will
be designed by any future civilization, it will always be simulatable by a Turing
machine. The PhCT was formulated and generally accepted in the 1930’s. At
that time a general consensus was reached declaring PhCT valid, and indeed in
the succeeding decades the PhCT was an extremely useful and valuable maxim in
elaborating the foundations of theoretical computer science, logic, foundation of
mathematics and related areas. But since PhCT is partly a physical conjecture,
we emphasize that this consensus of the 1930’s was based on the physical world-
view of the 1930’s. Moreover, many thinkers considered PhCT as being based on
mathematics + common sense. But “common sense of today” means “physics of
100 years ago”. Therefore we claim that the consensus accepting PhCT in the
1930’s was based on the world-view deriving from Newtonian mechanics. Ein-
stein’s equations became known to a narrow circle of specialists around 1920, but
around that time the consequences of these equations were not even guessed at.
The world-view of modern black hole physics was very far from being generally
known until much later, until after 1980.

Our main point is that in the last few decades (well after 1980) there has
been a major paradigm shift in our physical world-view. This started in 1970
by Hawking’s and Penrose’s singularity theorem firmly establishing black hole
physics and putting general relativity into a new perspective. After that, discov-
eries and new results have been accelerating. About 10 years ago astronomers
obtained firmer and firmer evidence for the existence of larger and larger more
exotic black holes [18],[17] not to mention evidence supporting the assumption
that the universe is not finite after all [20]. Nowadays the whole field is in a state
of constant revolution. If the background foundation on which PhCT was based

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 398–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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has changed so fundamentally, then it is desirable to re-examine the status and
scope of applicability of PhCT in view of the change of our general world-picture.
Cf. also [5] for a related perspective.

A special feature of the Newtonian world-view is the assumption of an abso-
lute time scale. Indeed, this absolute time has its mark on the Turing machine
as a model for computer. As a contrast, in general relativity there is no absolute
time. Kurt Gödel was particularly interested in the exotic behavior of time in
general relativity (GR). Gödel [8] was the first to prove that there are models of
GR to which one cannot add a partial order satisfying some natural properties
of a “global time”. In particular, in GR various observers at various points of
spacetime in different states of motion might experience time radically differ-
ently. Therefore we might be able to speed up the time of one observer, say C
(for “computer”), relatively to the other observer, say P (for “programmer”).

Fig. 1. Summary
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Thus P may observe C computing very fast. The difference between general rel-
ativity and special relativity is (roughly) that in general relativity this speed-up
effect can reach, in some sense, infinity assuming certain conditions are satisfied.
Of course, it is not easy to ensure that this speed-up effect happens in such a
way that we could utilize it for implementing some non-computable functions.

In [7], [15] we prove that it is consistent with Einstein’s equations, i.e. with
general relativity, that by certain kinds of relativistic experiments, future gen-
erations might find the answers to non-computable questions like the halting
problem of Turing machines or the consistency of Zermelo Fraenkel set theory
(the foundation of mathematics, abbreviated as ZFC set theory from now on).
For brevity, we call such thought experiments relativistic computers. Moreover,
the spacetime structure we assume to exist in these experiments is based in
[7],[15] on huge slowly rotating black holes the existence of which is made more
and more likely (almost certain) by recent astronomical observations [18],[17].

We are careful to avoid basing the beyond-Turing power of our computer
on “side-effects” of the idealizations in our mathematical model/theory of the
physical world. For example, we avoid relying on infinitely small objects (e.g.
pointlike test particles, or pointlike bodies), infinitely elastic balls, infinitely (or
arbitrarily) precise measurements, or anything like these. In other words, we
make efforts to avoid taking advantage of the idealizations which were made
when GR was set up. Discussing physical realizability and realism of our design
for a computer is one of the main issues in [15].

The diagram in Figure 1 summarizes the ideas said so far.

2 An Intuitive Idea for How Relativistic Computers
Work

In this section we would like to illuminate the ideas of how relativistic computers
work, without going into the mathematical details. The mathematical details are
elaborated, among others, in [7], [9], [15]. To make our narrative more tangible,
here we use the example of huge slowly rotating black holes for our construction
of relativistic computers. But we emphasize that there are many more kinds of
spacetimes suitable for carrying out essentially the same construction (these are
called Malament-Hogarth spacetimes in the physics literature). So, relativistic
computers are not tied to rotating black holes, there are other general relativistic
phenomena on which they can be based. An example is anti-de Sitter spacetime
which attracts more and more attention in explaining recent discoveries in cos-
mology. We chose rotating black holes because they provide a tangible example
for illustrating the kind of reasoning underlying general relativistic approaches to
breaking the “Turing barrier”. Astronomical evidence for their existence makes
them an even more attractive choice for our didactic purposes.

Let us start out from the so-called Gravitational Time Dilation effect (GTD).
The GTD is a theorem of relativity which says that gravity makes time run
slow. More sloppily: gravity slows time down. Clocks that are deep within gravi-
tational fields run slower than ones that are farther out. We will have to explain
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Slow time Fast time
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Fig. 2. GTD is a theorem of Special Relativity (SR) (easily proved in first-order logic
version of SR)

what this means, but before explaining it we would like to mention that GTD
is not only a theorem of general relativity. This theorem, GTD, can be already
proved in (an easily understandable logic-based version of) special relativity in
such a way that we simulate gravity by acceleration [11], [13]. So one advantage
of GTD is that actually why it is true can be traced down by using only the
simple methods of special relativity. Another advantage of GTD is that it has
been tested several times, and these experiments are well known.

Roughly, GTD can be interpreted by the following thought experiment.
Choose a high enough tower on the Earth, put precise enough (say, atomic)
clocks at the bottom of the tower and the top of the tower, then wait enough
time, and compare the readings of the two clocks. Then the clock on the top will
run faster (show more elapsed time) than the one in the basement, at each time
one carries out this experiment. Figure 2 represents how GTD can be proved in
special relativity using an accelerated spaceship for creating artificial gravity and
checking its effects on clocks at the two ends of the spaceship. Detailed purely
logical formulation and proofidea is found in [12]. The next picture, Figure 3,
represents the same GTD effect as before, but now using a tall tower on the
Earth experiencing the same kind of gravity as in the spaceship. Gravity causes
the clock on the top ticking faster. Therefore computers there also compute
faster. Assume the programmer in the basement would like to use this GTD ef-
fect to speed up his computer. So he sends the computer to the top of the tower.
Then he gets some speed-up effect, but this is too little. The next two pictures,
Figure 4 and Figure 5, are about the theoretical possibility of increasing this
speed-up effect.

How could we use GTD for designing computers that compute more than
Turing Machines can? In the above outlined situation, by using the gravity of
the Earth, it is difficult to make practical use of GTD. However, instead of the
Earth, we could choose a huge black hole, cf. Figure 6. A black hole is a region
of spacetime with so big “gravitational pull” that even light cannot escape from
this region. There are several types of black holes, an excellent source is Taylor
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Fig. 3. TIME WARP (Tower Paradox, effects of gravity on time). Clocks higher in a
gravitational well tick faster

and Wheeler [19]. For our demonstration of the main ideas here, we will use
huge, slowly rotating black holes. (These are called slow-Kerr in the physics
literature.) These black holes have two so-called event horizons, these are bubble-
like surfaces one inside the other, from which even light cannot escape (because
of the gravitational pull of the black hole). See Figures 7–9.

As we approach the outer event horizon from far away outside the black hole,
the gravitational “pull” of the black hole approaches infinity as we get closer
and closer to the event horizon. This is rather different from the Newtonian
case, where the gravitational pull also increases but remains finite even on the
event horizon.1 For a while from now on “event horizon” means “outer event
horizon”.

Let us study observers suspended over the event horizon. Here, suspended
means that the distance between the observer and the event horizon does not
change. Equivalently, instead of suspended observers, we could speak about ob-

1 The event horizon also exists in the Newtonian case, namely, in the Newtonian case,
too, the event horizon is the “place” where the escape velocity is the speed of light
(hence even light cannot escape to infinity from inside this event horizon “bubble”).
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Fig. 4. Thought experiment for fast computation: The programmer “throws” his slave-
computer to a high orbit. Communicates via radio.

servers whose spaceship is hovering over the event horizon, using their rockets
for maintaining altitude. Assume one suspended observer H is higher up and
another one, L, is suspended lower down. So, H sees L below him while L sees
H above him. Now the gravitational time dilation (GTD) will cause the clocks
of H run faster than the clocks of L. Moreover, they both agree on this if they
are watching each other e.g. via photons. Let us keep the height of H fixed. Now,
if we gently lower L towards the event horizon, this ratio between the speeds of
their clocks increases. Moreover, as L approaches the event horizon, this ratio
approaches infinity. This means that for any integer n, if we want H ’s clocks to
run n times as fast as L’s clocks, then this can be achieved by lowering L to the
right position.

Let us see what this means for computational complexity. If the programmer
wants to speed up his computer with an arbitrarily large ratio, say n, then he
can achieve this by putting the programmer to the position of L and putting
the computer to the position of H . Already at this point we could use this ar-
rangement with the black hole for making computers faster. The programmer
goes very close to the black hole, leaving his computer far away. Then the pro-
grammer has to wait a few days and the computer does a few million year’s job
of computing and then the programmer knows a lot about the consequences of,
say, ZFC set theory or whatever mathematical problem he is investigating. So
we could use GTD for just speeding up computation which means dealing with
complexity issues. However, we do not want to stop at complexity issues. Instead,
we would like to see whether we can attack somehow the “Turing barrier”.
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Fig. 5. By using a neutron star we still get only a finite speed-up

The above arrangement for speeding the computer up raises the question of
how the programmer avoids consequences of the fact that the whole manoeuver
will slow down the programmer’s own time relative to the time on his home
planet, e.g. on the Earth. We will deal with this problem later. Let us turn now
to the question of how we can use this effect of finite (but unbounded) speed-up
for achieving an infinite speed-up, i.e. for breaking the Turing barrier.

If we could suspend the lower observer L on the event horizon itself then
from the point of view of H , L’s clocks would freeze, therefore from the point of
view of L, H ’s clocks (and computers!) would run infinitely fast, hence we would
have the desired infinite speed-up upon which we could then start our plan for
breaking the Turing barrier. The problem with this plan is that it is impossible
to suspend an observer on the event horizon. As a consolation for this, we can
suspend observers arbitrarily close to the event horizon. To achieve an “infinite
speed-up” we could do the following. We could lower and lower again L towards
the event horizon such that L’s clocks slow down (more and more, beyond limit)
in such a way that there is a certain finite time-bound, say b, such that, roughly,
throughout the whole history of the universe L’s clocks show a time smaller than
b. More precisely, by this we mean that whenever H decides to send a photon
to L, then L will receive this photon before time b according to L’s clocks. This
is possible. See Figure 9.

Are we done, then? Not yet, there is a remaining task to solve. As L gets
closer and closer to the event horizon, the gravitational pull or gravitational
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Fig. 6. Getting “infinite” speed-up

acceleration tends to infinity. If L falls into the black hole without using rockets
to slow his fall, then he does not have to withstand the gravitational pull of
the black hole. He would only feel the so-called tidal forces which can be made
negligibly small by choosing a large enough black hole. However, his falling
through the event horizon would be so fast that some photons sent after him by
H would not reach him outside the event horizon. Thus L has to approach the
event horizon relatively slowly in order that he be able to receive all possible
photons sent to him by H . In theory he could use rockets for this purpose, i.e.
to slow his fall (assuming he has unlimited access to fuel somehow). Because L
approaches the event horizon slowly, he has to withstand this enormous gravity
(or equivalently acceleration). The problem is that this increasing gravitational
force (or acceleration) will kill L before his clock shows time b, i.e. before the
planned task is completed.

At the outer event horizon of our black hole we cannot compromise between
these two requirements by choosing a well-balanced route for L: no matter how
he will choose his route, either L will be crashed by the gravitational pull, or
some photons sent by H would not reach him. (This is the reason why we can
not base our relativistic computer on the simplest kind of black holes, called
Schwarzschild ones, which have only one event horizon and that behaves as we
described as above.)

To solve this problem, we would like to achieve slowing down the “fall” of L
not by brute force (e.g. rockets), but by an effect coming from the structure of
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Fig. 7. Rotating Black Hole has two event horizons. Programmer can survive forever.
(Ring singularity can be avoided.)

spacetime itself. In our slowly rotating black hole, besides the gravitational pull of
the black hole (needed to achieve the time dilation effect) there is a counteractive
repelling effect coming from the revolving of the black hole. This repelling effect
is analogous to “centrifugal force” in Newtonian mechanics and will cause L to
slow down in the required rate. So the idea is that instead of the rockets of L,
we would like to use for slowing the fall of L this second effect coming from
the rotation of the black hole. In some black holes with such a repelling force,
and this is the case with our slowly rotating one, two event horizons form, see
Figures 7–9. The outer one is the result of the gravitational pull and behaves
basically like the event horizon of the simplest, so-called Schwarzschild hole, i.e.
as described above. The inner event horizon marks the point where the repelling
force overcomes the gravitational force. So inside the inner horizon, it is possible
again to “suspend” an observer, say L, i.e. it becomes possible for L to stay at
a constant distance from the center of the black hole (or equivalently from the
event horizons).

Let us turn to describing how a slowly rotating black hole implements the
above outlined ideas, and how it makes possible to realize our plan for “infinite
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P
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horizon
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Axis of rotation(θ = 0)

Fig. 8. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 9 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.

speed-up”. Figure 8 represents a slowly rotating huge Kerr black hole and Fig-
ure 9 represents its spacetime structure. As we said, there are two event horizons,
the inner one surrounded by the outer one. The source of gravity of the black
hole is a ring shaped singularity situated inside the inner horizon. The path of
the in-falling observer L can be planned in such a way that the event when L
reaches the inner horizon corresponds to the time-bound b (on the wristwatch of
L) mentioned above before which L receives all the possible messages sent out
by H . In Figures 8,9 the world-lines of L and H are denoted as P and C because
we think of L as the programmer and we think of H as L’s computer.

By this we achieved the infinite speed-up we were aiming for. This infinite
speed-up is represented in Figure 9 where P measures a finite proper time be-
tween its separation from the computer C (which is not represented in the figure)
and its touching the inner horizon at proper time b (which point also is not rep-
resented in Figure 9). It can be seen in the figure that whenever C decides to
send a photon towards P , that photon will reach P before P meets the inner
horizon. The above outlined intuitive plan for creating an infinite speed-up effect
is elaborated in more concrete mathematical detail in [7], [15].

Let us see how we can use all this to create a computer that can compute
tasks which are beyond the Turing limit. Let us choose the task, for an example,
to decide whether ZFC set theory is consistent. I.e. we want to learn whether
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from the axioms of set theory one can derive the formula FALSE. (This formula
FALSE can be taken to be ∃x(x �= x).) The programmer P and his computer
C are together (on Earth), not moving relative to each other, and P uses a
finite time-period for transferring input data to the computer C as well as for
programming C. After this, P boards a huge spaceship, taking all his mathe-
matical friends with him, and chooses an appropriate route towards our huge
slowly rotating black hole, entering the inner event horizon when his wrist-watch
shows time b. While he is on his journey towards the black hole, the computer
checks one by one the theorems of set theory, and as soon as the computer finds
a contradiction in set theory, i.e. a proof of the formula FALSE, from the axioms
of set theory, the computer sends a signal to the programmer indicating that set
theory is inconsistent. (This is a special example only. The general idea is that
the computer enumerates a recursively enumerable set and, before starting the
computer, the programmer puts on the tape of the computer the name of the
element which he wants to be checked for belonging to the set. The computer
will search and as soon as it finds the element in question inside the set, the
computer sends a signal.) If it does not find the thing in the set, the computer
does nothing.

What happens to the programmer P from the point of view of the computer
C? This is represented in Figure 9. Let C’s coordinate system be the one rep-
resented in Figure 9. By saying “from the point of view of C” we mean “in
this particular coordinate system (adjusted to C) in Fig.9”. In this coordinate
system when the programmer goes closer and closer to the inner horizon of the
black hole, the programmer’s clock will run slower and slower and slower, and
eventually on the inner event horizon of the black hole the time of the program-
mer stops. Subjectively, the programmer does not experience it this way, this
is how the computer will coordinatize it in the distance, or more precisely, how
the coordinate system shown in Figure 9 represents it. If the computer thinks
of the programmer, it will see in its mind’s eye that the programmer’s clocks
stop and the programmer is frozen motionless at the event horizon of the black
hole. Since the programmer is frozen motionless at the event horizon of the black
hole, the computer has enough time to do the computation, and as soon as the
computer has found, say, the inconsistency in set theory, the computer can send
a signal and the computer can trust that the programmer—still with his clock
frozen—will receive this signal before it enters the inner event horizon.

What will the programmer experience? This is represented in Figure 8. The
programmer will see that as he is approaching the inner event horizon, his com-
puter in the distance is running faster and faster and faster. Then the program-
mer falls through the inner event horizon of the black hole. If the black hole is
enormous, the programmer will feel nothing when he passes either event horizon
of the black hole—one can check that in case of a huge black hole the so-called
tidal forces on the event horizons of the black hole are negligibly small [16]. So
the programmer falls into the inner event horizon of the black hole and either
the programmer will experience that a light signal arrives from the direction of
the computer, of an agreed color and agreed pattern, or the programmer will
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observe that he falls in through the inner event horizon and the light signal
does not arrive. After the programmer has crossed the inner event horizon, the
programmer can evaluate the situation. If a signal arrives from the computer,
this means that the computer found an inconsistency in ZFC set theory, there-
fore the programmer will know that set theory is inconsistent. If the light signal
does not arrive, and the programmer is already inside the inner event horizon,
then he will know that the computer did not find an inconsistency in set theory,
did not send the signal, therefore the programmer can conclude that set theory is
consistent. So he can build the rest of his mathematics on the secure knowledge
of the consistency of set theory.

horizon
inner event

outer event
horizon

wristwatch−time

1

2

2.40

2.41
III II I

t̄ z = r− z = r+

z

z = 0

C

P

Fig. 9. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 8. The tilting
of the light cones indicates that not even light can escape through these horizons. That
there is an outward push counteracting gravity can be seen by the shape of the light-
cones in region III (central region of the black hole). The time measured by P is finite
(measured between the beginning of the experiment and the event when P meets the
inner event horizon at b) while the time measured by C is infinite.

The next question which comes up naturally is whether the programmer can
use this new information, namely that set theory is consistent, or whatever
he wanted to compute, for his purposes. A pessimist could say that OK they
are inside a black hole, so—now we are using common sense, we are not using
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relativity theory—common sense says that the black hole is a small unfriendly
area and the programmer will sooner or later fall into the middle of the black
hole where there is a singularity and the singularity will kill the programmer.
The reason why we chose our black hole to be a huge slowly rotating one, say of
mass 1010m�, is the following. If the programmer falls into a black hole which
is as big as this and it rotates slowly, then the programmer will have quite a lot
of time inside the black hole because the center of the black hole is relatively far
from the event horizon. But this is not the key point. If it rotates, the “matter
content”, the so-called singularity, which is the source of the gravitational field
of the black hole so-to-speak, is not a point but a ring. So if the programmer
chooses his route in falling into the black hole in a clever way, say, relatively
close to the north pole instead of the equatorial plane, then the programmer
can comfortably pass through the middle of the ring, never get close to the
singularity and happily live on forever. We mean, the rules of relativity will not
prevent him from happily living forever. He may have descendants, he can found
society, he can use the so obtained mathematical knowledge.

Technical details of realizability of this general plan are checked in [15], [7].
The above outlined train of thought can be pushed through to show that any
recursively enumerable set can be decided by a relativistic computer [7]. Actually,
more than that can be done by relativistic computers, but it is not the purpose
of the present paper to check these limits. These limits are addressed in [9], [10],
[21].

For the nonspecialist of general relativity, we include here the mathematical
description of a double black hole with 2 event horizons suitable for the above
outlined thought experiment. Instead of rotation, here we use an electric charge
for “cushioning”. The spacetime geometry of our black hole is described by the
metric

ds2 = A(r)dt2 − 1
A(r)

dr2 − r2dϕ2 (1)

where ϕ is the space angle coordinate. Here A(r) = (1 − 1
r + e

r2 ) for some

0 ≤ e < 1/2. (The event horizons form at r = 1
2 ±

√
1
4 − e. In our choice

of A(r), the “− 1
r ” part is responsible for gravitational attraction, while the

“ e
r2 ” part for the cushioning caused by charge

√
e.) The tr-slice of the space-

time determined by the simple metric (1) above is basically the same as the
one represented in Figure 9. (What was denoted as z coordinate should be de-
noted as r, now.) For completeness, in (1) above, r is the radial coordinate,
r = distance from the center of black hole.

3 Conclusion

A virtue of the present research direction is that it establishes connections
between central questions of logic, foundation of mathematics, foundation of
physics, relativity theory, cosmology, philosophy, particle physics, observational
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astronomy, computer science and AI [21]. E.g. it gives new kinds of motivation
to investigating central questions of these fields like “is the universe finite or in-
finite (both in space and time) and in what sense”, “exactly how do Kerr black
holes evaporate” (quantum gravity), “how much matter is needed for coding
one bit of information (is there such a lower bound at all)”, questions concern-
ing the statuses of the various cosmic censor hypotheses, questions concerning
the geometry of rotating black holes [4], to mention only a few. The interdisci-
plinary character of this direction was reflected already in the 1987 course given
by the present authors [14] during which the idea of relativistic hypercomputers
emerged and which was devoted to connections between the above mentioned ar-
eas. Tangible data underlying the above interconnections and also more history,
references are available in [15]. The book Earman [6, p.119, section 4.9] regards
the same interdisciplinary perspective as described above to be one of the main
virtues of the present research direction. It is the unifying power of logic which
makes it viable to do serious work on such a diverse collection of topics. One of
the main aims of the research direction represented by [3], [2], [1], [11]–[13] is to
make relativity theory accessible for anyone familiar with logic.
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7. Etesi, G. and Németi, I., Turing computability and Malament-Hogarth spacetimes.
International Journal of Theoretical Physics 41,2 (2002), 342-370.
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Abstract. This paper studies the degrees of weakly computable
reals. It is shown that certain types of limit-recursive reals are Turing
incomparable to all weakly computable reals except the recursive and
complete ones. Furthermore, it is shown that an r.e. Turing degree is
array-recursive iff every real in it is weakly computable.

1 Introduction

A real α is left-computable if we can effectively generate α from below. That is,
the left Dedkind cut of α, L(α) = {q ∈ Q : q ≤ α}, forms a r.e. set. Equivalently,
a real α is left-computable if it is the limit of a converging recursive increasing
sequence of rational numbers. If we can also compute the radius of convergence
effectively, then α is recursive.

Left-computable reals are the measures of the domains of prefix-free Turing
machines, or halting probabilities. These reals occupy a central place in the
study of algorithmic randomness in the same way as recursively enumerable sets
occupy a central place in classical recursion theory. However, the collection of
left-computable reals does not behave well algebraically since it is not closed
under subtraction. Because of this, in [1], Ambos-Spies, Weihrauch and Zheng
introduced the collection of weakly computable reals, where a real α is weakly
computable if there are left-computable reals β and γ such that β − γ equals to
α. Ambos-Spies, Weihrauch and Zheng [1] proved that the collection of weakly
computable reals is closed under the arithmetic operations, and hence forms a
field. The following proposition gives an analytical characterization of weakly
computable reals:

Theorem 1.1 [1, Ambos-Spies, Weihrauch and Zheng]. A real number x is
weakly computable iff there is a recursive sequence {xs}s∈N of rational numbers
converging to x such that

∑
s∈N |xs − xs+1| ≤ c for a constant c.
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In this paper, we will study the Turing degrees of weakly computable reals. The
following is known:

Theorem 1.2 [3, Downey, Wu and Zheng]. (1) Any ω-r.e. degree contains a
weakly computable real. (2) There are Turing degrees below 0′ containing no
weakly computable reals.

In this paper, we first generalize the notion of degrees considered in Theorem
1.2 (2), by introducing a generalized notion of those degrees constructed in [3].
Say that a nonzero degree a is nonbounding if every nonzero degree ≤ a contains
no weakly computable reals. The existence of such nonbounding degrees can be
proved by an oracle construction.

Theorem 1.3. There is a degree below 0′ such that every nonzero degree below
it contains no weakly computable reals.

Our construction can be easily modified to make the nonbounding degrees 1-
generic. However, if we let c be any r.e. and strongly contiguous degree, then
every degree below c is ω-r.e., and hence contains a weakly computable real (by
Theorem 1.2 (1)). Thus, not every 1-generic degree below 0′ is nonbounding.

The notion of f -limit-genericity will be introduced, and an alternative proof of
Theorem 1.3 by using f -limit-genericity will be given. This proof can be modified
to prove:

Theorem 1.4. There are degrees a below 0′ such that the degrees containing
weakly computable reals comparable with a are only 0 and 0′.

Theorem 1.4 improves Yates’ result in [14].
We will also consider those Turing degrees on the other extreme, those degrees

containing only weakly computable reals. A Turing degree is called completely
weakly computable if every set in this degree is weakly computable. We will pro-
vide in this paper another characterization of array recursive degrees. For more
information on array (non)recursive degrees, see [6]. We need some background
of Chaitin’s Ω numbers.

Chaitin [2] introduced Ω as the halting probability of a universal prefix-free
machine and Kučera and Slaman [10] showed these Ω-numbers cover all the
left computable Martin-Löf random sets. Indeed, it is sufficient for the further
investigations and definitions to fix Ω as one of these possible numbers as the
notions defined below turn out to be the same, independently of the choice of
Ω. Ω has the following properties:

– Ω has a recursive approximation Ω0, Ω1, . . . from the left as it is left-
computable.

– The convergence module cΩ defined as

cΩ(n) = min{s : ∀m ≤ n (Ωs(m) = Ω(m))}
dominates all total-recursive functions and furthermore cΩ(n) is larger than
the time that any terminating computation of the underlying universal ma-
chine takes to halt on any input of length n or less.
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– There are nonrecursive sets A such that Ω is random relative to A. These
sets are called low for Ω.

In particular the subclass of those sets low for Ω which are reducible to K has
several natural characterizations [5,11]. Downey, Hirschfeldt, Miller and Nies
[4, Corollary 8.6] showed that every Δ0

2 degree low for Ω is completely weakly
computable, and that such degrees can be nonrecursive.

Theorem 1.5 [4, Downey, Hirschfeldt, Miller and Nies]. If a set A ≤T K is
low for Ω, then it is weakly computable.

One could generalize the notion “low for Ω” to the notion that cΩ dominates
every A-recursive function. This class of degrees is indeed an old friend and there
are several characterizations for it [4,5,8], one of which adapts “Ω is Martin-Löf
random relative to A” to “Ω is Schnorr random relative to A”. So for every r.e.
set A the following statements are equivalent:

– cΩ dominates every A-recursive function;
– Ω is Schnorr random relative to A;
– the Turing degree of A is array recursive;
– the Turing degree of A has a strong minimal cover;
– A is r.e. traceable, that is, for every f ≤T A and almost all n, the Kolmogorov

complexity of f(n) is at most n.

Theorem 1.6. For any r.e. set A, the following are equivalent:

1. The Turing degree of A is array recursive;
2. Every B ≤T A is weakly computable;
3. The Turing degree of A is completely weakly computable.

Our notation and terminology are standard and generally follow Soare [13].

2 Nonbounding Degrees

In this section, we prove Theorem 1.3. We will construct a real A such that
weakly computable reals Turing reducible to it are all recursive. A is constructed
satisfying the following requirements:

Pe: A �= {e};
Re,i,j : if {e}A is total, then either {e}A is recursive or {e}A �= αi − αj ,

where {αi}i∈N is an effective list of all left-computable reals.

Pe requirement can be satisfied by the Kleene-Post’s diagonalization. That is,
at stage s, given a finite approximation σs, we can ask whether there is some
number m > |σs| such that {e}(m) converges. This is a Σ1 question, and we can
get the answer from oracle K. If the answer is “yes”, then we can define σs+1 as
an extension of σs such that |σs+1| = m+ 1 and σs+1(m) �= {e}(m). Otherwise,
we extend σs to σs+1 by just letting σs+1 = σŝ 0. Obviously, Pe is satisfied in
both cases.
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Now we describe the strategy satisfying the requirement Re,i,j . For conve-
nience, we omit the subscript, and it will not cause any confusion. Suppose
that at stage s + 1, σs is given, and we want to satisfy R. We ask K whether
there is a number n and strings τ1, τ2 extending σs such that for all m ≤ n,
{e}τ1(m), {e}τ2(m) converge and that |{e}τ1  (n+1)−{e}τ2  (n+1)| ≥ 2−(n−1).

If the answer is “no”, then we claim that if {e}A is total, then {e}A is recur-
sive. To see this, for any n, to calculate {e}A(n), we find a string τ extending
σs such that for all m ≤ n + 2, {e}τ(m) converges (by the assumption that
{e}A is total, such a τ exists). Then {e}A(n) = {e}τ(n), because by our assump-
tion, |{e}A  (n + 3) − {e}τ  (n + 3)| is less than 2−(n+1). In this case, we let
σs+1 = σŝ 0.

On the other hand, if the answer is “yes”, then for any real number x,

|{e}τ1  (n+ 1)− x  (n+ 1)|+ |{e}τ2  (n+ 1)− x  (n+ 1)|
is bigger than |{e}τ1  (n+1)−{e}τ2  (n+1)| and hence is bigger than 2−(n−1).
As a consequence, |{e}τ1  (n+ 1)− x  (n+ 1)| or |{e}τ2  (n+ 1)− x  (n+ 1)|
must be bigger than 2−n. If we know that |{e}τ1  (n+ 1)− x  (n+ 1)| > 2−n,
then we can define σs+1 as τ1, and we will have {e}A  (n+1) = {e}τ1  (n+1).
As a consequence, {e}A differs from x in the first n+ 1 digits.

Then, how can we decide which one of τ1 and τ2 is the one we want to satisfy
R? Since αi and αj are left-computable reals, there are effective approximations
of αi, αj from the left, {αi,s}s∈N, {αj,s}s∈N say, and hence, we can useK as oracle
to find a stage s such that αi,s  (n+3) = αi  (n+3), αj,s  (n+3) = αj  (n+3).
Thus αi  (n+3)−αi,s  (n+3) ≤ 2−(n+2), αj  (n+3)−αj,s  (n+3) ≤ 2−(n+2)

and hence |(αi−αj)  (n+3)− (αi,s−αj,s)  (n+3)| ≤ 2−(n+1). Now if we let x
above be αi,s−αj,s, then we can know which one of |{e}τ1  (n+1)−(αi,s−αj,s) 

(n+1)| and |{e}τ2  (n+1)− (αi,s−αj,s)  (n+1)| is bigger than 2−n. Suppose
that |{e}τ1  (n+ 1)− (αi,s − αj,s)  (n+ 1)| ≥ 2−n. Then

|{e}τ1  (n+ 1)− (αi − αj)  (n+ 1)|
≥ ||{e}τ1  (n+ 1)− (αi,s − αj,s)  (n+ 1)| −

|(αi − αj)  (n+ 1)− (αi,s − αj,s)  (n+ 1)||
≥ 2−n − 2−(n+1) = 2−(n+1).

Therefore, we can satisfy R by extending σs to τ1 (that is, define σs+1 = τ1).
The whole construction of A is a finite extension argument, with K as oracle,

where at each stage, one requirement is satisfied.

3 f -Limit-Generic Degrees

In [14], Yates proved that there are degrees d below 0′ such that the r.e. degrees
comparable with d are exactly 0 and 0′. Actually, as noticed later, Yates’ degree
d can be 1-generic, and can be minimal. In [15], Wu proved that Yates’ degree d
can appear in every jump class. In this section, we construct a degree a below 0′

such that the degrees containing weakly computable reals which are comparable
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with a are exactly 0 and 0′. To do this, we first need the following notion of
f -limit-genericity.

Definition 3.1. (1) A set A is called f -limit-generic iff for each e, if there are
infinitely many m such that WK

e,f(m) contains an extension of A(0)A(1) . . . A(m),
then there is an n such that A(0)A(1) . . . A(n) ∈ WK

e .
(2) A set A is called f -limit-semigeneric iff for each e, if for almost all m,

WK
e,f(m) contains an extension of A(0)A(1) . . . A(m), then there is an n such that

A(0)A(1) . . . A(n) ∈WK
e .

Here WK
e is the set of all strings enumerated by the e-th algorithm using the

oracle K and WK
e,f(m) is the set of those strings in WK

e which are enumerated
in time f(m).

An f -limit-generic set A forces membership in WK
e only if for infinitely many

prefixes A(0)A(1) . . . A(m) of A an extension in WK
e can be found within time

f(m), so this notion differs from the 1-genericity (see [9]) by having an oracle
and bounding the search. Nevertheless, if f is growing fast sufficiently, then f -
limit-genericity implies 1-genericity.

We note that for a real α, the notions of computable (by approximation) and
recursive (by computing all digits) coincides. But this does no longer hold for
sequences of reals, {αi}i∈N as one can have that they are uniformly computable
in the sense that there is a computable function g : N × N → Q such that
|αi− g(i, j)| < 2−j for all i, j while they are not uniformly recursive in the sense
that the function i, j → αi(j) which computes the digit j + 1 of αi after the dot
is not computable.

This fact relativizes to the oracle K. While there is a uniformly K-recursive
sequence of all left-computable reals, there is no uniformly K-recursive sequence
containing all weakly computable reals. But there is still an enumeration α0, α1,
α2, . . . of all weakly computable reals and a K-recursive function g : N×N → Q
such that the approximation condition |αi − g(i, j)| < 2−j holds for all i, j.

Theorem 3.2. Assume that α0, α1, α2, . . . is a list of weakly computable reals
such that there is a K-recursive function g : N×N → Q with ∀i, j (|αi−g(i, j)| <
2−j). Then there is a function f ≤T K such that: (1) every f -limit-generic set
A is 1-generic, (2) for all i, if αi ≤T A, then αi is recursive, and (3) for all
i, if αi ≥T A, then αi is complete. Furthermore, one can choose A such that
A ≤T K and hence A can be low.

Proof. Below in Propositions 3.3, 3.4 and 3.5, we will construct functions
f1, f2, f3 ≤T K respectively such that: every f1-limit-semigeneric set satisfies
(1), every f -limit-semigeneric set satisfies (2) and every f3-limit-generic set
satisfies (3).

Let f be defined as f(n) = f1(n) + f2(n) + f3(n) for all n. Then every f -limit-
generic set A is f1-limit-semigeneric, f2-limit-semigeneric and f3-limit-generic,
and hence A satisfies all the requirements.

Proposition 3.3. There is a function f1 ≤T K such that every f1-limit-semi-
generic set is also 1-generic.
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Proof. In an acceptable numbering, there are indices for algorithms and not
only for sets. Thus every r.e. set has an index in the enumeration WK

0 ,WK
1 , . . .

such that the oracle is not accessed during the enumeration of this r.e. set. So it
is reasonable to make the following definition.

Let f1(n) be the time needed to find for every e ≤ n and every string σ ∈
{0, 1}∗ with |σ| ≤ n + 1 a string τ 8 σ which is enumerated into WK

e without
having accessed the oracle K whenever such a τ exists.

As the search in anWK
e is aborted for this e whenever the oracleK is accessed,

the oracle K does not play any role in the definition of f1 and so f1 ≤T K.
Now let A be any f1-limit-generic set and consider any r.e. set V of strings.

There is an index e such that WK
e = V and the enumeration procedure does not

access the oracle K at all. Suppose that there are infinitely many n for which
A(0)A(1) . . . A(n) has an extension in V . Then by the definition of f1, it is easy
to see that for all n, there is an extension of A(0)A(1) . . . A(n) in WK

e,f1(n). Since
A is f1-limit-semigeneric, there is an m with A(0)A(1) . . . A(m) ∈WK

e . Thus A
meets V and hence, A is 1-generic.

Proposition 3.4. Let α0, α1, α2, . . . and g be the same as in Theorem 3.2. Then
there is a function f2 ≤T K such that for every f2-limit-semigeneric set A and
every i, if αi ≤T A, then αi is recursive.

Proof. Given any binary string τ , for any e, let στ,e,0, στ,e,1, kτ,e and t be
the first data found such that (1) στ,e,0, στ,e,1 both extend τ and have length t;
(2) {e}στ,e,0

t (m) and {e}στ,e,1

t (m) are defined for allm < kτ,e; (3) there are at least
two binary strings of length kτ,e lexicographically between {e}στ,e,0

t (m)  kτ,e and
{e}στ,e,1

t (m)  kτ,e.
Let h be a recursive function such that WK

h(e,i) contains one of στ,e,0 and στ,e,1,
στ,e,j say, such that αi does not extend {e}στ,e,j

t (m), if the above search termi-
nates for e, i, τ (such a string can be found since the third condition guarantees
that the restriction of g(i, kτ,e+2) to its kτ,e first bits cannot be identical with or
be a neighbour of both computed strings). In other words, the function h searches
for the “real number variant” of an e-splitting, as described in Theorem 1.3.

Let f2(n) be the time needed to find with oracle K for each e, i ≤ n and each
τ ∈ {0, 1}n+1 an extension of τ in WK

h(e,i) whenever στ,e,0, στ,e,1 exist.
Assume that A is f2-limit-semigeneric and αi = {e}A. If there is an n with

A(0)A(1) . . . A(n) ∈WK
h(e,i), then, as a real, αi does not extend {e}A(0)A(1)...A(n),

contradicting the assumption. Thus there is an n ≥ e+ i such that no extension
of A(0)A(1) . . . A(n) is in WK

h(e,i),f2(n). Then no extension of A(0)A(1) . . . A(n)
is in WK

h(e,i) and αi is the unique real such that for every η 8 A(0)A(1) . . . A(n)
there is a binary representation of αi extending {e}η|η|. This means that αi is
recursive.

Proposition 3.5. Let α0, α1, α2, . . . and g be the same as in Theorem 3.2. Then
there is a function f3 ≤T K such that for every f3-limit-generic set A and every
i, if αi ≥T A, then K ≤T αi.
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Proof. Let c(n) be the convergence module of K, that is, the time to enumerate
all elements of {0, 1, . . . , n} ∩K into K. Now let h̃(e, i) be a recursive function
such that WK

h̃(e,i)
contain all strings σ of length n+ 1 for which there are m, j, η

such that (1) m < n, j < c(n), (2) η is the binary representation of the first j+3
bits of g(i, j + 4), (3) η(j) = 0 and η(j + 1) = 1, and (4) {e}ηj (m) converges to
a value different from σ(m) without querying the oracle at j or beyond.

Since the sets WK
h̃(e,i)

are uniformly K-recursive, there is a K-recursive func-
tion f3 such that f3(n) is the time needed to enumerate relative to K all members
of length ≤ n+ 2 of sets WK

h̃(e,i)
with e, i ≤ n.

Let A be a f3-limit-generic set. Suppose that αi is irrational and that A =
{e}αi. By the construction of WK

h̃(e,i)
, for any n, A(0)A(1) . . . A(n) is not in

WK
h̃(e,i)

. Consequently, there are only finitely many n such that A(0)A(1) . . . A(n)

has extensions in in WK
h̃(e,i),f3(n)

. By the choice of f3, for almost all n, no exten-

sion of A(0)A(1) . . . A(n) is in WK
h̃(e,i)

.
Now let u(n) be the first j such that for all m ≤ n, αi(j) = 0, αi(j + 1) = 1,

and {e}αi(m) converges within j steps without querying the oracle at j or above.
Since αi is is assumed to be irrational, the function u is total. Obviously,

u ≤T αi. Since for almost all n, no initial segment of A of length n is in WK
h̃(e,i)

,
it follows that u(n) ≥ c(n) for these n. Thus K ≤T αi.

The case when αi is rational is trivial.

Proposition 3.6. If f ≤T K, then there is a set A ≤T K such that A is
f -limit-generic.

Proof. We assume that f is strictly monotonically increasing; if it is not, then
one replaces f by f̂ with ∀n (f̂(n) = f(0) + f(1) + . . .+ f(n) + n) and uses that
every f -limit-generic set is also f -limit-generic.

First define a partial K-recursive function h with K-recursive domain such
that, for all σ, e, if WK

e,f(e+|σ|) contains a proper extension of σ, then h(e, σ) is
that proper extension of σ which is enumerated into WK

e first, and if WK
e,f(e+|σ|)

contains no proper extension of σ, then h(e, σ) is undefined.
Obviously, τ ≺ σ ≺ h(e, τ) implies that h(e, σ) = h(e, τ).
Now we construct set A relative to oracle K. Assume that A(m) for all m < n

is already defined and let σ be the string A(0)A(1) . . . A(n − 1) (we let σ be
the empty string if n = 0). A(n) is defined as follows: find the least e such that
h(e, σ) is defined and there is no m < n with h(e,A(0)A(1) . . . A(m)) 3 σ and
define A(n) = h(e, σ)(n).

The first step in the definition of A(n) can be satisfied since there are a t and
infinitely many programs e with WK

e = WK
e,t = {0, 1}n+2. The second step is

again satisfied since n = |σ| and h(e, σ) � σ. Thus h(e, σ) is so long that the bit
h(e, σ)(n) exists and can be copied into A(n). Therefore, the definition above
never runs into an undefined place. Obviously, A ≤T K.

Now we verify that A is f -limit-generic. For the sake of contradiction, assume
that there is an index e such that there are infinitely many n such that WK

e,f(n)
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contains an extension of A(0)A(1) . . . A(n) but no element of WK
e is of the form

A(0)A(1) . . . A(n). Let e be the least such index. Then there is a length n for
which h(e,A(0)A(1) . . . , A(n)) is defined and for all e′ < e, either there is an
m < n with A(0)A(1) . . . A(m) ∈ WK

e′,f(n+e′) or there is no m ≥ n such that
WK

e′,f(n+e′) contains a proper extension of A(0)A(1) . . . A(m).
Now for any m with n < m < |h(e,A(0)A(1) . . . A(n))|, the first step of the

algorithm takes e as the parameter of the same name and assigns to A(m) the
value h(e,A(0)A(1) . . . A(n))(m). This is done since h(e,A(0)A(1) . . . A(m− 1))
= h(e,A(0)A(1) . . . A(n)). Thus if k = |h(e,A(0)A(1) . . . A(n))|, then

A(0)A(1) . . . A(k − 1) = h(e,A(0)A(1) . . . A(n))

and this string is a member ofWK
e , contradicting our assumption on e. Therefore,

A is f -limit-generic. This completes the proof.

Following Theorem 3.2 and Proposition 3.6, the following is obvious:

Theorem 3.7. There is degree a below 0′ such that 0 and 0′ are the only degrees
containing weakly computable reals and comparable with a.

Actually, the degree a in Theorem 3.7 occurs in every jump class (work in
progress). This genearlize results in Wu [15] and Yates [14]. We end this sec-
tion by stating the following result without giving a proof:

Theorem 3.8. If A, f ≤T K and A is nonlow2, then there are f -limit-semi-
generic sets A0, A1 such that A ≡T A1 ⊕A2. Particularly, every nonlow2 degree
below 0′ is the join of nonbounding degrees.

4 Completely Weakly Computable Degrees

In this section, we prove Theorem 1.6.

Proof. (1 ⇒ 2): Assume that A is r.e. and domination low for Ω. Let B ≤T A.
B has a recursive approximation of rationals β0, β1, . . . such that the convergence
module

cB(n) = min{t : ∀s ≥ t∀m ≤ n (βs(m) = βt(m))}
is A-recursive. Furthermore define the recursive function g inductively by g(0) =
0 and g(s + 1) being the minimal element of Ωs+1 − Ωs which, by choice, is
indeed the first element where these two numbers differ; without loss of generality
such an element always exists. Since cΩ dominates the function n → cB(2n),
with a change of finitely many βn, one can achieve that cΩ actually majorizes
this function. Now define a subsequence γ0, γ1, . . . of β0, β1, . . . by the following
recursive algorithm:

1. Let t = 0. Let s = 0.
2. Let γt = βs.
3. While (∃m ≤ 2g(s+ 1)− 2)[βs+1(m) �= γt(m)] Do s = s+ 1.
4. Let t = t+ 1. Let s = s+ 1. Goto 2.
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First one shows by induction that for all n and all s = cΩ(n) there is a t with
γt = βs.

If cΩ(0) = 0, then γ0 = β0 and the assumption holds; if cΩ(0) > 0, then
Ω(0) = 1, g(cΩ(n)) = 0 and the existential quantifier in step 3 becomes false
when s = cΩ(0)− 1, thus the while loop stops and βcΩ(0) is added into the γe.

Assume now that the assumption is true for n, so there is a t′ with γt′ = βcΩ(n).
If cΩ(n+ 1) = cΩ(n), then there is nothing to show. If cΩ(n+ 1) > cΩ(n), then
let s, t be the values of the variables of the same name in the algorithm when
s = cΩ(n + 1) − 1. In this case g(s + 1) = n + 1, t ≥ t′ and γt(m) = B(m) for
all m ≤ 2n = g(n + 1) − 2 since γt equals to some βs′′ with s′′ ≥ cB(2n). So
βs+1(m) = γt(m) for all m ≤ g(s + 1) and the loop in Step 3 terminates. Thus
βs+1 will become γt+1 and the assumption is verified again.

So it follows that the sequence of all γt is infinite and converges to B. Fur-
thermore, for every number t there is a unique number s with γt+1 = βs+1
and ∀m ≤ g(s + 1) − 2 [γt+1(m) = γt(m)]. Thus |γt+1 − γt| ≤ 23−g(s+1) and∑

t∈N |γt+1 − γt| ≤
∑

s∈N 2g(s+1)−2 ≤ ∑n∈N 2n · 23−2n ≤ 16 and the sequence
γ0, γ1, . . . witnesses that B is weakly computable.

(2 ⇒ 3): Obvious.

(3 ⇒ 1): Let f ≤T A be a strictly increasing function. Define a set B ≡T A
as follows: B(0) = 0; B(2n) = A(n); B(2n + m) = Ωf(2n+3)(2n+1 + m) for
m = 1, 2, . . . , 2n − 1.

Since f ≤T A, it is obvious that B ≡T A. Thus B is weakly computable.
Suppose that B = β0−β1 for two left-computable reals β0 and β1. Now one has
the following four facts:

(1) ∃c0∀nC(β0(0)β0(1) . . . β0(n)|Ω(0)Ω(1) . . . Ω(n)) ≤ c0;
(2) ∃c1∀nC(β1(0)β1(1) . . . β1(n)|Ω(0)Ω(1) . . . Ω(n)) ≤ c1;
(3) ∃c2∀nC(B(0)B(1) . . . B(n)|Ω(0)Ω(1) . . . Ω(n)) ≤ c2;
(4) ∀c3∀∞n (Ω(2n+1+1)Ω(2n+1+2)...Ω(2n+1+2n−1)|Ω(0)Ω(1)...Ω(2n)) > c3.

Here the first two statements follow from the fact that Ω is complete among
the left-computable sets with respect the so called rK-reducibility, the third
statement follows from the fact that B = β0−β1 and the fourth statement from
the fact that Ω is Martin-Löf random and that the digits between 2n+1 and
2n+1 + 2n cannot be predicted from those up to 2n+1. Therefore, for almost all
n, there is an m ∈ {1, 2, . . . , 2n − 1} with B(2n + m) �= Ω(2n+1 + m). Thus,
for almost all n, f(2n+3) < cΩ(2n+1 + 2n − 1). The fact that both functions are
monotone gives the following inequality:

∀∞k∃n (2n+2 ≤ k < 2n+3 and f(k) < f(2n+3) < cΩ(2n+1+2n−1) < cΩ(k)).

So cΩ dominates f .

In this proof, the direction (1 ⇒ 2) needs that A has r.e. Turing degree, while
the directions (2 ⇒ 3) and (3 ⇒ 1) work for all sets A ≤T ∅′. Note that there
are r.e. sets such that their Turing degree is array-recursive and low2 but not
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low; thus these sets are not low for Ω. So the above characterization shows that
there are more completely weakly computable degrees than those found in [4].

Corollary 4.1. There is a completely weakly computable and r.e. Turing degree
which is not low for Ω.
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Abstract. This note reexamines Spector’s remarkable computational
interpretation of full classical analysis. Spector’s interpretation makes
use of a rather abstruse recursion schema, so-called bar recursion, used
to interpret the double negation shift DNS. In this note bar recursion
is presented as a generalisation of a simpler primitive recursive func-
tional needed for the interpretation of a finite (intuitionistic) version of
DNS. I will also present two concrete applications of bar recursion in the
extraction of programs from proofs of ∀∃-theorems in classical analysis.

1 Introduction

In [3], Gödel presents an interpretation of first-order intuitionistic arithmetic
HA into a quantifier-free calculus of higher-order primitive recursive function-
als. Gödel’s interpretation, nowadays called Dialectica interpretation, can be
naturally extended to an interpretation of HAω, intuitionistic arithmetic in the
language of finite types (see [7]). Moreover, via the negative translation (e.g.
Kuroda’s [4]) of classical into intuitionistic logic, Dialectica interpretation is
also applicable to PAω, classical arithmetic in the language of finite types.

One of the nicest features of Gödel’s interpretation is that (in the intuitionistic
context) it trivialises both Markov principle

MP : ¬∀nNAqf(n) → ∃n¬Aqf(n),

Aqf(n) a decidable formula, and the axiom of choice

AC : ∀xρ∃yτA(x, y) → ∃fρ→τ∀xA(x, fx).

Given that the interpretation strengthens ∀∃-formulas1, this gives a simple proof
that HAω + MP + AC is ∀∃-conservative over HAω. The same cannot be said
about PAω + AC, however, since the Dialectica interpretation of PAω + AC will
have to interpret the negative translation of AC, which is not necessarily weaker
than AC itself. In fact, PAω extended with a weaker form of choice

cAC : ∀nN∃yσA(n, y) → ∃fN→σ∀nA(n, fn)

� This research has been supported by the UK EPSRC grant GR/S31242/01.
1 If A is a ∀∃-formula then the interpretation of A implies A, provably in HAω.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 423–434, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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so-called countable choice, is already strong enough to prove the comprehension
schema

CA : ∃fN→σ∀nN(fn = 0 ↔ A(n)).

Simply apply cAC to the classically valid statement ∀n∃k(k = 0 ↔ A(n)). This
shows that AC as stated above is innocuous in an intuitionistic context, but not
in a classical one.

Therefore, we choose PAω + cAC as the formal system of classical analysis.
Note that PAω + cAC (and even PAω +CA) clearly contains second-order arith-
metic PA2, if we represent sets via their characteristic functions. In [6], Spector
observes that classical analysis has a negative translation into HAω+cAC+DNS,
where

DNS : ∀nN¬¬A(n) → ¬¬∀nA(n)

is called the double negation shift. This is the case since, after classical logic is
eliminated via the negative translation, one is left with the system HAω+cACN

to be interpreted, where

cACN : ∀n¬¬∃yA(n, y) → ¬¬∃f∀nA(n, fn)

is the schema sufficient for proving the negative translation of each cAC instance.
On the other hand, cACN follows (in HAω) from cAC + DNS.

It is worth noting that the double negation shift is intuitionistically equivalent
to the double negation of the generalised Markov principle

GMP : ¬∀nNA(n) → ∃n¬A(n)

for arbitrary formulas A(n), i.e. HAω � DNS ↔ ¬¬GMP.
This note concerns Spector’s [6] Dialectica interpretation of DNS (and hence,

full classical analysis). Spector’s interpretation makes use of a new recursion
schema, called bar recursion. Our aim is to present bar recursion as a gen-
eralisation of a primitive recursive functional needed for the interpretation of
∧ni=0¬¬Ai → ¬¬∧ni=0 Ai, an intuitionistically valid special case of DNS. We will
also present two concrete applications of bar recursion in the analysis of two
∀∃-theorems in classical analysis.

1.1 Dialectica Interpretation

In this section we will shortly recall Gödel’s Dialectica interpretation, using the
unifying notation of [5]. Sequences of variables x0, . . . , xn will be abbreviated as
x, and a functional application of two sequences of variables xy is a shorthand
for x0y, . . . , xny. In the Dialectica interpretation, each formula A of HAω is
associate with a new (quantifier-free) formula |A|xy , with two distinguished tuples
of free-variables x (so-called witness variables) and y (so-called counter-example
variables), other than the variables already free in A. Intuitively, the formula A
is interpreted by the formula ∃x∀y|A|xy .

For an atomic formula P we set |P | :≡ P , with empty tuples of both witness
and counter-example variables. Assume we have already defined |A|xy and |B|vw,
we define
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|A ∧B|x,vy,w :≡ |A|xy ∧ |B|vw
|A ∨B|x,v,ny,w :≡ (n = 0 ∧ |A|xy) ∨ (n �= 0 ∧ |B|vw)

|A→ B|f ,gx,w :≡ |A|xgxw → |B|fx
w

|∀zA(z)|fy,z :≡ |A(z)|fzy

|∃zA(z)|x,zy :≡ |A(z)|xy
For instance, the interpretation of the formula A ≡ ∀n∃m(m ≥ n∧P (m)) has

Dialectica interpretation fn ≥ n∧P (fn), where f is the witness variable and n
is the counter-example variable. In our notation |A|fn ≡ fn ≥ n ∧ P (fn).

The soundness theorem for the Dialectica interpretation guarantees that if
HAω proves a formula A, then there exists a sequence of terms t, over the free-
variables of A, such that (the quantifier-free fragment of) HAω proves |A|ty.
In order to extend Gödel’s Dialectica interpretation of Heyting arithmetic with
a new principle B, we must be able to produce a witnessing term s for the
interpretation of B, i.e. we must be able to show ∀w|B|sw.

In this paper I will be using Kuroda’s [4] negative translation of classical into
intuitionistic logic, which simply places double negation after each universal
quantifiers and in front of the whole formula.

Notation. We use N for the basic finite type, and ρ → τ for functional types.
For convenience we will also use sequence types, i.e. ρ∗ denotes the type of
sequences of elements of type ρ. The length of a finite sequence is represented as
|s|, while 〈x0, . . . , xn〉 denotes the finite sequence of length n+ 1 with elements
x0, . . . , xn. The concatenation of two finite sequences, a finite sequence and an
element, or a finite sequence with an infinite sequence will all be denote via the
∗ construction, i.e. s ∗ t, s ∗ x and s ∗ f , respectively. Whenever possible we omit
parenthesis in functional application, i.e. fxy stands for f(x, y). The following
primitive recursive constructions will be used. If s : ρ∗ then

– ŝ(i) is si if i < |s| and 0ρ otherwise

– if i ≤ |s| then (s, i)(n) is sn when n < i and 0ρ otherwise

– if i ≤ |s| then s̄i is 〈s0, . . . , si−1〉.

2 Double Negation Shift

The principle DNS can be viewed as the infinite counterpart of the following
intuitionistic schema

fDNS :
n∧

i=0
¬¬Ai → ¬¬

n∧

i=0
Ai

which we will refer to as the finite double negation shift. In order to understand
Spector’s interpretation of DNS, we will first look at the Dialectica interpretation
of fDNS. A possible proof of fDNS in minimal logic is shown in Table 1.
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[A0]α0
. . . [An]αn

n

i=0

Ai [¬
n

i=0

Ai]β

⊥
(α0)¬A0

[
n

i=0

¬¬Ai]γ

¬¬A0

⊥
(α1)¬A1

[
n

i=0

¬¬Ai]γ

¬¬A1

⊥
. . .

(αn)
¬An

[
n

i=0

¬¬Ai]γ

¬¬An

⊥
(β)

¬¬
n

i=0

Ai

(γ)
n

i=0

¬¬Ai → ¬¬
n

i=0

Ai

Table 1. Proof of fDNS

Assume that each Ai has Dialectica interpretation |Ai|xi
yi

(although xi and yi
are potentially tuples of functionals, I will write them as single functionals for
simplicity). Given that ¬A is a shorthand for A→⊥, the Dialectica interpreta-
tion of each ¬¬Ai is

|¬¬Ai|Φi
gi
≡ ¬¬|Ai|Φigi

gi(Φigi)

while ¬¬∧n
i=0 Ai has Dialectica interpretation

|¬¬∧n
i=0Ai|xΔ ≡ ¬¬∧n

i=0 |Ai|xiΔ
Δi(xΔ).

By the interpretation of implication, the interpretation of fDNS asks for se-
quences of functionals g and x satisfying

|fDNS|g,xv ≡ ∧n
i=0 ¬¬|Ai|Φi(giv)

gi(v,Φi(giv)) → ¬¬∧n
i=0 |Ai|xiv

Δi(xv)

where v ≡ Δ,Φ. Such functionals can be produced if we can solve (on the
parameters Δ,Φ) the following set of equations

xi
ρi= Φigi

gi(xi)
τi= Δi(x)

(1)

for i ∈ {0, . . . , n}, where the parameters Δ,Φ have been omitted for clarity.
There is an apparent circularity since each xi needs the definition of gi, and
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each gi seems to need the previous definition of all x0, . . . , xn. Consider the case
where n = 2, i.e.

x0 = Φ0g0

x1 = Φ1g1

x2 = Φ2g2

g0(x0) = Δ0(x0, x1, x2)

g1(x1) = Δ1(x0, x1, x2)

g2(x2) = Δ2(x0, x1, x2)

(2)

The analysis of the proof gives us the following solution. First define x2 and g2
assuming that x0, x1 have already been defined:

G2[x0, x1] := λx.Δ2(x0, x1, x)

X2[x0, x1] := Φ2(G2[x0, x1])

Next, we give a parametrised definition of x1 and g1, assuming only that x0 has
already been defined, as

G1[x0] := λx.Δ1(x0, x,X2[x0, x])

X1[x0] := Φ1(G1[x0])

We then define x0 and g0, using the parametrised definitions of x1 and x2, as

g0 := λx.Δ0(x,X1[x], X2[x,X1[x]])

x0 := Φ0g0

Finally, x1, x2 and g1, g2 can be defined, using the definition of x0, as

g1 := G1[x0]

x1 := Φ1g1

g2 := G2[x0, x1]

x2 := Φ2g2

The cunning solution above breaks the apparent circularity of (2) by making use
of the fact that the definition of gi does not require xi to be already defined,
although gi does require all other xj , for j �= i to be defined.

The general algorithm we get from the proof shown in Table 1 (following
Dialectica interpretation) can be succinctly presented as follows.

Let us define a master functional fB (finite bar recursion), which is supposed to
return the suffix 〈xi, . . . , xn〉 assuming we already have an approximate solution
〈x0, . . . , xi−1〉, as follows:

fB(〈x0, . . . , xi−1〉) :=

{ 〈 〉 n < i

X〈x0,...,xi−1〉 ∗ fB(〈x0, . . . , xi−1, X〈x0,...,xi−1〉〉) n ≥ i
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where

G〈x0,...,xi−1〉 := λx.Δi(〈x0, . . . , xi−1, x〉 ∗ fB(〈x0, . . . , xi−1, x〉))
X〈x0,...,xi−1〉 := ΦiG〈x0,...,xi−1〉.

We can then take 〈x0, . . . , xn〉 := fB(〈 〉) and gi := G〈x0,...,xi−1〉. One can show by
induction on i that if fB(〈 〉) = 〈x0, . . . xn〉 then fB(〈x0, . . . , xi−1〉) = 〈xi, . . . , xn〉.
This implies that xi = X〈x0,...,xi−1〉, i.e. xi = Φig〈x0,...,xi−1〉 = Φigi. Moreover,
gi(xi) = Δi(x) since

〈x0, . . . , xi〉 ∗ fB(〈x0, . . . , xi〉) = 〈x0, . . . , xn〉.

2.1 Example

We present here a concrete example of a proof whose Dialectica interpretation
can be solved using the finite bar recursion fB. Let m ∈ S be a shorthand for
Sm = 0, INF(S) be the predicate stating that the set S is infinite, i.e. ∀n∃m ≥
n(m ∈ S), and S̄ denote the set complement of S. We will also use INF0(S, g, n)
as an abbreviation for the quantifier-free part of the Skolemised INF(S), namely
(gn ≥ n) ∧ (gn ∈ S). Consider the following simple PAω-theorem.

Theorem 1. For all r ∈ N and r-partition P of N (namely, P : N → {0, . . . , r})
there exist a P -homogeneous infinite subset H ⊆ N, i.e. ∃k∀n ∈ H(Pn = k).

Let the P -homogeneous sets Hk be defined as n ∈ Hk whenever Pn = k, for
k ≤ r. Therefore, Theorem 1 can be written formally as:

∀r, PN→{0,...,r}∃k ≤ r INF(Hk).

After the negative translation, the Dialectica interpretation asks for witnessing
functionals for the following:

∀r, PN→{0,...,r}, Φ∃g, k ≤ r INF0(Hk, g, Φkg).

We will produce for each k ≤ r a function gk (on parameters r, P and Φ) such
that for some 0 ≤ k ≤ r, we have INF0(Hk, gk, Φkgk). It is easy to see that if
those functions satisfy the following set of equations then we are done:

xk = Φkgk

gk(xk) = max{x0, . . . , xr}
(3)

since, for all 0 ≤ k ≤ r, all gk(Φkgk) would have the same value, namely
max{x0, . . . , xr}. Moreover, gk(xk) ≥ xk. Therefore, once those have been com-
puted, we can produce k and g as

k, g :=

⎧
⎪⎪⎨

⎪⎪⎩

0, g0 if max{x0, . . . , xr} ∈ H0

...

r, gr if max{x0, . . . , xr} ∈ Hr

But (3) is exactly the kind of system of equations that can be solved via finite
bar recursion, as shown above.
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2.2 Spector’s Interpretation

In this section we present Spector’s [6] bar recursive Dialectica interpretation of
DNS. Let |A(n)|xy be the interpretation of A(n). The Dialectica interpretation of
the double negation shift DNS is as follows

|DNS|n,g,fΦ,Ψ ≡ ¬¬|A(n)|Φngg(Φng) → ¬¬|A(Ψf)|f(Ψf)
Δf

where, for clarity, we have omitted the parameters Φ, Ψ of the witnessing func-
tionals n, g, f . Such functionals can be produced if we can solve the following
generalisation of (1)

n
N= Ψf

fn
ρ
= Φng

g(fn) τ= Δf

(4)

Therefore, instead of a finite tuple 〈x1, . . . , xn〉, we must produce an infinite
sequence f . Intuitively, if we were to assume the continuity of Ψ we would only
need to produce a finite initial segment of f . Based on this intuition, Spector
then solves the following (more general) problem

|s| > Ψŝ

si
ρ
= Φigi

gisi
τ= Δŝ

(5)

which asks for a finite sequence s and a sequence of gi, for all i ≤ Ψŝ. Given a
sequence s and a family (gi)i≤Ψŝ satisfying (5), we can take f := ŝ, n := Ψf and
g := gn, in order to solve (4).

Problem (5) is almost the same as (1) of Section 2, except that we do not
know the required length of the sequence s. The only thing we have is a lower
bound Ψŝ on that length which depends on s itself! We must somehow be able to
produce as long a sequence s as it takes to satisfy |s| > Ψŝ. Let B(s) be defined
recursively as follows

B(s) :=

{ 〈 〉 Ψŝ < |s|
Xs ∗ B(s ∗Xs) otherwise

where

gs := λx.Δ(s ∗ x ∗ B(s ∗ x) ∗ (λn.0ρ))

Xs := Φ(|s|, gs)
Lemma 1. Let s := B(〈 〉). The following holds for all 0 ≤ i ≤ |s|
(a) s = (s̄i) ∗ B(s̄i)

(b) Ψ(s, i) ≥ i, if i < |s|
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(c) Ψ(s, i) < i, if i = |s| (i.e. Ψŝ < |s|)
(d) si = Xs̄i, if i < |s|
Proof. Points (b) and (c) follow easily from (a), given that B(s̄i) = 〈 〉 if and
only if Ψ(s, i) < i. Point (d) follows from (a) and (b), simply by the definition
of B. We prove (a) by induction on i. If i = 0 the result is trivial since s̄0 = 〈 〉.
Assume s = (s̄i) ∗ B(s̄i) and i+ 1 ≤ |s|. In this case B(s̄i) cannot be the empty
sequence, i.e. B(s̄i) = Xs̄i ∗B(s̄i∗Xs̄i). By induction hypothesis, si = Xs̄i, which
implies s = (s̄(i+ 1)) ∗ B(s̄(i+ 1)). �

Given the definition of X(·) and g(·) above, points (c) and (d) of Lemma 1 imply
that s := B(〈 〉) and gi := gs̄i solve (5), i.e.

si = Φigs̄i ∧ gs̄i(si) = Δŝ

for all i ≤ Ψŝ. Spector stated the following general recursion schema, so-called
bar recursion

BR(Ψ,Δ,Φ, sρ
∗
) τ=

{
Φs if Ψŝ < |s|
Δ(s, λxρ.BR(Ψ,Δ,Φ, s ∗ x)) otherwise

where ρ∗ is a finite sequence of objects of type ρ and the types of Ψ,Δ and Φ
can be inferred from the context.

3 Bar Recursion in Use

In this section we present two examples of how bar recursion can be used in the
computational interpretation of ∀∃-theorem in classical analysis. In each case we
will not go into details of how the bar recursive programs have been extracted
from the proof. Our focus is on the characteristics of the final programs.

3.1 Example 1: no injection from N → N to N

Our first example is a simple theorem which states that there can not be an
injection from N → N to N. We analyse its straightforward classical proof.

Theorem 2. ∀Ψ2∃α1, β1(α �= β ∧ Ψα = Ψβ).

Proof. From the axiom ∀Ψ, k(∃β(k = Ψβ) → ∃α(k = Ψα)) we get by classical
logic

∀Ψ, k∃α(∃β(k = Ψβ) → k = Ψα).

By countable choice cAC1 we can prove the existence of a functional f satisfying

∀Ψ∃f∀k(∃β(k = Ψβ) → k = Ψ(fk)),

i.e. f is an enumeration of functions such that Ψ(fk) = k, whenever k is in the
image of Ψ . Let δf := λk.(f(k)(k) + 1) and k := Ψδf . We have
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∀Ψ∃f(∃β(Ψδf = Ψβ) → Ψδf = Ψ(f(Ψδf ))).

The premise being provable we get

∀Ψ∃f(δf �= f(Ψδf) ∧ Ψδf = Ψ(f(Ψδf ))),

since δf �= f(Ψδf ) (they differ at point Ψδf). So we get the desired result for
α := δf and β := f(Ψδf ). �

The reader is invited to reflect upon a general effective procedure for computing
α and β given the functional Ψ . Obviously, if we assume that Ψ is continuous
then we can simply consider the point of continuity n of Ψ on the constant
zero function 01. Any two distinct functions which coincide up to n will have the
same value for Ψ . On the other hand, if Ψ is not continuous, but is assumed to be
majorizable, then we can again consider the point of weak continuity (see Lemma
5 of [2]) n of Ψ on the constant zero function. By the pigeon hole principle, any
set of n+ 1 distinct functions which coincide with 01 up to n will have two with
the same value. We present, however, a bar recursive solution which does not
rely on the specific properties of the model for solving the problem.

The proof of Theorem 2 presented above can be formalised in the system
PAω + cAC. A bar recursive analysis of the negative translation of the proof
(which we omit here for lack of space) will lead us to consider the finite sequence
t := B(〈 〉), where

B(s)
1∗
:=

⎧
⎪⎪⎨

⎪⎪⎩

〈 〉 Ψδŝ < |s|
δr̂ ∗ B(s ∗ δr̂) Ψδr̂ = |s|
01 ∗ B(s ∗ 01) otherwise,

and r := s ∗ 01 ∗ B(s ∗ 01). Intuitively, we wish t := B(〈 〉) to be an enumeration
of functions tk such that (+) Ψtk = k, whenever k is in the image of Ψ , i.e.

∀k < |t|(∃β(Ψβ = k) → Ψtk = k).

Obviously, we cannot do that effectively for all indices of t. The trick is to test
at each stage k whether (+) holds for the diagonal function δr̂, i.e. Ψδr̂ = k?
If that is the case then we add that function in current position k. If, however,
that is not the case, we simply make sure that the whole sequence t equals r, so
that Ψδt̂ �= k. Therefore, the enumeration t will be such that for each k �= Ψδt̂
we have Ψtk = k. Let n := Ψδt̂. By the stopping condition we have n < |t|. It
follows that Ψtn = n, which gives us

Ψδf = Ψ(f(Ψδf ))

taking f := t̂.

3.2 Example 2: update procedures

In [1], Avigad shows that the 1-consistency of arithmetic is equivalent to the
existence of solutions for a particular class of recursive equations, so-called update
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equations. In this second example we show how bar recursion can be used to
compute the solution of one single update equation. The bar recursive program
we present has been extracted from the proof of Lemma 2.1 in [1] (presented
below).

In the following σ and τ will denote finite partial functions from N to N,
i.e. partial functions which are defined on a finite domain. A partial function
which is everywhere undefined is denoted by 〈 〉, whereas a partial function
defined only at position k (with value n) is denoted by 〈k, n〉. The finite partial
functions can be viewed as finite sequences of pairs of natural numbers. For a
given partial function σ, we define σ̂ as the total function which is obtained from
σ by defining the output to be 0 (zero) wherever σ is undefined. We say that τ
extends σ, written as σ � τ , if τ is defined wherever σ is defined, and on those
points they coincide in value. We denote the domain of σ as dom(σ). For a finite
partial function σ and k, n ∈ N we define the finite partial function σ ⊕ 〈k, n〉
which maps k to n and agrees with σ otherwise, i.e.

(σ ⊕ 〈k, n〉)(i) :=

⎧
⎪⎪⎨

⎪⎪⎩

n i = k

σ(i) i �= k ∧ i ∈ dom(σ)

↑ otherwise.

Let Ψ : (N → N) → N be a continuous functional with respect to the standard
topology on the Baire space. Let Φ be also of type (N → N) → N. We say that the
pair 〈Ψ, Φ〉 forms a unary update procedure if whenever τ extends σ ⊕ 〈Ψσ̂, Φσ̂〉
and Ψσ̂ = Ψτ̂ then Φσ̂ = Φτ̂ .

Theorem 3 (Lemma 2.1, [1]). Every unary update procedure has a finite fixed
point, i.e.

∀Ψ, Φ(Update(Ψ, Φ) → ∃σ(σ = σ ⊕ 〈Ψσ̂, Φσ̂〉)).
Proof. Define the sequence of partial functions σ(0), σ(1), σ(2), . . . as

σ(0) := 〈 〉
σ(i+1) := σ(i) ⊕ 〈Ψσ̂(i), Φσ̂(i)〉.

The fact that 〈Ψ, Φ〉 is an update procedure implies that σ(0) � σ(1) � σ(2) . . ..
Let g be the partial function extending all the σ(i), that is g :=

⋃
i∈N σ(i). The

continuity of Ψ implies that for some i we have

Ψĝ = Ψσ̂(i) = Ψσ̂(i+1) = . . . .

Since 〈Ψ, Φ〉 forms an update pair we get

σ(i+1) = σ(i) ⊕ 〈Ψσ̂(i), Φσ̂(i)〉 = σ(i+1) ⊕ 〈Ψσ̂(i+1), Φσ̂(i+1)〉.
So, σ(i+1) is the desired fixed point. �

Comprehension is used in the proof above in order to obtain the function
ĝ as
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ĝ(k) :=

{
n ∃i(〈k, n〉 ∈ σ(i))

0 otherwise.

If we could effectively build a functional f satisfying

∀k(∃i(k ∈ dom(σ(i))) → (k ∈ dom(σ(fk))))

we could produce ĝ as

gf (k) :=

{
σ(fk)(k) k ∈ dom(σ(fk))

0 otherwise

since (the oracle) f tells us at which stages i = fk each k is guaranteed to
be defined, i.e. k ∈ dom(σ(i)), if k does eventually become defined. The point of
continuity n of Ψ on g guarantees that Ψ only looks at positions k ≤ n. Therefore,
the fixed point is surely obtained at point max{fk : k ≤ n}. Unfortunately, no
such functional f can be built effectively, uniformly on all parameters. What we
can build using bar recursion is an approximation for f , which as we will see,
is sufficient for computing the position where the fixed point is attained. Define
(uniformly on parameters ψ, φ) the following bar recursive functional:

Bψ,φ(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

〈 〉 ψŝ < |s|
(φr̂) ∗ Bψ,φ(s ∗ (φr̂)) |s| ∈ dom(σ(φr̂))

01 ∗ Bψ,φ(s ∗ 01) otherwise

where r := s ∗ 01 ∗ Bψ,φ(s ∗ 01). In the definition above, σ(i) denotes the i-th
element of the inductive sequence used in the proof of Theorem 3. Intuitively,
taking t := Bψ,φ(〈 〉), the procedure above makes sure that k ∈ dom(σ(tk)),
whenever k ∈ dom(σ(φt̂)), i.e.

(+) ∀k < |t|(k ∈ dom(σ(φt̂)) → k ∈ dom(σ(tk)))

Finally, define

φf := max{fk : k ≤ ωΨ (gf )}+ 1

ψf := ωΨ (gf)

where ωΨ is the modulus of pointwise continuity of Ψ and gf has been defined
above. Notice that ωΨ is part of the witnessing information for the assumption
that Ψ is continuity (see definition of Update(Ψ, Φ)), and therefore, it is one of
the “inputs” for our effective procedure.

Since ωΨ (gf ) tells us what initial segment of gf is necessary to compute Ψgf ,
the functional φf computes (using f as an oracle) how far in the iteration
{σ(i)}i∈N we need to go to get that much of initial segment. Let t := Bψ,φ(〈 〉)
and n := φt̂. Since ψt̂ < |t|, by (+), we have

∀k ≤ ωΨ (gt̂)(k ∈ dom(σ(n)) → k ∈ dom(σ(tk))).
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Moreover, by the definition of φ we have that n = φt̂ > tk, for all k ≤ ωΨ (gt̂).
This implies that all positions in the domain of σ(n) have been defined before,
since 〈Ψ, Φ〉 is assumed to form an update procedure. Therefore, by the continuity
of Ψ , it must be the case that Ψ(σ̂(n)) ∈ dom(σ(n)), and σ(n−1) = σ(n).
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Abstract. Let us call an approximator of a complex number α any
sequence γ0, γ1, γ2, . . . of rational complex numbers such that

|γt − α| ≤ 1
t + 1

, t = 0, 1, 2, . . .

Denoting by N the set of the natural numbers, we shall call a representa-
tion of α any 6-tuple of functions f1, f2, f3, f4, f5, f6 from N into N such
that the sequence γ0, γ1, γ2, . . . defined by

γt =
f1(t) − f2(t)

f3(t) + 1
+

f4(t) − f5(t)
f6(t) + 1

i, t = 0, 1, 2, . . . ,

is an approximator of α. For any representations of the members of a
finite sequence of complex numbers, the concatenation of these represen-
tations will be called a representation of the sequence in question (thus
the representations of the sequence have a length equal to 6 times the
length of the sequence itself). By adapting a proof given by P. C. Rosen-
bloom we prove the following refinement of the fundamental theorem of
algebra: for any positive integer N there is a 6-tuple of computable op-
erators belonging to the second Grzegorczyk class and transforming any
representation of any sequence α0, α1, . . . , αN−1 of N complex numbers
into the components of some representation of some root of the corre-
sponding polynomial P (z) = zN + αN−1z

N−1 + · · · + α1z + α0.

Keywords: Fundamental theorem of algebra, Rosenbloom’s proof, com-
putable analysis, computable operator, second Grzegorczyk class.

1 Introduction

In the paper [4] a proof is given of the fact that for any positive integer N and
any complex numbers α0, α1, . . . , αN−1 the polynomial

P (z) = zN + αN−1z
N−1 + · · ·+ α1z + α0 (1)

has at least a root in the complex plane, and the proof is constructive in some
sense. Making use of the notion of approximator considered in the abstract,
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c© Springer-Verlag Berlin Heidelberg 2006
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we may describe the constructive character of the proof as follows: the proof
shows implicitly (after some small changes) that for any positive integer N
there is a computable procedure for transforming any approximators of any
α0, α1, . . . , αN−1 into some approximator of some root of the corresponding
polynomial P (z).1 Clearly the following more rigorous formulation of this can
be given, where F consists of all total mappings of N into N: for any positive
integer N there are recursive operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 with domain F 6N

such that whenever an element f̄ of F 6N is a representation of some N -tuple
α0, α1, . . . , αN−1 of complex numbers, then Γk(f̄), k = 1, 2, 3, 4, 5, 6, belong to F
and form a representation of some root of the corresponding polynomial P (z).2

The present paper is devoted to the fact that one can replace the words “re-
cursive operators” in the above formulation by “computable operators belonging
to the second Grzegorczyk class” (the fact was established in the first author’s
master thesis [3] written under the supervision of the second author).

2 The Notion of Computable Operator of the Second
Grzegorczyk Class

For any natural number k let Fk be the set of all total k-argument functions in the
set N (thus F1 = F ). For any natural numbers n and k we shall consider operators
acting from Fn into Fk. The ones among them that are computable operators
of the second Grzegorczyk class will be called E2-computable operators for short.
The class of these operators can be defined by means of a natural extension of a
definition of the class of functions E2 from the hierarchy introduced in [1] (such a
step would be similar to the extension in [2] of the definition of E3 by introducing
the notion of elementary recursive functional). Roughly speaking, we can use the
same initial functions and the same ways of construction of new functions as in
the definition of E2, except that we must add to the initial functions also the
function arguments of the operator and to consider only constructions that are
uniform with respect to these arguments. Skipping the details of the definition3,
we note the following properties of the E2-computable operators, where f̄ is used
as an abbreviation for the n-tuple f1, . . . , fn of functions from F .

1. For any k-argument function g belonging to the class E2 the mapping λf̄ .g
of Fn into Fk is an E2-computable operator.

2. The mappings λf̄ .fj, j = 1, . . . , n, of Fn into F are E2-computable
operators.

1 By certain continuity reasons, a dependence of this root not only on the coefficients
α0, α1, . . . , αN−1, but also on the choice of their approximators, cannot be excluded
in the case of N > 1.

2 This statement holds also for a more usual notion of approximator based on the
inequality |γt − α| ≤ 2−t instead of the inequality |γt − α| ≤ 1

t+1
(cf. for example

the approach to computable analysis by Cauchy representations in [6]). However,
the main result of the present paper would be not valid in that case, as it can be
seen by means of an easy application of Liouville’s approximation theorem.

3 See, however, the remark on the next page.
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3. Whenever Γ0 is an E2-computable operator from Fn into Fm, Γ1, . . . , Γm are
E2-computable operators from Fn into Fk, and Γ is the mapping of Fn into
Fk defined by

Γ (f̄)(x1, . . . , xk) = Γ0(f̄)(Γ1(f̄)(x1, . . . , xk), . . . , Γm(f̄)(x1, . . . , xk)),

then Γ is also an E2-computable operator.

4. Whenever Γ0 is an E2-computable operator from Fn into Fm, Γ1 is an E2-
computable operator from Fn into Fm+2, Γ2 is an E2-computable operator
from Fn into Fm+1, the mapping Γ of Fn into Fm+1 is defined by

Γ (f̄)(0, x1, . . . , xm) = Γ0(f̄)(x1, . . . , xm),
Γ (f̄)(t+ 1, x1, . . . , xm) = Γ1(f̄)(Γ (f̄)(t, x1, . . . , xm), t, x1, . . . , xm),

and for all f̄ , t, x1, . . . , xm the inequality

Γ (f̄)(t, x1, . . . , xm) ≤ Γ2(f̄)(t, x1, . . . , xm)

holds, then Γ is also an E2-computable operator.

5. Whenever Γ0 is an E2-computable operator from Fn into Fm+1, and the
mapping Γ of Fn into Fm+1 is defined by

Γ (f̄)(t, x1, . . . , xm) = min { s | s = t ∨ Γ0(f̄)(s, x1, . . . , xm) = 0 } ,

then Γ is also an E2-computable operator.

6. Whenever Γ0 is an E2-computable operator from Fm into Fk, Γ1, . . . , Γm
are E2-computable operators from Fn into Fl+1, and Γ is the mapping of
Fn into Fk+l defined by

Γ (f̄)(x1, . . . , xk, y1, . . . , yl) =

Γ0(λt.Γ1(f̄)(y1, . . . , yl, t), . . . , λt.Γm(f̄)(y1, . . . , yl, t))(x1, . . . , xk),

then Γ is also an E2-computable operator.

7. If Γ is an E2-computable operator from Fn into Fk, and the functions
f1, . . . , fn belong to Grzegorczyk class Em, where m ≥ 2, then the function
Γ (f̄) also belongs to Em.

Remark. The properties 1–4 can be used as the clauses of an inductive definition
of the notion of E2-computable operator. Moreover, in such a case one can reduce
the property 1 to its instances when g is the function λxy. (x + 1) · (y + 1) or
some of the functions λx1 . . . xk. xj , j = 1, . . . , k. In order to eliminate the
not effectively verifiable domination requirement in the clause corresponding to
property 4, one could omit this requirement and replace the right-hand side of
the second equality by the expression

min{Γ1(f̄)(Γ (f̄)(t, x1, . . . , xm), t, x1, . . . , xm), Γ2(f̄)(t, x1, . . . , xm)}.
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3 E2-Computable Functions in the Set of the Complex
Numbers

Let C be the set of the complex numbers. A function ϕ from CN into C will be
called E2-computable if six E2-computable operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from
F 6N into F exist such that, whenever an element f̄ of F 6N is a representation
of some N -tuple ζ1, . . . , ζN of complex numbers, then the corresponding 6-tuple
Γ1(f̄), Γ2(f̄), Γ3(f̄), Γ4(f̄), Γ5(f̄), Γ6(f̄) is a representation of the complex num-
ber ϕ(ζ1, . . . , ζN ). The following properties are evident or easily provable.4

1. All functions ϕ from CN into C that have the form ϕ(z1, . . . , zN) = zj with
j ∈ {1, . . . , N} are E2-computable.

2. For any rational complex number γ the constant function ϕ(z1, . . . , zN) = γ
is E2-computable.

3. The functions λz. z̄, λz1z2. z1 + z2 and λz1z2. z1 · z2 are E2-computable.
4. If ϕ is an E2-computable function from Cm into C, and ψ1, . . . , ψm are E2-

computable function from CN into C then the function θ defined by

θ(z1, . . . , zN) = ϕ(ψ1(z1, . . . , zN), . . . , ψm(z1, . . . , zN))

is also E2-computable.
5. The real-valued function λz. |z|2 is E2-computable.
6. For any given positive integer N , the value of a polynomial P (z) of the

form (1) as well as the corresponding value of |P (z)|2 are E2-computable
functions of the coefficients α0, α1, . . . , αN−1 and the argument z.

7. For any given positive integer N , if P (z) is an arbitrary polynomial of the
form (1), and α is an arbitrary complex number, then the coefficients of the
polynomial that is the quotient of P (z)− P (α) and z −α are E2-computable
functions of α0, α1, . . . , αN−1 and α.

8. If ϕ is an E2-computable function from CN+1 into C, then there are E2-
computable operators Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F7 such that, when-
ever an element f̄ of F 6N is a representation of some N -tuple ζ1, . . . , ζN of
complex numbers, then for any natural numbers y1, y2, y3, y4, y5, y6 the 6-
tuple of the functions

λu. Γj(f̄)(u, y1, y2, y3, y4, y5, y6), j = 1, 2, 3, 4, 5, 6,

is a representation of the complex number

ϕ

(

ζ1, . . . , ζN ,
y1 − y2

y3 + 1
+
y4 − y5

y6 + 1
i

)

.

4 The property 5 can be derived from the properties 3, 4 and the equality |z|2 = z · z̄.
The properties 3, 4 and 5 imply the property 6, and it implies the property 7. The
proof of the property 8 makes use of property 6 from section 2 (with k = 1, l = 6)
and of the fact that for any natural numbers y1, y2, y3, y4, y5, y6 the 6-tuple of the
constant functions λt. y1, λt. y2, λt. y3, λt. y4, λt. y5, λt. y6 is a representation of the
rational complex number

y1 − y2

y3 + 1
+

y4 − y5

y6 + 1
i.
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Remark. Except for the case of N = 1, there is no E2-computable function ϕ
from CN into C such that for any complex numbers α0, α1, . . . , αN−1 the number
ϕ(α0, α1, . . . , αN−1) is a root of the corresponding polynomial (1). This follows
from the non-existence of a continuous function with such a property.

4 On Rosenbloom’s Proof of the Fundamental Theorem
of Algebra

P. C. Rosenbloom’s proof in [4] of the fundamental theorem of algebra makes
use of an analogue of Cauchy’s theorem from the theory of analytic functions.
In its complete form the result obtained in the proof of this analogue can be
formulated as follows (see Lemma 2, Theorems 1, 2 and Corollary 1 in [4]).

Theorem R. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,
P (z) be the corresponding polynomial (1), and ε be a positive real number. If

A = max{|α0|, |α1|, . . . , |αN−1|, 1}, γ =
(

N + 1
[(N + 1)/2]

)

,

a is a real number not less than 5NA, K = 2(3N/2)+6γ3A3a3N+3, and n is an
integer greater than K/ε3, then

∣
∣
∣
∣P

(
(u+ vi)a

n

)∣
∣
∣
∣ < ε

for some integers u and v with |u| ≤ n, |v| ≤ n.
The further presentation in [4] goes through the following statement (its for-

mulation here coincides with the original one up to inessential details).

Lemma 3. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,
P (z) be the corresponding polynomial (1), and ε be a positive real number less
than 1. Then we can find points z1, . . . , zN such that

|P (zj)| < ε, j = 1, . . . , N,

and such that if |P (z)| < δ, where ε ≤ δ < 1, then

min
1≤j≤N

|zj − z| < 2δ1/2
N

.

The proof of the lemma in the paper (after the elimination of a small prob-
lem5) can be adapted to the needs of the present paper. However, a strengthen-
ing of the lemma is possible that is more convenient for us, namely by adding
5 The problem is in the induction used for actually proving a strengthening of

the lemma with the factor 21−1/2
N

in place of 2 in the last inequality. Namely
the inequality (2δ)1/2 < 1 is needed for being able to use the inductive hypothesis
at the final step, but the assumption δ < 1 is not sufficient for the truth of this
inequality. Fortunately, as the first author observed, this problem can be eliminated
by replacing the inequality δ < 1 in the formulation of the lemma with the inequality
δ < 2.
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the words “with rational coordinates” after the phrase “we can find points
z1, . . . , zN”. We shall prove constructively even the slightly stronger statement
with 2δ1/2

N−1

instead of 2δ1/2
N

.

Lemma 3′. Let N be a positive integer, α0, α1, . . . , αN−1 be complex numbers,
P (z) be the corresponding polynomial (1), and ε be a positive real number less
than 1. Then we can find rational complex numbers z1, . . . , zN such that
|P (zj)|<ε, j = 1, . . . , N , and such that if |P (z)| < δ, where ε ≤ δ < 1, then

min
1≤j≤N

|zj − z| < 2δ1/2
N−1

.

Proof. Our reasoning will be very close to the proof of Lemma 3 in [4]. We see
as there that all complex numbers z with |P (z)| ≤ 1 satisfy the inequality

|z| < 1 +N max
0≤k<N

|αk|.

If N = 1 then we take a rational complex number z1 such that |z1 + α0| < ε.
Clearly |P (z1)| < ε, and if |P (z)| < δ, where ε ≤ δ < 1, then

|z1 − z| ≤ |z1 + α0|+ |z + α0| < ε+ δ ≤ 2δ = 2δ1/2
N−1

Suppose now N > 1, and the statement of Lemma 3′ is true for N − 1. Let (as
in the original proof) ε1 = ε/C, where C = 3 +NA+ (N − 1)NA(1 +NA)N−1,
and A = max{|α0|, |α1|, . . . , |αN−1|, 1}. Clearly ε1 < ε. By Theorem R (applied
with some rational number a) we find a rational complex number z1 such that
|P (z1)| < ε1, hence |P (z1)| < ε < 1, and therefore |z1| < 1 +NA. Now

P (z) = P (z1) + (z − z1)P1(z),

where

P1(z) =
N−1∑

m=0

βmz
m, |βm| =

∣
∣
∣
∣
∣

N∑

k=m+1

αkz
k−m−1
1

∣
∣
∣
∣
∣
< NA(1 +NA)N−1.

By the inductive assumption we can find rational complex numbers z2, . . . , zN
such that |P1(zj)| < ε1, j = 2, . . . , N , and

min
2≤j≤N

|zj − z| < 2δ1/2
N−2

,

whenever |P1(z)| < δ and ε1 ≤ δ < 1. If j is any of the numbers 2, . . . , N , then
|P1(zj)| < 1, hence |zj | < 1 + (N − 1)NA(1 +NA)N−1, and therefore

|P (zj)| ≤ |P (z1)|+ (|zj |+ |z1|)|P1(zj)| < ε1 + (|zj |+ |z1|)ε1 < Cε1 = ε.

Now let |P (z)| < δ, where ε ≤ δ < 1. Then

|z1 − z||P1(z)| = |P (z1)− P (z)| ≤ |P (z1)|+ |P (z)| < ε+ δ ≤ 2δ ≤ 2δ1/2
N−1

δ1/2,
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hence |z1− z| < 2δ1/2
N−1

or |P1(z)| < δ1/2. In the case of |P1(z)| < δ1/2 we have
the inequality

min
2≤j≤N

|zj − z| < 2(δ1/2)1/2
N−2

= 2δ1/2
N−1

since ε1 < δ < δ1/2 < 1. Therefore in both cases

min
1≤j≤N

|zj − z| < 2δ1/2
N−1

.  !

The concluding part of Rosenbloom’s proof is in his Theorem 3. Making use of
Lemma 3′ instead of Lemma 3, we can strengthen Theorem 3 by constructing
a sequence of rational complex numbers converging to a root of the polynomial.
In the original proof Lemma 3 is applied with values of ε of the form 2−n2N

,
n = 1, 2, . . . , and this leads to the inequality |zn+1−zn| < 21−n for the members
of the constructed sequence z1, z2, . . . Of course this can be done also through
Lemma 3′, and the rate of the convergence is quite good. Unfortunately the ex-
ponential dependence of 2−n2N

on n is an obstacle to realize such a construction
of the sequence by means of E2-computable operators. Therefore it is appropri-
ate to change the construction. Namely an inequality |zn+1 − zn| < (n+ 1)−2

would still give an admissible rate of convergence, and this inequality can be
achieved by using values of ε of the form 2−2N−1

(n+ 1)−2N

, n = 1, 2, . . . (since
these values are used also as values of δ when n + 1 is considered instead of n,
and we have 2δ1/2

N−1

= (n+ 1)−2 for δ = 2−2N−1

(n+ 1)−2N

).

5 Construction of the Needed E2-Computable Operators

We shall first formulate three theorems, and then we shall sketch their proofs.
The first two of these theorems (corresponding to Theorem R and to Lemma 3′

from the previous section) describe the major preliminary steps in the construc-
tion of the E2-computable operators needed to get the promised refinement of
the fundamental theorem of algebra. The third theorem is the refinement itself.

Theorem 1. For any positive integer N there are E2-computable operators
Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F such that, whenever an element f̄ of F 6N

is a representation of an N -tuple α0, α1, . . . , αN−1 of complex numbers, and P (z)
is the polynomial (1) corresponding to this N -tuple, then
∣
∣
∣
∣P

(
Γ1(f̄)(t)− Γ2(f̄)(t)

Γ3(f̄)(t) + 1
+
Γ4(f̄)(t) − Γ5(f̄)(t)

Γ6(f̄)(t) + 1
i

)∣
∣
∣
∣ <

1
t+ 1

, t = 0, 1, 2, . . .

Theorem 2. For any positive integer N there are E2-computable operators
Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from F 6N into F such that, when-
ever an element f̄ of F 6N is a representation of an N -tuple α0, α1, . . . , αN−1 of
complex numbers, and P (z) is the polynomial (1) corresponding to this N -tuple,
then for any natural number t and

zj =
Γ1j(f̄)(t)− Γ2j(f̄)(t)

Γ3j(f̄)(t) + 1
+
Γ4j(f̄)(t)− Γ5j(f̄)(t)

Γ6j(f̄)(t) + 1
i , j = 1, 2, . . . , N,
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the inequalities |P (zj)| < (t+ 1)−1 , j = 1, 2, . . . , N , hold, and

min
1≤j≤N

|zj − z| < 2δ1/2
N−1

for all δ and z satisfying the inequalities (t+ 1)−1 ≤ δ < 1, |P (z)| < δ.

Theorem 3. For any positive integer N there are E2-computable operators
Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 from F 6N into F such that, whenever an element f̄ of F 6N

is a representation of an N -tuple α0, α1, . . . , αN−1 of complex numbers, and
P (z) is the polynomial (1) corresponding to this N -tuple, then the 6-tuple of
the functions Γ1(f̄), Γ2(f̄), Γ3(f̄), Γ4(f̄), Γ5(f̄), Γ6(f̄) is a representation of some
root of P (z).

The proof of Theorem 1 is based on the statement of Theorem R and does not
use any details from its proof. Let N be a positive integer. One easily constructs
E2-computable operators Δ1 and Δ2 from F 6N into F0 such that, whenever an
element f̄ of F 6N is a representation of an N -tuple α0, α1, . . . , αN−1 of com-
plex numbers, and P (z) is the polynomial (1) corresponding to this N -tuple,
the natural number Δ1(f̄) is not less than the number 5NA from Theorem R
for the given numbers N,α0, α1, . . . , αN−1, and the natural number Δ2(f̄) is
not less than the number K for the given numbers N,α0, α1, . . . , αN−1 and for
a = Δ1(f̄). In this situation, if t is an arbitrary natural number then an appli-
cation of Theorem R with ε = 1

2(t+1) , a = Δ1(f̄), n = 8(t + 1)3Δ2(f̄) + 1 and
with the substitution u = r − n, v = s− n allows concluding that

∣
∣
∣
∣P

(
rΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
+
sΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
i

)∣
∣
∣
∣

2

<
1

4(t+ 1)2
(2)

for some natural numbers r and s not greater than Δ′
2(f̄)(t), where Δ′

1 and Δ′
2

are the mappings of F 6N into F defined by

Δ′
2(f̄)(t) = 8(t+ 1)3Δ2(f̄), Δ′

1(f̄)(t) = (Δ′
2(f̄)(t) + 1)Δ1(f̄)

(clearly Δ′
1 and Δ′

2 are also E2-computable operators). By the properties 6 and 8
from Section 3, there are E2-computable operators Γ and Δ from F 6N to F4
such that, whenever an element f̄ of F 6N is a representation of an N -tuple
α0, α1, . . . , αN−1 of complex numbers, and P (z) is the polynomial (1) corre-
sponding to this N -tuple, then the absolute value of the difference

Γ (f̄)(u, r, s, t)
Δ(f̄)(u, r, s, t) + 1

−
∣
∣
∣
∣P

(
rΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
+
sΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
i

)∣
∣
∣
∣

2

is not greater than (u + 1)−1 for any r, s, t, u in N. With u = 4(t + 1)2 − 1 we
get that

Γ (f̄)(4(t+ 1)2 − 1, r, s, t)
Δ(f̄)(4(t+ 1)2 − 1, r, s, t)) + 1

<
1

2(t+ 1)2
(3)
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for all natural numbers r, s, t satisfying the inequality (2), and
∣
∣
∣
∣P

(
rΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
+
sΔ1(f̄)−Δ′

1(f̄)(t)
Δ′

2(f̄)(t) + 1
i

)∣
∣
∣
∣

2

<
3

4(t+ 1)2
<

1
(t+ 1)2

for any r, s, t in N that satisfy (3). It is a routine work (making use of the
property 5 from Section 2) to construct two E2-computable operators Δ3 and Δ4
from F 6N to F such that Δ3(f̄) and Δ4(f̄) transform any natural number t into
natural numbers r and s not greater than Δ′

2(f̄)(t) and satisfying (3), whenever
such r and s exist. Then Theorem 1 will hold with Γ2 = Γ5 = Δ′

1, Γ3 = Γ6 = Δ′
2

and Γ1(f̄)(t) = Δ3(f̄)(t)Δ1(f̄), Γ4(f̄)(t) = Δ4(f̄)(t)Δ1(f̄) .
The proof of Theorem 2 is actually an operator refinement of the one of

Lemma 3′ and follows closely it. In the case of N = 1 we, roughly speaking, use
rational approximations of the number −α0 that can be constructed by means of
the representation f̄ of α0. For the inductive step, we suppose the existence of the
needed 6(N − 1)-tuple of E2-computable operators for the case of polynomials
of degree N − 1, and use them to construct the needed 6N -tuple of ones for
polynomials of degree N , making use also of the E2-computable operators from
Theorem 1 for this case and of the properties 7 and 8 from Section 3.

Of course the operators Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from The-
orem 2 are used in the proof of Theorem 3. For any element f̄ of F 6N and any
natural number n we set

γ f̄n,j =
Γ1j(f̄)(tn)− Γ2j(f̄)(tn)

Γ3j(f̄)(tn) + 1
+
Γ4j(f̄)(tn)− Γ5j(f̄)(tn)

Γ6j(f̄)(tn) + 1
i, j = 1, 2, . . . N, (4)

where tn = 22N−1

(n + 1)2
N − 1. Then, for any element f̄ of F 6N , we define

a sequence jf̄0 , j
f̄
1 , j

f̄
2 , . . . of integers from the set {1, 2, . . . , N} in the following

recursive way: we set jf̄0 = 1 and, whenever jf̄n is already defined, we set jf̄n+1 to

be the first j ∈ {1, 2, . . . , N} such that j = N or
∣
∣
∣γ
f̄
n+1,j − γ f̄

n,jf̄
n

∣
∣
∣ < (n + 1)−2.

Finally, we set

Γk(f̄)(n) = Γ
kjf̄

n
(f̄)(tn), k = 1, 2, 3, 4, 5, 6, n = 0, 1, 2, . . . (5)

The E2-computability of the constructed operators is easily verifiable, thus it
remains only to prove the other property formulated in Theorem 3. Let an ele-
ment f̄ of F 6N be a representation of an N -tuple α0, α1, . . . , αN−1 of complex
numbers, and P (z) be the polynomial (1) corresponding to this N -tuple. Then
for any natural number n the inequalities |P (γ f̄n,j)| < (tn+1)−1 , j = 1, 2, . . . , N ,
hold, and whenever |P (z)| < δ, where (tn+1 + 1)−1 ≤ δ < 1, then

min
1≤j≤N

|γ f̄n+1,j − z| < 2δ1/2
N−1

.

By the first part of this statement limn→∞ P (γ f̄
n,jf̄

n

) = 0. Applying the second one

with z = γ f̄
n,jf̄

n

, δ = (tn+1)−1, we see that |γ f̄
n+1,jf̄

n+1

− γ f̄
n,jf̄

n

| < (n+ 1)−2, since
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2δ1/2
N−1

= (n+ 1)−2 for this value of δ. To complete the proof, it is sufficient to
use the equality (4) with j = jf̄n , as well as the equality (5) and the inequality
(n+ 1)−2 + (n+ 2)−2 + · · ·+ (n+ p)−2 ≤ (n+ 1)−1.

6 Some Corollaries from Theorem 3

By induction on N one easily proves

Corollary 1. For any positive integer N there are E2-computable operators
Γ1j , Γ2j , Γ3j , Γ4j , Γ5j , Γ6j , j = 1, 2, . . . , N , from F 6N into F such that, whenever
an element f̄ of F 6N is a representation of an N -tuple of complex numbers
α0, α1, . . . , αN−1, and P (z) is the polynomial (1) corresponding to this N -tuple,
then the N -tuples Γ1j(f̄), Γ2j(f̄), Γ3j(f̄), Γ4j(f̄), Γ5j(f̄), Γ6j(f̄), j = 1, 2, . . . , N ,
are representations of some complex numbers z1, z2, . . . , zN with the property
that for all z the equality P (z) = (z − z1)(z − z2) · · · (z − zN) holds.

This implies the following statement (derivable also from Theorem 2.5 of [5]).

Corollary 2. If an N -tuple of complex numbers α0, α1, . . . , αN−1 has a repre-
sentation consisting of functions from Grzegorczyk class Em, where m ≥ 2, then
any root of the corresponding polynomial (1) has a representation consisting of
functions from the same class Em.

Remark. Neither of the indicated two proofs of Corollary 2 yields an interpre-
tation of the existential statement in the conclusion via recursive operators using
as input an Em-representation of the sequence α0, α1, . . . , αN−1 and an arbitrary
representation of the considered root. The existence of such operators (even of
E2-computable ones) was additionally shown by the second author.
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Abstract. We provide an introduction to Program Algebra (PGA, an
algebraic approach to the modeling of sequential programming) and
to Thread Algebra (TA). PGA is used as a basis for several low- and
higher-level programming languages. As an example we consider a sim-
ple language with goto’s. Threads in TA model the execution of pro-
grams. Threads may be composed with services which model (part of)
the execution environment, such as a stack. Finally, we discuss briefly
the expressiveness of PGA and allude to current work on multithreading
and security hazard risk assessment.

Keywords: PGA, Program Algebra, Thread Algebra.

1 Introduction

In this paper we report on a recent line of programming research conducted
at the University of Amsterdam. This research comprises program algebra and
thread algebra. A first major publication about this project is [7] (2002).

Program algebra (PGA, for ProGram Algebra) provides a rigid framework for
the understanding of imperative sequential programming. Starting point is the
perception of a program object as a possibly infinite sequence of primitive instruc-
tions. PGA programs are composed from primitive instructions and two opera-
tors: sequential composition and iteration. Based on this, a family of programming
languages is built, containing well-known constructs such as labels and goto’s,
conditionals and while-loops, etc. These languages are defined with a projection
to PGA which defines the program object described by a program expression.

Execution of a program object is single-pass: the instructions are visited in or-
der and are dropped after having been executed. Execution of a basic instruction
or test is interpreted as a request to the execution environment: the environment
processes the request and replies with a Boolean value. This has lead to the mod-
eling of the behavior of program objects as threads, i.e., as elements of Thread
Algebra (TA). The primary operation of TA is postconditional composition:

P � a�Q

stands for the execution of action a which is followed by execution of P if true is
returned and by execution of Q if false is returned. Threads can be composed
with services which model (part of) the environment.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 445–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In Section 2 we present PGA, and in Section 3 we overview thread algebra
and the interpretation of programs as threads. Then, in Section 4 we go into the
expressiveness of PGA. Finally, in Section 5 we allude briefly to current work on
multithreading and security hazard risk assessment. For further discussion on
the why’s and why not ’s of PGA, see [2], and of TA, see [3].

2 Program Algebra

Program Algebra (PGA) is based on a parameter set A. The primitive instruc-
tions of PGA are the following:

Basic instruction. All elements of A, written, typically, as a, b, . . . are basic
instructions. These are regarded as indivisible units and execute in finite
time. Furthermore, a basic instruction is viewed as a request to the environ-
ment, and it is assumed that upon its execution a boolean value (true or
false) is returned that may be used for subsequent program control. The
associated behavior may modify a state.

Termination instruction. The termination instruction ! yields termination of
the program. It does not modify a state, and it does not return a boolean
value.

Test instruction. For each element a of A there is a positive test instruction
+a and a negative test instruction −a. When a positive test is executed, the
state is affected according to a, and in case true is returned, the remaining
sequence of actions is performed. If there are no remaining instructions,
inaction occurs. In the case that false is returned, the next instruction is
skipped and execution proceeds with the instruction following the skipped
one. If no such instruction exists, inaction occurs. Execution of a negative
test is the same, except that the roles of true and false are interchanged.

Forward jump instruction. For any natural number k, the instruction #k
denotes a jump of length k and k is called the counter of this instruction. If
k = 0, this jump is to the instruction itself and inaction occurs (one can say
that #0 defines divergence, which is a particular form of inaction). If k =
1, the instruction skips itself, and execution proceeds with the subsequent
instruction if available, otherwise inaction occurs. If k > 1, the instruction
#k skips itself and the subsequent k − 1 instructions. If there are not that
many instructions left in the remaining part of the program, inaction occurs.

PGA program terms are defined inductively as follows:

1. Primitive instructions are program terms.
2. If X and Y are program terms, then X ;Y , called the concatenation of X

and Y , is a program term.
3. If X is a program term, then Xω (the repetition of X) is a program term.
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2.1 Instruction Sequence Congruence and Canonical Forms

On PGA, different types of equality can be discerned, the most simple of which
is instruction sequence congruence, identifying programs that execute identical
sequences of instructions. Such a sequence is further called a program object. For
programs not containing repetition, instruction sequence congruence boils down
to the associativity of concatenation, and is axiomatized by

(X ;Y );Z = X ; (Y ;Z). (PGA1)

As a consequence, brackets are not meaningful in repeated concatenations and
will be left out.

Now let X1 = X and Xn+1 = X ;Xn for n > 0. Then instruction sequence
congruence for infinite program objects is further axiomatized by the following
axioms (schemes):

(Xn)ω = Xω, (PGA2)
Xω;Y = Xω, (PGA3)

(X ;Y )ω = X ; (Y ;X)ω. (PGA4)

It is straightforward to derive from PGA2–4 the unfolding identity of repetition:

Xω = (X ;X)ω = X ; (X ;X)ω = X ;Xω.

Instruction sequence congruence is decidable [7].
Every PGA program can be rewritten into one of the following forms:

1. X not containing repetition, or
2. X ;Y ω, with X and Y not containing repetition.

Any program in one of the two above forms is said to be in first canonical
form. For each PGA program there is a program in first canonical form that
is instruction sequence congruent [7]. Canonical forms are useful as input for
further transformations.

2.2 Structural Congruence and Second Canonical Forms

PGA programs in first canonical form can be converted into second canonical
form: a first canonical form in which no chained jumps occur, i.e., jumps to
jump instructions (apart from #0), and in which each non-chaining jump into
the repeating part is minimized. The associated congruence is called structural
congruence and is axiomatized by PGA1–4 presented above, plus the following
axiom schemes, where the ui and vi range over primitive instructions:

#n+1;u1; . . . ;un; #0 = #0;u1; . . . ;un; #0, (PGA5)
#n+1;u1; . . . ;un; #m = #n+m+1;u1; . . . ;un; #m, (PGA6)

(#k+n+1;u1; . . . ;un)ω = (#k;u1; . . . ;un)ω, (PGA7)
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and

#n+m+k+2;u1; . . . ;un; (v1; . . . ; vm+1)ω =
#n+k+1;u1; . . . ;un; (v1; . . . ; vm+1)ω . (PGA8)

Two examples, of which the right-hand sides are in second canonical form:

#2; a; (#5; b; +c)ω = #4; a; (#2; b; +c)ω,
+a; #2; (b; #2;−c; #2)ω = +a; #0; (+b; #0;−c; #0)ω.

Second canonical forms are not unique. However, if in X ;Y ω the number of
instructions in X and Y is minimized, they are. In the first example above,
the right-hand side is the unique minimal second canonical form; for the second
example it is +a; (#0; +b; #0;−c)ω.

2.3 PGA-Based Languages

On the basis of PGA, a family of programming languages has been developed [7].
The programming constructs in these languages include backward jumps, ab-
solute jumps, labels and goto’s, conditionals and while loops, etc. All of these
languages are given a projection semantics, that is, they come with a translation
to PGA which determines their semantics (together with the semantics of PGA,
see Section 3.1). Vice versa, PGA can be embedded in each of these languages,
which shows that they share the same expressiveness. As an example we present
the language PGLDg and its projection semantics.1

PGLDg is a program notation with label and goto instructions as primitives
instead of jumps. Repetition is not available, so a PGLDg program is just a
finite sequence of instructions. In PGLDg termination takes place when the last
instruction has been executed, when a goto to a non-existing label is made, or
when a termination instruction ! is executed.

A label in PGLDg is just a natural number. Label and goto-instructions are
defined as follows:

Label instruction. The instruction £k, for k a natural number, represents a
visible label. As an action it is a skip in the sense that it will not have any
effect on a state space.

Goto instruction. For each natural number k the instruction ##£k repre-
sents a jump to the (beginning of) the first (i.e. the left-most) instruction
£k in the program. If no such instruction can be found termination of the
program execution will occur.

An example of a PGLDg program is: £0;−a; ##£1; ##£0;£1. In this pro-
gram a is repeated until it yields reply value false. That is also the functionality
of the simpler program £0; +a; ##£0.

1 The languages presented in [7] are called PGLA, PGLB, PGLC, etc.
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A projection from PGLDg to PGA works as follows:

pgldg2pga(u1; . . . ;uk) = (ψ1(u1); . . . ;ψk(uk); !; !)ω ,

where the ui range over primitive instructions, the two added termination in-
structions serve the case that uk is a test-instruction, and the auxiliary functions
ψj are defined as follows:

ψj(##£n) =

⎧
⎪⎨

⎪⎩

! if target(n) = 0,
#target(n)−j if target(n) ≥ j,

#k+2−j+target(n) otherwise,

ψj(£n) = #1,
ψj(u) = u otherwise.

The auxiliary function target(k) produces for k the smallest number j such
that the j-th instruction of the program is of the form £k, if such a number
exists and 0 otherwise. Projecting the two example programs above yields

pgldg2pga(£0;−a; ##£1; ##£0;£1) = (#1;−a; #2; #4; #1; !; !)ω,
pgldg2pga(£0; +a; ##£0) = (#1; +a; #3; !; !)ω .

The projection pgldg2pga results from the composition of a number of pro-
jections defined in [7] and a tiny bit of smart reasoning.

3 Basic Thread Algebra

Basic Thread Algebra (BTA) is a form of process algebra which is tailored to
the description of sequential program behavior. Based on a set A of actions, it
has the following constants and operators:

– the termination constant S,
– the deadlock or inaction constant D,
– for each a ∈ A, a binary postconditional composition operator � a� .

We use action prefixing a ◦ P as an abbreviation for P � a � P and take ◦ to
bind strongest. Furthermore, for n ≥ 1 we define an ◦ P by a1 ◦ P = a ◦ P and
an+1 ◦ P = a ◦ (an ◦ P ).

The operational intuition is that each action represents a command which is
to be processed by the execution environment of the thread. The processing of a
command may involve a change of state of this environment.2 At completion of
the processing of the command, the environment produces a reply value true or

2 For the definition of threads we completely abstract from the environment. In Sec-
tion 3.2 we define services which model (part of) the environment, and thread-service
composition.
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false. The thread P � a �Q proceeds as P if the processing of a yields true,
and it proceeds as Q if the processing of a yields false.

Every thread in BTA is finite in the sense that there is a finite upper bound to
the number of consecutive actions it can perform. The approximation operator
π : IN×BTA → BTA gives the behavior up to a specified depth. It is defined by

1. π(0, P ) = D,
2. π(n+ 1, S) = S, π(n+ 1,D) = D,
3. π(n+ 1, P � a�Q) = π(n, P ) � a� π(n,Q),

for P,Q ∈ BTA and n ∈ IN. We further write πn(P ) instead of π(n, P ). We find
that for every P ∈ BTA, there exists an n ∈ IN such that

πn(P ) = πn+1(P ) = · · · = P.

Following the metric theory of [1] in the form developed as the basis of the in-
troduction of processes in [6], BTA has a completion BTA∞ which comprises also
the infinite threads. Standard properties of the completion technique yield that
we may take BTA∞ as the cpo consisting of all so-called projective sequences:3

BTA∞ = {(Pn)n∈IN | ∀n ∈ IN (Pn ∈ BTA & πn(Pn+1) = Pn)}.
For a detailed account of this construction see [4] or [19].

Overloading notation, we now define the constants and operators of BTA on
BTA∞:

1. D = (D,D, . . .) and S = (D, S, S, . . .);
2. (Pn)n∈IN � a� (Qn)n∈IN = (Rn)n∈IN with R0 = D and Rn+1 = Pn � a�Qn;
3. πn((Pm)m∈IN) = (P0, . . . , Pn−1, Pn, Pn, Pn . . .).

The elements of BTA are included in BTA∞ by a mapping following this defi-
nition. It is not difficult to show that the projective sequence of P ∈ BTA thus
defined equals (πn(P ))n∈IN. We further use this inclusion of finite threads in
BTA∞ implicitly and write P,Q, . . . to denote elements of BTA∞.

We define the set Res(P ) of residual threads of P inductively as follows:

1. P ∈ Res(P ),
2. Q� a�R ∈ Res(P ) implies Q ∈ Res(P ) and R ∈ Res(P ).

A residual thread may be reached (depending on the execution environment) by
performing zero or more actions. A thread P is regular if Res(P ) is finite.

A finite linear recursive specification over BTA∞ is a set of equations

xi = ti

for i ∈ I with I some finite index set, variables xi, and all ti terms of the
form S, D, or xj � a � xk with j, k ∈ I. Finite linear recursive specifications

3 The cpo is based on the partial ordering � defined by D � P , and P � P ′, Q � Q′

implies P � a � Q � P ′ � a � Q′.
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represent continuous operators having unique fixed points [19]. In reasoning with
finite linear specifications, we shall identify variables and their fixed points. For
example, we say that P is the thread defined by P = a ◦ P instead of stating
that P equals the fixed point for x in the finite linear specification x = a ◦ x.
Theorem 1. For all P ∈ BTA∞, P is regular iff P is the solution of a finite
linear recursive specification.

The proof is easy:

Proof. ⇒: Suppose P is regular. Then Res(P ) is finite, so P has residual threads
P1, . . . , Pn with P = P1. We construct a linear specification with variables
x1, . . . , xn as follows:

xi =

⎧
⎪⎨

⎪⎩

D if Pi = D,
S if Pi = S,
xj � a� xk if Pi = Pj � a� Pk.

⇐: Assume that P is the solution of a finite linear recursive specification.
Because the variables in a finite linear specification have unique fixed points,
we know that there are threads P1, . . . , Pn ∈ BTA∞ with P = P1, and for
every i ∈ {1, . . . , n}, either Pi = D, Pi = S, or Pi = Pj � a � Pk for some
j, k ∈ {1, . . . , n}. We find that Q ∈ Res(P ) iff Q = Pi for some i ∈ {1, . . . , n}.
So Res(P ) is finite, and P is regular.  !
Example 1. The regular threads an ◦ D, an ◦ S, and a∞ = a ◦ a ◦ · · · are the
respective fixed points for x1 in the specifications

1. x1 = a ◦ x2, . . . , xn = a ◦ xn+1, xn+1 = D,
2. x1 = a ◦ x2, . . . , xn = a ◦ xn+1, xn+1 = S,
3. x1 = a ◦ x1.

3.1 Extraction of Threads from Programs

The thread extraction operator | | assigns a thread to a program. This thread
models the behavior of the program. Note that the resulting behavioral equiva-
lence is not a congruence: from |X | equals |Y |, one cannot infer that, e.g., |X ;Z|
equals |Y ;Z|.

Thread extraction on PGA, notation |X | with X a PGA program, is defined
by the following thirteen equations (where a ranges over the basic instructions,
and u over the primitive instructions):4

|a| = a ◦ D |!| = S

|+a| = a ◦ D |!;X | = S

|−a| = a ◦ D |#k| = D

|a;X | = a ◦ |X | |#0;X | = D

4 We generally consider PGA programs modulo instruction sequence congruence, i.e.,
as program objects, so |Xω | = |X; Xω|.
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|+a;X | = |X |� a� |#2;X | |#1;X | = |X |
|−a;X | = |#2;X |� a� |X | |#k + 2;u| = D

|#k + 2;u;X | = |#k + 1;X |

Observe that we interpret basic instructions as actions.
For PGA programs in second canonical form, these equations yield either finite

threads, or regular threads (in the case that a non-empty loop occurs, which can
be captured by a system of recursive equations).

Example 2. Computation of Q = |a; (+b; #2; #3; c; #4; +d; !; a)ω| yields the fol-
lowing regular thread:5

Q = a ◦R, R = c ◦R � b� (S � d�Q).

This thread can be depicted as follows:

[ a ]Q:

�
〈 b 〉R:

�
��

�
��
〈 d 〉
�

��
�

�

�

S

[ c ]

		

where

[ a ]

�
P

≈ a ◦ P

and
〈 a 〉
�

��
�

��
Pl Pr

≈ Pl � a� Pr

Example 3. Observe that thread extraction following the equations does not
terminate for the program term

+a; #2; (+b; #2;−c; #2)ω.

However, thread extraction on its second canonical form +a; (#0; +b; #0;−c)ω
yields the thread P defined by

P = D � a�Q, Q = D � b� (Q� c� D).

Any PGA program defines a regular thread, and conversely, every regular thread
can be defined in PGA, see Section 4. Behavioral equivalence is decidable for
PGA programs [7].

5 Note that a linear recursive specification of Q requires (at least) five equations.
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3.2 Services

A service, or a state machine, is a pair 〈Σ,F 〉 consisting of a set Σ of so-called
co-actions and a reply function F . The reply function is a mapping that gives
for each non-empty finite sequence of co-actions from Σ a reply true or false.

Example 4. A stack can be defined as a service with co-actions push:i , topeq:i ,
and pop, for i = 1, . . . , n for some n, where push:i pushes i onto the stack and
yields true, the action topeq:i tests whether i is on top of the stack, and pop
pops the stack with reply true if it is non-empty, and it yields false otherwise.

Services model (part of) the execution environment of threads. In order to
define the interaction between a thread and a service, we let actions be of the
form c.m where c is the so-called channel or focus, and m is the co-action or
method. For example, we write s .pop to denote the action which pops a stack
via channel s . For service H = 〈Σ,F 〉 and thread P , P /c H represents P using
the service H via channel c. The defining rules are:

S /c H = S,

D /c H = D,

(P � c′.m �Q) /c H = (P /c H) � c′.m � (Q /c H) if c′ �= c,
(P � c.m �Q) /c H = P /c H′ if m ∈ Σ and F (m) = true,

(P � c.m �Q) /c H = Q /c H′ if m ∈ Σ and F (m) = false,

(P � c.m �Q) /c H = D if m �∈ Σ,

where H′ = 〈Σ,F ′〉 with F ′(σ) = F (mσ) for all co-action sequences σ ∈ Σ+.
In the next example we show that the use of services may turn regular threads

into non-regular ones.

Example 5. We define a thread using a stack as defined in Example 4. We only
push the value 1 (so the stack behaves as a counter), and write S(n) for a stack
holding n times the value 1. By the defining equations for the use operator it
follows that for any thread P ,

(s .push:1 ◦ P ) /s S(n) = P /s S(n+1),
(P � s .pop � S) /s S(0) = S,

(P � s .pop � S) /s S(n+1) = P /s S(n).

Now consider the regular thread Q defined by

Q = s .push:1 ◦Q� a�R, R = b ◦R� s .pop � S,

where actions a and b do not use focus s . Then, for all n ∈ IN,

Q /s S(n) = (s .push:1 ◦Q� a� R) /s S(n)
= (Q /s S(n+1)) � a� (R /s S(n)).
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It is not hard to see that Q/sS(0) is an infinite thread with the property that for
all n, a trace of n+1 a-actions produced by n positive and one negative reply on
a is followed by bn◦S. This yields an non-regular thread: if Q/sS(0) were regular,
it would be a fixed point of some finite linear recursive specification, say with k
equations. But specifying a trace bk ◦ S already requires k + 1 linear equations
x1 = b ◦ x2, . . . , xk = b ◦ xk+1, xk+1 = S, which contradicts the assumption. So
Q /s S(0) is not regular.

3.3 Classes of Threads

We shall see in Section 4 that finite threads (the elements of BTA) correspond
exactly to the threads that can be expressed in PGA without iteration, and that
regular threads (threads definable by finite linear specifications) are exactly those
that can be expressed in PGA. Equality is decidable for regular threads [7]. We
mention two classes of non-regular threads: pushdown threads and computable
threads. In both cases the non-regularity can be obtained by composing regular
threads with certain services.

We call a regular thread that uses a stack as described in Example 4 a push-
down thread. In Example 5 we have seen that a pushdown thread may be non-
regular. Equality is decidable for pushdown threads, but inclusion (the ordering
� defined in Section 3) is not [5].6

Finally, a thread is computable if it can be represented by an identifier P0 and
two computable functions f and g as follows (k ∈ IN):

Pk =

⎧
⎪⎨

⎪⎩

D if g(k) = 0,
S if g(k) = 1,
P〈k+f(k),1〉 � ag(k) � P〈k+f(k),2〉 if g(k) > 1,

where 〈 , 〉 is a bijective, computable pairing function.
Obviously computable threads can, in general, not be expressed by PGA pro-

grams. However, infinite sequences of primitive PGA instructions are universal:
for every computable thread P there is such an infinite sequence with P as its
behavior [12]. Computable threads can be obtained by composition of regular
threads with a Turing machine tape as a service [12].

6 In [5], the undecidability of inclusion for pushdown threads is proved using a re-
duction of the halting problem for Minsky machines. In this construction one of
the counters is “weakly simulated”. This method was found by Jančar and recorded
first in 1994 [15], where it was used to prove various undecidability results for Petri
nets. In 1999, Jančar et al. [16] used the same idea to prove the undecidability of
simulation preorder for processes generated by one-counter machines, and this is
most comparable to the approach in [5]. However, in the case of pushdown threads
the inclusion relation itself is a little more complex than in process simulation or
language theory because D � P for any thread P . Moreover, threads have restricted
branching, and therefore transforming a regular (control) thread into one that sim-
ulates one of the counters of a Minsky machine is more complex than in the related
approaches referred to above. See [5] for a further discussion.
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4 On the Expressiveness of PGA

We present some expressiveness results for PGA.

Proposition 1. PGA without repetition characterizes BTA, that is, each pro-
gram without repetition defines a finite thread, and all finite threads can be ex-
pressed.

Proof. It follows immediately from the equations for thread extraction that PGA
programs without repetition define finite threads. Vice versa, we give a mapping
[ ] from BTA to PGA:

[D] = #0,
[S] = !,

[P � a�Q] = +a; #2; #(n[P ] + 1); [P ]; [Q],

where n[P ] is the number of instructions in [P ].  !
Proposition 2. PGA characterizes the regular threads.

Proof. It follows immediately from the equations for thread extraction that PGA
programs define regular threads. Vice versa, any regular thread can be given by
a finite linear recursive specification by Theorem 1. Assume a specification with
variables x1, . . . , xn. We obtain the PGLDg program [x1]; [x2]; . . . ; [xn] for x1 by
the mapping [ ] which is defined as follows:

[xi] =

⎧
⎪⎨

⎪⎩

£i; +ai; ##£j; ##£k if xi = xj � a� xk,

£i; ! if xi = S,
£i; ##£i if xi = D.

The resulting PGLDg expression for the thread is mapped to a PGA program
by pgldg2pga (see Section 2.3).  !
Corollary 1. Basic instructions and negative tests instructions do not enhance
the expressive power of PGA.

Proof. Take any PGA program. By thread extraction and the method sketched
in the proof of Proposition 2 we find an equivalent PGA program without oc-
currences of basic instructions or negative tests.  !
This corollary establishes that PGA’s set of primitive instructions is not min-
imal with respect to its expressiveness. The next proposition shows that that
unbounded jump counters are necessary for the expressiveness of PGA.

Proposition 3. For n ∈ IN, let PGAn denote the set of PGA expressions not
containing jump counters strictly greater than n. For every n ≥ 2, there is a
PGA behavior that cannot be expressed in PGAn.
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Proof. Take n ≥ 2 and a basic instruction a. Consider the PGA program X
defined by

X = Y1; . . . ;Yn+1; !; (Z1; . . . ;Zn+1)ω,
Yi = +a; #ki,

Zi = ai; +a; !; #li,

where ki = 2n+ 1 + i(i+ 1)/2, and li = (n+ 4)(n+ 5)/2− (i+ 8).
Note that #ki jumps from Yi to the first instruction of subexpression Zi, and

that #li jumps from Zi also to the first instruction of Zi. For example, if n = 2,
then X equals

+a; #6; +a; #8; +a; #11; !; (a; +a; !; #12; a2; +a; !; #11; a3; +a; !; #10)ω.

We oberve that X has these properties:

1. After the execution of Y1; . . . ;Yn+1; !, any of the Zi can be the first part of
the iteration that is executed.

2. Execution of the iterative part is completely determined by one of the Zi
and distguished from the execution determined by another Zj .

We show that |X | cannot be expressed in PGAn. First, for i ≤ n + 1, define
threads

Qi = ai ◦ (S � a�Qi),
Pi = Qi � a� Pi+1,

Pn+2 = S.

We find that

Pi = |Yi; . . . ;Yn+1; !; (Z1; . . . ;Zn+1)ω|,
Qi = |Zi; . . . ;Zn+1; (Z1; . . . ;Zn+1)ω|,

and in particular that |X | = P1.
Now suppose that |X | can be expressed in PGAn (we shall derive a contra-

diction). Then there must be a first canonical form

u1; . . . ;um; (v1; . . . ; vk)ω

in PGAn with this behavior. We can picture the iteration of v1; . . . ; vk as a circle
of k instructions:

��
��� �

� ��
��

� vj

vj+1

Note that each of the vj serves at most one Qi.
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By the restriction on the values of jump counters, we know that between
any two subsequent Qi-instructions on the circle, there are at most n− 1 other
instructions. Hence, for any i there are at least �k/n2 Qi-instructions on the
circle, so in total the circle contains at least (n+ 1) · �k/n2 instructions. Since

(n+ 1) · �k/n2 ≥ (n+ 1) · (k/n) > k,

this contradicts the fact that the circle contains k instructions.  !

5 Current Work

Current work includes research on multithreading. In thread algebra, a mul-
tithread consists of a number of basic threads together with an interleaving
operator which executes the threads in parallel based on a certain interleaving
strategy [8, 9]. This theory is applied in the setting of processor architectures, in
particular of so-called micro-grids executing micro-threads [17]. For the math-
ematical modeling of processor architectures, so-called Maurer computers are
used [18, 10, 11].

Another branch of research is about the forecasting of certain actions, given
the program to be executed. The main purpose of this research is a formal
modeling of security hazard risk assessment (or virus detection) [14, 13]. For
pushdown threads this type of forecasting is decidable: rename the action(s) to
be forecasted and decide whether the thread thus obtained equals the original
one. Forecasting becomes much more complicated if a program may contain test
instructions that yield a reply according to the result of this type of forecasting.
For example, assume that the action to be forecasted is named risk and that
there is a test action test that yields true if its true-branch does not execute risk,
and false otherwise. Then a current test action in the code to be inspected may
yield true because a future one will yield false. The reply to these test actions can
be modeled with a use-application. For regular threads, the associated service
has a decidable reply function [13], while for pushdown threads this is still an
open question.
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Abstract. The first part is a survey of Poizat’s theory about fast elimi-
nation of quantifiers and the P = NP question according to the unit-cost
model of computation, as developed along the book [7]. The second part
is a survey of the structure with fast elimination constructed by the
author in [9].

1 Introduction

In [9] a structure with fast elimination is constructed. Here I intend to recall the
whole context of this construction and to explain why it is said that the structure
constructed there satisfies P = NP for the unit-cost model of computation over
algebraic structures. The construction itself will be also shortly presented here,
but I will emphasize exactly the steps which hasn’t been presented with too
much details in the cited paper. With this occasion I shall try to answer to
some frequently asked questions. This extended abstract should be seen as a
complement to [9].

The notation used is the standard notation for mathematical logic. Bold-faced
letters like u denote tuples (u1, u2, . . . , un).

2 Machines, Circuits and Existential Formulas with
Parameters

The unit-cost complexity over algebraic structures was born with the paper of
L. Blum, M. Shub and S. Smale dedicated to unit-cost computations over the
ordered field of the reals. The approach presented here belongs to B. Poizat and
was developed by him along the lines of the book “Les petits cailloux”, [6].

Let L be an abstract finite signature for algebraic structures. L consists in a
set of constant-symbols (ci), a set of relation-symbols (Rj) with arities (nj) and
a set of operation-symbols (fk) with arities (mk). We fix an L-structure S. The
interpretation of L in S shall be done using the same symbols. (We do not make
a notational difference between symbol and interpretation here.)

Definition 1. A Turing machine working over the L-structure S is a multi-tape
Turing machine with finitely many states and the following ideal abilities:

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 459–470, 2006.
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– The machine works with a possibly infinite alphabet consisting in the ele-
ments of S. In other words, every element of S has a unique name. This name
can be written in one cell of the machine as component of the input or as
result of a computation. During a computation, the name of a given element
may arrise several times in different cells. Equivalently, you can think about
the underlying set of S like about a (possibly infinite) alphabet used by a
Turing machine.

– Let xi ∈ S be the content of a cell of the tape number i which is read
at this moment by the head Hi. Following program lines can occur: stop;
Hi+, Hi− to move a head on a tape; xi := f(xk, xl, . . . , xs), where f is a
function symbol in L or the identity (this means xi := xj); if R(xk, xl, . . . xs)
then continue with state q, else continue with state q′, where R is a relation
symbol in L or the equality; if Hi is reading an empty cell then continue
with state q, else continue with state q′.

– Any such step is performed in a unit of time.

This will be simply called a machine over S.

To say that “a cell is empty” is the same as saying “a cell contains a blank
symbol” — I will not insist here on this. The multi-tape formulation given here
is directly used used by Poizat in order to prove his Theorem 1. One can define
the notion of computability over algebraic functions using only one-tape Turing
machines: if L is finite and all relations (functions) have a finite arity, then there
is a translation of multi-tape Turing machines in one-tape Turing machines, that
does not change the defined class P. Indeed, if k is the number of tapes, consider
the mk + i-th cell of the one-tape machine to be the m-th cell of the i-th tape
(m ∈ ZZ, 0 ≤ i < k), and multiply the number of states with k.

Definition 2. A problem is a subset of S∗ :=
∐

n∈IN
Sn seen as set of finite inputs

which are accepted by a machine over S. For an input x ∈ S∗ let |x| be its
length. Note: the symbol

∐
used here is meant as disjoint union. There are no

identifications between Sn and factors of Sm when n ≤ m.

Definition 3. For an L-structure S we define the complexity class P(S) as
the set of all problems over S accepted by deterministic machines over S in
polynomial time. This means the following: there is a polynomial p(n) with
natural coefficients such that for all inputs x ∈ S∗ the decision is taken in less
that p(|x|) units of time.

Definition 4. A problem B ⊂ S∗ is said to belong to the class NP(S) if and
only if there is a problem A in P(S) and a polynomial q(n) such that for all
x ∈ S∗:

x ∈ B ↔ ∃ y ∈ S∗ |y | = q(|x|) ∧ xy ∈ A.

By xy we mean the concatenation of the strings x and y.

At this point I must make some commentaries about parameters. In the litera-
ture unit-cost Turing machines are allowed to contain a finite tuple of elements
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of the structure, and to use them in the computations. The classical notation for
the complexity classes with allowed parameters is P and NP. For the situation
described here, where a finite signature is fixed and the machines are not allowed
to contain other parameters than the fixed interpretation of the given constants,
the classical notation is P0 and NP0. I like to work with the definitions and the
notations as given here because I consider them more clear and more resonant
with the model-theoretic point of view. It is worth to remark that by writing
down the things in this way, I didn’t really introduce a restriction. As an anony-
mous referee pointed out using the classical notation: if a structure has P0 =
NP0 then it has P = NP, because all tuples in a problem can be completed with
the tuple of suplementary parameters. On the other hand, if the structure has
P = NP, one can expand the structure with a finite number of constants such
that the new one has P0 = NP0: the new constants are the parameters used to
solve some NP-complete problem over the structure. This notion is explained in
the sequel, together with the equivalent of the work of Cook for the classes P
and NP over a an L-structure S.

Definition 5. Suppose from now on that the language L contains at least two
constants, which will be called 0 and 1. An L-circuit is a finite directed graph
without cycles. The vertices of the graph are called gates, and the directed
edges are called arrows. There are input-gates, constant-gates, operation-gates,
relation-gates, selection-gates and output-gates; at least one input-gate and one
output-gate must be present. We call fan-in of a gate the number of arrows go-
ing into the gate. The fan-out is the number of arrows going from the gate
outside. All gates have an unbounded fan-out. The gates input and output
elements of S.

– An input-gate has fan-in 1. It just copies the input element and sends it
along the outgoing arrows.

– A constant-gate has fan-in 0. It sends copies of the corresponding (in S
interpreted) constant along the outgoing arrows.

– Operation-gates and relation-gates have a fan-in equal to the arity of the
corresponding operation (relation). The operation-gate for f computes the
value f(x1, . . . , xs) ∈ S. The relation-gate checks if the relationR(x1, . . . , xs)
is true and outputs the constant 1 then, else it outputs the constant 0.

– The selection-gate has fan-in 3 and computes the function s(x, y, z), where
s(0, y, z) = y, s(1, y, z) = z and s(x, y, z) = x if x �= 0 and x �= 1.

– In the case of the so-called decision circuits there is only one output gate
that outputs 0 or 1.

The complexity-measure of a circuit C is its number of gates |C|.
Considering the circuits to be compressed first-order formulas, they are a good
instrument for making concepts like problem or complexity class independent of
a special type of computing device.

Theorem 1. Let M be a machine with k tapes over S, working in a bounded
time ≤ t(n), where t(n) ≥ n is a function of the length |x|. Then there is a
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recursive sequence (Cn(x1, . . . , xn)) with |Cn| ≤ t(n)k+1, such that Cn(x) gives
for input x of length n the same result as the machine M , and Cn are uniformly
constructed by a classical Turing machine in polynomial time p(n).

Definition 6. The satisfiability problem for L-circuits with parameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a decision L-circuit C(x,y);
It is asked if there is b ∈ S∗ of appropriate length, such that

(S,a, b) |= C(a, b) = 1.

Don’t wonder about our use of the symbol “models” (|=) in this context. As
already said, circuits are first-order formulas written down compactly.

It follows directly from the theorem that the satisfiability problem for L-circuits
with parameters in S is NP(S)-complete. This problem belongs to P(S) if and
only if S has the property P = NP.

We now come to the most delicate point of the reduction: from the satisfaction
of circuits to the satisfaction of first-order formulae.

Definition 7. The satisfiability problem for quantifier-free L-formulae with pa-
rameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a quantifier-free L-formula
ϕ(x,y);
It is asked whether there is a b ∈ S∗ of appropriate length, such that

(S,a, b) |= ϕ(a, b).

At first sight there is no big difference between this satisfiability problem and the
satisfiability problem concerning circuits. In fact, there is an important difficulty
here. It is true that every circuit is logically equivalent with a quantifier-free
formula, but the translation might not be possible in polynomial time!

Example. (Poizat) Let S be a structure possessing an associative addition de-
noted by + and let Cn(x, y) be the circuit x ⇒ + ⇒ + . . . ⇒ + →=← y con-
taining n addition-gates and the gate = that checks the equality. Cn(x, y) = 1
is equivalent with the formula x+ x+ . . .+ x = y with 2n − 1 additions.

In the case of this circuit,

C(x, y) = 1 ↔ ∃ z z1 = x+ x ∧ z2 = z1 + z1 ∧ . . . ∧ y = zn + zn.

This existential formula has a length which is linear in n. Even if we use more
symbols for the indices in order to write them using some finite alphabet, it will
have at most a quadratic length. If we forget the quantifiers and we look at the
quantifier-free conjunction with parameters x and y, this quantifier-free formula
is satisfied if and only if the circuit was satisfied by x and y.

Following this idea, we modify the definition for the satisfiability problem
for quantifier-free formulae with parameters in S. This is just an equivalent
definition, and not a new problem.
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Definition 8. The satisfiability problem for quantifier-free L-formulae with pa-
rameters in S:
Given a string wa ∈ S∗, such that the subword w is a binary word made up by
the special boolean constants 0, 1 ∈ S and encoding a quantifier-free L-formula
ϕ(x,y);
It is asked whether

(S,a) |= ∃ y ϕ(a,y).

The satisfaction of quantifier-free formulae with parameters in S is the same
thing as the truth of existential formulae with parameters in S.

Theorem 2. The satisfiability problem for quantifier-free formulae with para-
meters in S is complete for the class NP(S). Consequently, this problem belongs
to P(S) if and only if S has the property P = NP.

Proof. The problem is evidently in NP by guess and check. To prove the NP-com-
pleteness, we interpret the satisfiability problem of L-circuits with parameters in
S in the satisfiability problem for formulae. Let (C(x,y),a) be an instance for
the circuit-problem. For each gate in C which is not an input-gate, a constant-
gate or the output-gate, consider a new variable zgate. The following holds:

∃y C(a,y) = 1 ↔ ∃y ∃ zgate1
. . . ∃ zgatek

∧

all gates

zgate = gate(predecessor gates) ∧ output = 1.

This gives a quantifier-free formula of a length which is polynomially bounded
in the length of the circuit and which is satisfiable if and only if the circuit is
satisfiable.  !
Definition 9. The structure S is said to allow elimination of quantifiers if for
every formula ϕ(x) with quantifiers and no other free variables as in the tuple
x there is a quantifier-free formula ψ(x) such that:

S |= ∀x (ϕ(x) ↔ ψ(x)).

For equivalent definitions, we may require this only for formulae that are log-
ically equivalent with prenex existential formulae, or even for formulae that
are logically equivalent with formulae containing only one existential quantifier.
Summing up all results got so far, we conclude:

Theorem 3. The L-structure S has the property P = NP if and only if there
is a polynomial-time machine over S which transforms all formulae ∃ y ϕ(x,y)
in a circuit C(x) such that:

∀ x (∃ y ϕ(x,y) ↔ C(x) = 1).

Proof. The structure has P = NP if and only if the decision problem for existen-
tial formulae with parameters in S is in P(S). Using Poizat’s Theorem 1, there
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is a polynomial-time constructible sequence of circuits (Cn) such that for inputs
wa of length n,

∃ y ϕ(a,y) ↔ Cn(wa) = 1.

and the binary word w encodes the existential formula ∃ y ϕ(x,y). Now fix the
existential formula and let C(x) be the circuit Cn(w,x). This means that the
input gates corresponding to the subword w are replaced with constant-gates
giving the corresponding booleans, and the input gates for the subword a remain
free input gates.

For the other direction, recall that the satifiability of existential formulas
with parameters in the structure is an NP-complete problem for this model of
computation. If this problem lies in P, then P = NP.  !
Definition 10. We say that the L-structure S has fast quantifier-elimination if
it satisfies the condition occurring in Theorem 3.

In particular, all structures with P = NP allow quantifier-elimination.

Remarks. There are maybe some points which need a special emphasis:

– The model of computation is very different from the classical one. In partic-
ular, the computational devices are ideal, working with arbitrary structure
elements, as for example real or complex numbers, and the structures are in
general infinite. The property P = NP has to be consequently understood.

– On the other hand, if this theory is applied for some finite structure, one gets
back the familiar classes P and NP from the classical theory of complexity.

– The notion “fast quantifier-elimination” is also slightly different from the
similar notions used in the literature. Peoples tend to understand that the
equivalent quantifier-free formula has to be short. This condition would be
too strong for our purpose. Here the equivalent quantifier-free circuit has to
be small, although the equivalent quantifier-free formula might be long.

– There are several results giving exponential lower bounds for the quantifier-
elimination for the field of complex numbers or for the ordered field of real
numbers. The known results are not sufficient for proving that those struc-
tures satisfy P �= NP! Even the exponential lower bound for purely existen-
tial formulae over the complex numbers is too weak: although the equivalent
quantifier-free formula has exponential length, it is still not proved that there
is no circuit of polynomial length which is equivalent with that formula!

– Last but not least: Theorems 1, 2 and 3 have been proved by Poizat in [6]
at the pages 109, 149 and 156. The reader has observed that I have slightly
modified the statements, because I have deleted all about supplementary
parameters in machines or circuits. For this I have introduced the constant-
gates.

3 A Structure with Fast Quantifier-Elimination

In the past section we shortly presented Poizat’s theory about arbitrary algebraic
structures that satisfy the condition P = NP. In this section we will come in
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contact with the structure with fast quantifier-elimination constructed by the
author in [9], proving that we don’t deal with the empty class.

For a short historical account: in [7] Poizat discussed the possibility of con-
structing a structure with P = NP and proposed some approaches; the most
concrete proposal was to define a consistent truth-predicate over Malcev’s freely
generated tree-algebra. In [6] he produced a truth-predicate over an algebra with
unary operations only, that will be presented below. His predicate V encodes the
truth of existential formulae with only one free variable, in a way that to all for-
mula ∃y ϕ(x,y) there is a term τϕ(x) such that ∀x (∃y ϕ(x,y) ↔ V (τϕ(x))).
Because of the unary functions, we cannot have more than one free variable in
a term. The construction of his predicate is rather difficult. In [4] Hemmerling,
working with a similar underlying algebra, doubled the length of the binary
words satisfying some PSPACE-complete predicate in order to make it sparse
(see definition below). The doubling technic is used also in the approach of
Gaßner, [3]. She doesn’t use the classical properties of PSPACE-complete pred-
icates (to manifest P = NP for computations with oracles) and tried a direct
construction of a structure with P = NP by encoding machine instances. The
machine-oriented approaches look however very difficult; it is always quite hard
to write down all conditions to be checked for a such construction. In [9] the
author combined Poizat’s truth-predicate, the model-theoretic view about effec-
tive quantifier elimination as described above and the doubling technic. In fact
the construction is based on the following rules:

1. As in Poizat’s case, a general Elimination Lemma for unary structures with
generic predicates.

2. By the Elimination Lemma, the satisfaction of ∃y ϕ(x,y) depends only of
some local information on x, which is encoded by a quantifier-free formula
β(x) of polynomial length.

3. The predicate V will encode the truth value of a special kind of ∀∃-sentences.

3.1 Preliminaries

The Elimination Lemma is used in [9] without proof, so it shall be proved here.
The other lemmas are quoted from [9] with some hints of proof.

Definition 11. Let R be an infinite set of elements called roots. The set M is
the algebra freely generated by R with two independent unary successor oper-
ations, s0 and s1 such that: all elements x ∈ M are terms in some r ∈ R and
two elements x and y are equal if and only if they are the same term of the
same root. The set of elements generated by a given r ∈ R is called a block.
We add a unary predecessor operation p such that p(x) = x defines the set of
all roots and for all x, p(s0(x)) = p(s1(x)) = x. We add also a constant a to be
interpreted by a fixed root and a unary predicate V called also colour, which will
be constructed later. Elements x with V (x) are called black, the other are called
white. Our structure is (M, s0, s1, p, V, a) but shall be refered to as (M,V ).
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Definition 12. A triangle of height n is a conjunctive formula T (x) as follows:
For all 2n+1 − 1 terms (using only the successors s0 and s1) t(x) of length ≤ n
exactly one of the atomic formulas V (t(x)) or ¬V (t(x)) occurs in the conjunction.
No other atomic formula does occur in the conjunction T (x). There are exactly
22n+1−1 possible triangles of height n.

Definition 13. For a tuple z ∈ M we call m-neighborhood of z a conjunction
of the following formulas: the formulas T2m(pm(zi)) with i = 1, . . . , k; and the
formulae p(y) = y, p(y) �= y, y = y′, y �= y′, for all terms y, y′ occurring in
the triangles above, and exactly those equalities and negated equalities that are
realized by the tuple z in M . If the tuple consists of only one element, we speak
about an individual neighborhood.

Definition 14. The predicate V is called generic if it satisfies the following
condition G:

G : if (M,V ) realizes some finite individual neighborhood N (x)

then (M,V ) realizes N (x) infinitely many times.

A structure (M,V ) that is an infinite disjoint union of identically coloured blocks
has always a generic predicate.

Definition 15. Let us use the alphabet of 15 letters ∀, ∃, x, ′, ), (, ¬, ∨, ∧, s0,
s1, p, =, V , a for writing down formulae. Different variables are built by x and
′ like: x, x′, x′′, . . . We denote by |ϕ(x)| the length of a formula ϕ(x) as word
over this alphabet.

Lemma 1. Let (M,V ) be a structure consisting of a disjoint union of (not nec-
essarily identic) blocks such that V is a generic predicate. Consider a formula
ψ(x) which is logically equivalent with a prenex ∃-formula. Let |ψ(x)| = n. Then
there is a quantifier-free formula λ(x) such that M |= ∀x ψ(x) ↔ λ(x). More-
over, all the terms in x and a occurring in λ(x) have length smaller than 2n, and
the formula λ(x) depends only on the list of all isomorphism-types of individual
2n-neighborhoods occurring in M .

Consequently, in order to decide if a tuple z ∈M satisfies this ψ(x), we must
know the 2n-neighborhood of the tuple (z, a) and the list of isomorphism-types
of individual 2n-neighborhoods which are realized in M .

Proof. This is Poizat’s “Lemme d’élimination” proved in [7] for one free variable.
Let ψ(z) be logically equivalent with ∃y ϕ(y, z). The quantifier-free formula ϕ
is put in disjunctive normal form. All conjunctions are shorter than n and the
existential block commutes with the big disjunction. Working with equations,
we write a conjunction in the form:

∃y ϕ0(z) ∧ ϕ1(z,y) ∧ λ1(y1) ∧ . . . ∧ λk(yk).
Here, ϕ1(z,y) is a conjunction of negated equalities of the form t1(xi) �= t2(yi)
and t1(yi) �= t2(yj), and all terms appearing in the whole formula have lengths
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≤ 2n. Because of the genericity of V we can always satisfy the inequalities,
provided that the formulas λi(yi) are realizable in M . This can be decided if we
know the list of isomorphism-types of individual 2n-neighborhoods realized in
M . The conjuction is then equivalent over M with:

ϕ0(z) ∧ ∃ y1 λ1(y1) ∧ . . . ∧ ∃ yk λk(yk).

In the case that some ∃ ylλl(yl) is not consistent, or just not compatible with
the list of individual 2n-neighborhoods realized in the structure, all the conjuc-
tion disappears. In the contrary case, the whole conjunction is equivalent with
the quantifier free formula ϕ0(z).  !

Definition 16. The predicate V is called sparse if it satisfies the following con-
dition:

∀x [V (x) → ∃n ∈ IN ∃ε ∈ {0, 1}n ∃r x = sn1 s0sε1 . . . sεn(r) ∧ p(r) = r ].

The sparse predicates are very useful: they allow a small list of isomorphism types
of individual neighborhoods and for all elements, the corresponding individual
neighborhood has a succint description.

Lemma 2. Suppose that the predicate V is sparse. For all x ∈M the following
holds: if x is at distance > 3m from its root, then the individual m-neighborhood
of x contains at most one black point, which is of the form sn1p

m(x) with 0 ≤
n ≤ 2m.

Consequently, there is a unit-cost algorithm such that for input x ∈ M and
m ∈ IN it constructs a quantifier-free formula β(x) which determines the in-
dividual m-neighborhood of x up to isomorphism. The algorithm works in time
O(m).

Proof. A remark on the first part: it is easy to see that if an m-neighborhood
of x contains two black points ore more, then x is at a distance ≤ 3m from the
root.

The algorithm starts by exploring the 3m ancestors of x. If one finds a root,
the formula β(x) gives x as an si-term of the root and the information if this
root is the constant a or not. If one doesn’t find the root and there is no black
point in the m-neighborhood, the algorithm gives x as an si-term of his 3m-th
ancestor, the information that this ancestor is not a root, and a new symbol Σ
meaning “white neighborhood”. If one doesn’t find the root and there is a unique
black point in the m-neighborhood of x, instead of Σ write down the formula
V (b) where the black point b is given as term in x.  !

Lemma 3. If V is sparse, there is a unit-cost algorithm such that for input
consisting of a tuple x ∈ M of length k and m ∈ IN it constructs a quantifier-
free formula β(x) which determines the m-neighborhood of x up to isomorphism.
The algorithm works in time O(mk2) and the length of β(x) is O(mk).
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Proof. First one writes down the conjunction of the individual formulae β as
computed in Lemma 2. Then we observe that:

Nm(xi) ∩ Nm(xj) �= ∅ ↔
↔ pm(xi) ∈ {xj , p(xj), . . . , p3m(xj)} ∨ pm(xj) ∈ {xi, p(xi), . . . , p3m(xi)}.

For each pair (i, j) in this situation, write down xi as a minimal term in xj . If
this doesn’t happen, don’t write anything. The new symbol Σ may play the role
of conjunction of all negated equalities which are true instead.  !
Lemma 4. The number k of different free variables occurring in the formula
∃y ϕ(x,y) as a word of length n in the 15-letter alphabet satisfies k(k + 1) <
2n. Consequently, the algorithm given by Lemma 3 for constructing the succint
description β(x) for the neighborhood N2n(u) works in time O(n2). Moreover,
β(x) as a word in the 15-letter alphabet extended with Σ is shorter than 24n2.

3.2 Construction and Main Result

In order to construct the predicate V we extend the 15-letter alphabet with
the symbols Σ and → and we fix a coding of these symbols as binary words
ε1 . . . ε5 ∈ {0, 1}5.

We consider all pairs of formulas (β(x), ψ(x)) in the language (s0, s1, p, a, V )
such that:

– ψ(x) is logically equivalent with an existential formula ∃y ϕ(x,y) where
ϕ(x,y) is quantifier-free. Let n be the length of ψ(x) in the 15-letter alpha-
bet.

– β(x) is a formula produced by Lemma 3 to describe the 2n-neighborhood
N2n(x) for some tuple x of elements in some structure (M,V ) consisting of
an infinite union of identical blocks, with a root interpreting a and such that
V is sparse.

We consider all ∀∃-sentences θ of the form:

∀x [β(x) → ∃y ϕ(x,y)],

together with the existential sentences ∃y ϕ(y).
Such a sentence θ of length l is encoded by the sequence of letters ε1 . . . ε5l.

We define the code:

[θ] := st+5l
1 ◦ s0 ◦ st1 ◦ sε5l

◦ . . . ◦ sε1(a).
Here is t is a natural number such that t + 5l = 121n2. (We use 121 because
121 = 24× 5 + 1.) The elements [θ] defined here form the set of all codes.

The following Lemma follows by applying Lemma 1 two times successively.

Lemma 5. Let (M,V ) be a structure consisting of an infinite union of copies
of a block, so that V is generic and sparse. Consider a sentence θ = ∀x [β(x) →
∃y ϕ(x,y)] such that the existential sub-formula has length n. In order to know
if θ is true in M it is enough to know the colour of terms t(a) with | t | < 2n2

and the list of isomorphism-types of individual 4n2-neighborhoods realized in M .
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We construct V inductively. The structure (M,V ) will consist of an infinite
union of identical blocks. We call an element “a black point” if it satisfies
the predicate V as constructed up to the given point; the other elements are
called white. Let M0 be the structure that has the following set of black points:
{ sn1sn+1

0 (r) | r root }. All this poins are non-codes.M0 is already a structure with
a sparse generic predicate. It ensures the existence of sufficiently many types of
individual neighborhoods, even before the construction starts.

We order the codes in a sequence [θs] according to their length and lexico-
graphically (s ≥ 1).

Construction step: If the structure Ms−1 has been constructed, the structure
Ms is defined in the following way: the code [θs] is painted in black if and only if
Ms−1 |= θs. If this is the case, all the corresponding points in the other blocks
become also black.  !

Then M = lim
s→∞Ms.

Lemma 6. The L-structure (M,V ) constructed here has the following prop-
erties: the predicate V is generic and sparse, and for all encoded ∀∃ formal
L-sentences θ:

(M,V ) |= θ ↔ V ([θ]).

Proof. All structures Ms are generic and sparse, so we can apply Lemma 5 at
every step. Consider some step s. The quantifier-free sentence which is equivalent
with the encoded sentence depends on terms which are strictly shorter than the
code to paint (and so their colour has been already decided). It depends also on
the list of isomorphism-types of individual neighborhoods of a relatively small
radius. This list does not change anymore, either by painting the new code, nor
in the future of the construction.  !
Theorem 4. There is a deterministic unit-cost algorithm able to solve the sa-
tisfaction problem for quantifier-free formulae over (M,V ) in uniform polyno-
mial time O(n2) for formulae of length n. Consequently, the structure (M,V )
satisfies P = NP for the unit-cost model of computation and has fast quantifier-
elimination.

Proof. Consider an input of the form ψu with ψ(x) = ∃y ϕ(x,y) pure existen-
tial formula of length n and u ∈ M a tuple of the same length k as the tuple
of different free variables x. The formula can be encoded using the elements
0 := s0(a) and 1 := s1(a).

Using Lemma 3 we get a quantifier-free formula β(u) that determines up to
isomorphism the 2n-neighborhood of the tuple (u, a). The algorithm takes time
O(n2) according to Lemma 4. Now construct the following sentence θ:

∀x [β(x) → ∃y ϕ(x,y)].

Compute the code [θ] in M and check if V ([θ]) does hold. Recall that in
(M,V ) the sentence θ does hold if and only if V ([θ]) holds.
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If θ holds, then ∃y ϕ(u,y). If θ does not hold, then there cannot be any tuple
x with 2n-neighborhood isomorphic with the corresponding neighborhood of u
that satisfies ∃y ϕ(x,y). In particular ∃y ϕ(u,y) doesn’t hold in M .  !
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Abstract. Computable Analysis investigates computability on real
numbers and related spaces. One approach to Computable Analysis is
Type Two Theory of Effectivity (TTE). TTE provides a computational
framework for non-discrete spaces with cardinality of the continuum. Its
basic tool are representations. A representation equips the objects of a
given space with “names”, which are infinite words. Computations are
performed on these names.

We discuss the property of admissibility as a well-behavedness cri-
terion for representations. Moreover we investigate and characterise the
class of spaces which have such an admissible representation. This cate-
gory turns out to have a remarkably rich structure.

Keywords: Computable Analysis, TTE, Admissibility, Topological
Spaces, Cartesian-Closed Categories.

1 Introduction

Computable Analysis is a theory that investigates computability and complexity
on spaces occuring in functional analysis like the real numbers or vector spaces.
The traditional model for real number computation is floating point arithmetic:
a real number is represented by a finite word of fixed length consisting of a
mantissa and an exponent. Unfortunately, floating point arithmetic does not
provide a reliable computational model for the real numbers. We illustrate this
by giving two simple examples of arithmetical problems, for which floating point
arithmetic fails spectacularly.

The first example is the following system of linear equations:

40157959.0 · x + 67108865.0 · y = 1.0

67108864.5 · x + 112147127.0 · y = 0.0

Applying the solution formula x = b1·a2,2−b2·a1,2

a1,1·a2,2−a2,1·a1,2
, y = a1,1·b2−a2,1·b1

a1,1·a2,2−a2,1·a1,2
, float-

ing point arithmetic using “double precision” variables (53bit mantissa) com-
putes the pair (112147127.0,−67108864.5) as the solution. However, the correct
solution is the double of this pair. The reason for this flaw is that a1,1 · a2,2 and
a2,1 · a1,2 in this example are very close to each other and that unfavourable
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rounding of these products produces 1.0 as the determinant a1,1 ·a2,2−a2,1 ·a1,2,
whereras the correct value is 0.5.

The second example, the so-called logistic equation, shows that floating point
arithmetic even infringes the fundamental law of associativity of multiplication.
The logistic function defines a non-converging sequence of reals (actually ratio-
nals) in the unit interval [0, 1] by

x0 := 0.5 , xi+1 := 3.75 · xi · (1.0− xi) ,

cf. [10, 12]. Depending on the order of evaluation of the product 3.75·xi·(1.0−xi),
double precision floating point arithmetic produces the rather arbitrary values
0.8358 . . . , 0.5887 . . . , 0.3097 . . . for x100. All three “results” are nowhere near
the correct value (roughly 0.8882).

An alternative to floating point arithmetic would be the use of rational arith-
metic. By forming a countable set, rational numbers can be represented unam-
biguously by finite words, so that reliable computation on Q is possible. However,
the example of the logistic function shows that rational arithmetic is unfeasible:
the space necessary to store the rational xi roughly doubles in each iteration
step. Hence even the computation of this simple sequence with rational arith-
metic requires exponential time.

Thus we need an approximative computational model which is capable of
approximating the reals with arbitrary precision. K. Weihrauch’s Type Two
Theory of Effectivity (TTE) provides such a computational model (cf. [22, 23]).
The basic idea of TTE is to represent the objects of a given space by infinite
sequence of symbols of an alphabet Σ. Such a naming function is a called a
representation of that space. The actual computation is performed by a digital
computer on these names. This means that a function f is computable if, for any
name p of an argument x, every finite prefix of a name of f(x) can be computed
from some finite prefix of the input name p. N. Müller’s iRRAM (cf. [12]), an
efficient implementation of exact real arithmetic, originates from TTE.

A familiar example of a representation of the set of reals is the decimal rep-
resentation 0dec : {0, . . . , 9, -,...} ⇀ R, defined by 0dec(a−k . . . a0...a1a2 . . . ) :=∑∞

i=−kai/10i and 0dec(-a−k . . . a0...a1a2 . . . ) := −∑∞
i=−kai/10i. However, the

decimal representation fails to induce a reasonable notion of a computable real
function, a fact that was already implicitely noticed by A. Turing in [21]. The
surprising reason is that real multiplication by 3 is not computable, if the deci-
mal representation is used. The reason for this unexpected flaw is of topological
rather than recursion-theoretical nature, see Example 1. This misbehaviour of
the decimal representation demonstrates the need of a well-behavedness criterion
for representations. In this paper, we will investigate the property of admissibility
which ensures that a representation behaves suitably in topological terms.

In Section 2 we summarise some basics of Type Two Theory of Effectivity.
Section 3 introduces the notion of an admissible representation. In Section 4 we
characterise the class of sequential topological spaces which have an admissible
representation. It turns out that this is the category QCB0 of T0-quotients of
countably based spaces. Furthermore we investigate the structural properties
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of this category. Proofs are not included, as the paper summarises published
results.

2 Basics of Type Two Theory of Effectivity

This section gives a short introduction to basic concepts of Type Two Theory
of Effectivity (TTE). More details can be found e.g. in [22, 23, 4, 3].

Representations

The basic idea of TTE is to represent infinite objects like real numbers, functions
or sets by infinite strings over some finite or countably infinite alphabet Σ and
to compute on these names. The corresponding naming function δ mapping a
name p to the encoded object δ(p) is called a representation. More precisely:

Definition 1. A representation of a set X is a partial surjection δ : Σω ⇀ X ,
where Σω := {p | p : N → Σ}.
We denote by dom(f) ⊆ Y the domain of a partial function f : Y ⇀ Z. Hence
dom(δ) is referred to as the set of names of a representation δ.

Computability of Functions on Σω

For functions on Σω, computability is defined via computable monotone word
functions or, equivalently, via Type-2 machines. A word function λ : Σ∗ → Σ∗

is called monotone, if u � v implies λ(u) � λ(v), where � denotes the prefix-
relation on Σ∗ ∪Σω. A partial function g : Σω ⇀ Σω is computable, if there is a
computable monotone word-function λ : Σ∗ → Σ∗ such that

g(p) = sup�
{
λ(p<n)

∣
∣n ∈ N

}

holds for all p ∈ dom(g) and
{
p ∈ Σω

∣
∣ {λ(p<n) |n ∈ N} is infinite

}
= dom(g).

Here p<n denotes the prefix of length n of p, i.e. the word p(0) . . . p(n − 1).
Computability of multivariate functions h : Σω × . . .×Σω ⇀ Σω is defined in a
similar way. Computable functions on Σω are topologically continuous w.r.t. the
countably based1 Cantor topology O(Σω) on Σω. Any open set of the Cantor
space has the form {p ∈ Σω | ∃w ∈ W.w � p}, where W ⊆ Σ∗. Remember that
a partial function f between two topological spaces X and Y is topologically
continuous, if for every open set V ∈ O(Y) there is an open set2 U ∈ O(X)
satisfying U ∩ dom(f) = f−1[V ].

Relative Computability

Given two representations δ : Σω ⇀ X and γ : Σω ⇀ Y , a partial function
f : X ⇀ Y is called (δ, γ)-computable, if there is a computable function g : Σω ⇀
Σω realising f , which means that

γ(g(p)) = f(δ(p)) (1)

1 A topological space is countably based, if it has a countable base (cf. [6, 20, 24]).
2 We write O(X) for the topology of a topological space X.
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holds for all p ∈ dom(fδ). In other words, the diagram

Σω g−−−−→ Σω

⏐
⏐
-δ

⏐
⏐
-γ

X
f−−−−→ Y

has to commute. In this case we also say that f is computable w.r.t. the rep-
resentations δ and γ. If δ and γ are ambient representations of X and Y , then
we simply say that f is computable rather than f is (δ, γ)-computable. Relative
computability of multivariate functions is defined in an analogous way.

Relative Continuity

Since any computable function on Σω is continuous, the notion of relative con-
tinuous functions plays an important role in investigating which representations
of a space induce a reasonable computability notion on that space. We say that
a function f : X ⇀ Y is (δ, γ)-continuous, if there is a continuous function
g : Σω ⇀ Σω satisfying Equation (1). In this situation we also say that f is
relatively continuous w.r.t. δ and γ.

Proposition 1 motivates the concept of relative continuity.

Proposition 1. Relative computability implies relative continuity (i.e. every
(δ1, . . . , δk, γ)-computable function is (δ1, . . . , δk, γ)-continuous).

We have already mentionned that for purely topological reasons multiplication
by 3 is not computable w.r.t. the decimal representation.

Example 1. Real multiplication by 3 is not (0dec, 0dec)-continuous. For a proof,
consider the name p = 0...3333 . . . representing 1

3 . No finite prefix w of p provides
the information whether the number represented by p is in (−∞, 1

3 ] or in [13 ,∞),
because w can be extended to a name of a number > 1

3 as well as to a name of
a number < 1

3 . But this information is necessary to determine the first symbol
of any name of the result 1.

The Categories Rept and Repc

We define Rept to be the category whose objects are the representations over the
alphabet Σ := N and whose morphisms between objects δ and γ are the total
(δ, γ)-continuous functions. By Repc we denote the subcategory whose mor-
phisms are the relatively computable functions. Both categories are cartesian-
closed (cf. [1, 23]). There is a canonical way to construct a representation [δ, γ] of
the cartesian product X×Y and a representation [δ→ γ] of the (δ, γ)-continuous
total functions (cf. [23]). The representations [δ, γ] and [δ→ γ] form, respectively,
the product and the exponential of the objects δ and γ in both categories Rept

and Repc.
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Computable Real Functions

The usual computability notion on the reals is induced by the binary signed-digit
representation 0sd : {-1, 0, 1,...}ω ⇀ R. Its main feature is the use of the negative
digit -1. The signed-digit representation is defined by

0sd(a−k . . . a0...a1a2 . . . ) :=
∞∑

i=−k
ai · 2−i

for all k ∈ N and a−k, a−k+1, . . . ∈ {-1, 0, 1}.
Definition 2. A function f : Rk ⇀ R is called computable, if it is computable
w.r.t. to the binary signed-digit representation.

Definition 2 establishes a computational model for the real numbers which is
essentially equivalent3 to the ones considered by other authors like A. Grzegor-
czyk [8], M. Pour-El and J. Richards [13], K.I. Ko [9], V. Stoltenberg-Hansen
and J.V. Tucker [17], K. Weihrauch [23].

Example 2. Real addition, subtraction, multiplication, division as well as y
√
x,

exp, log, sin, cos, tan, arcsin, arccos, arctan are computable real functions. Note
that none of these functions is computable w.r.t. the decimal representation by
not being relatively continuous.

An important observation is that any computable real function is continuous
w.r.t. the familiar Euclidean topology, which is generated by the family of all
rational open intervals (q1, q2) as a base.

Theorem 1. ([22, 23]) Any computable function f : Rk ⇀ R is topologically con-
tinuous with respect to the Euclidean topology.

A consequence of this theorem is that tests like “x = 0 ?” and “x < y ?” are not
computable by being discontinuous. However, in many cases these tests can be
replaced by computable multivalued tests (cf. [3, 23]).

3 Admissible Representations

In this section we introduce and motivate the notion of an admissible representa-
tion. Admissibility ensures that representations are topologically well-behaved.
More details can be found in [16, 14].

The Final Topology of a Representation

The definition of relative computability w.r.t. representations establishes an ap-
proximative computability model. Thus it comes as no surprise that any rela-
tively computable function is continuous in some sense.
3 For more details see [18, 23].
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The final topology induced by a representation δ : Σω ⇀ X is one tool to
formalise this continuity. It is defined by

O(δ) :=
{
U ⊆ X

∣
∣∃V ∈ O(Σω) . δ−1[U ] = V ∩ dom(δ)

}
.

The final topology contains every finitely observable property (cf. [20]), i.e. every
property U ⊆ X that can be obtained from each name of each element satisfying
U by observing some finite prefix of that name. Another tool to describe the
approximation structure provided by δ is given by the Lim-quotient induced
by δ in the category Lim of limit space (cf. [15, 16]).

We call δ : Σω ⇀ X a quotient representation of a topological space X, if the
final topology O(δ) is equal to the topology O(X) of X. By being a topological
quotient4 of a countably based space, any space X having a quotient represen-
tation is sequential, i.e. every sequentially open5 set of X is open (cf. [6, 7]).

Proposition 2. ([16]) Let δ : Σω ⇀ X and γ : Σω ⇀ Y be representations.
Then any total (δ, γ)-continuous function f : X → Y is topologically continuous
w.r.t. the final topologies O(δ) and O(γ).

A relatively continuous multivariate function is not necessarily topologically con-
tinuous w.r.t. the product topology of the respective final topologies, but at least
it is sequentially continuous6.

Proposition 3. ([16]) For every i let δi be a quotient representation of a topo-
logical space Xi. Let f : X1 × . . .× Xk ⇀ Xk+1 be (δ1, . . . , δk, δk+1)-continuous.
Then f is sequentially continuous.

As a consequence, f in Proposition 3 is topologically continuous w.r.t. the topol-
ogy on dom(f) formed in the category Seq of sequential topological spaces. This
is an important reason to work in the category Seq rather than in the category
Top of topological spaces.

The Definition of Admissible Representations

The converse of Proposition 2 does not hold: Multiplication by 3 is continu-
ous w.r.t. the final topology of the decimal representation 0dec (which is the
Euclidean topology), yet it is not (0dec, 0dec)-continuous.

The property of admissibility is defined in order to reconcile relative continuity
with mathematical continuity. Thus an “admissible” representation δ : Σω ⇀ X
should at least have the property that the identity function idX is (φ, δ)-contin-
uous for every representation φ of X having the same final topology as δ.
4 A topological space Z is called a topological quotient of a topological space Y, if there

is a surjection q : Y → Z such that the final topology {V ⊆ Z | q−1[V ] ∈ O(Y)} is
equal to topology O(Z) of Z.

5 A set V ⊆ X is sequentially open, if every sequence (xn)n that converges to some
element in V is eventually in V . Clearly, every open set is sequentially open.

6 A function between topological spaces is sequentially continuous, if it maps conver-
gent sequences to convergent sequences (cf. [6, 7]). Topological continuity implies
sequential continuity, but not conversely, unless the domain space is sequential.
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Definition 3. A representation δ : Σω ⇀ X is called admissible, if idX is (φ, δ)-
continuous for every representation φ : Σω ⇀ X with O(φ) = O(δ).

It turns out that this property is sufficient to entail:

Theorem 2. ([14, 16]) Let δ : Σω ⇀ X and γ : Σω ⇀ Y be admissible represen-
tations. Then a total function f : X → Y is (δ, γ)-continuous if and only if f is
topologically continuous w.r.t. the final topologies O(δ) and O(γ).

For multivariate functions we have equivalence between relative continuity (w.r.t.
admissible representations) and sequential continuity.

Theorem 3. ([14, 16]) For i ∈ {1, . . . , k + 1} let δi be an admissible quotient
representation of a topological space Xi. Then a function f : X1×. . .×Xk ⇀ Xk+1
is (δ1, . . . , δk, δk+1)-continuous if and only if f is sequentially continuous.

Example 3 gives a justification for choosing the signed-digit representation rather
than the decimal representation for defining real computability.

Example 3. The signed-digit representation 0sd is admissible, whereas the deci-
mal representation 0dec is not.

If δ, δ′ are continuously equivalent representations of X , i.e. idX is (δ, δ′)-
continuous and (δ′, δ)-continuous, then either both are admissible or neither is.

4 The Category of QCB-Spaces

In this section we introduce qcb-spaces and show their relationship to admissible
representations. Moreover we describe their rich structure: they are closed under
many useful constructions for modelling computation.

Any space having an admissible quotient representation is a topological
quotient4 of a countably based space. We name spaces with the latter property:

Definition 4. A topological space X is a called a qcb-space, if X is a topological
quotient of a countably based space.

By QCB we denote the category of qcb-spaces and of topologically continuous
functions, and by QCB0 the full subcategory consisting of those qcb-spaces that
are T0-spaces7.

The incentive for this definition is the following surprising characterisation of
spaces having an admissible quotient representation.

Theorem 4. ([16]) A topological space has an admissible quotient representa-
tion if and only if it is a qcb-space and satisfies the T0-property.

7 A topological space X is called a T0-space, if its specialization order �X is a partial
order. It is defined by: x �X y if, for all U ∈ O(X), x ∈ U implies y ∈ U .
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One can drop the T0-property, if one considers “multivalued” representations.

Another useful characterisation uses the notion of a pseudobase. A family B of
(not necessarily open) subsets of X is called a pseudobase for a topological space
X, if for every open set U and every sequence (xn)n converging to some element
x∞ in U there is some B ∈ B and n0 ∈ N with {x∞, xn |n ≥ n0} ⊆ B ⊆ U .

Example 4. The family of all rational closed intervals [q1, q2] forms a pseudobase
of the Euclidean space consisting of non-open sets.

In contrast to bases, pseudobases do not characterise topological spaces un-
ambiguously. For example, the powerset of X is a pseudobase of all topological
spaces with underlying setX . However, pseudobases do become interesting, when
they are countable. The following theorem is used in [16] to prove Theorem 4.

Theorem 5. ([16, 5]) A sequential topological space has an admissible quotient
representation if and only if it has a countable pseudobase and satisfies the T0-
property. A sequential topological space is a qcb-space if and only if it has a
countable pseudobase.

The next proposition yields some useful properties of countably based spaces
that remain valid in the more general class of qcb-spaces.

Proposition 4. ([16, 2]) Let X be a qcb-space. Then:

1. X is a sequential topological space.
2. X is sequentially separable, i.e. there is a countable subset A ⊆ X such that

any element in X is the limit of a sequence in A.
3. X is hereditarily Lindelöf, i.e. every family (Ui)i∈I of open sets contains a

countable subfamily (Uj)j∈J with
⋃
j∈J Uj =

⋃
i∈I Ui.

4. If X is regular (“T3”), then X is perfectly normal (“T6”).
5. If X is locally compact or metrisable, then it is countably based.
6. Compactness and sequential compactness are equivalent for subsets of X.8

The category QCB has a very rich categorical structure. In particular it is
cartesian-closed (i.e. all product spaces and function spaces exist), in contrast
to its supercategory Top of topological spaces and its subcategory ωTop of
countably based spaces.

Theorem 6. ([16, 11, 5]) The categories QCB and QCB0 are cartesian-closed.
Moreover both categories have all countable limits and countable colimits.

The category QCB inherits this structure from its cartesian-closed supercate-
gory Seq of sequential topological spaces (and QCB0 from the category Seq0
of sequential T0-spaces). Theorem 6 can be proven by constructing correspond-
ing countable pseudobases. For example, the exponential YX of two sequential
spaces X and Y is the set C(X,Y) of all continuous functions f : X → Y endowed

8 This result is due to Peter Nyikos (private communication).
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with the sequentialization9 of the compact-open topology on C(X,Y). For given
countable pseudobases A for X and B for Y, the closure under finite intersection
of the family of sets of the form

{
f ∈ C(X,Y)

∣
∣ f [A1 ∩ . . . ∩Ak] ⊆ B

}
,

where A1, . . . , Ak ∈ A and B ∈ B, constitutes a countable pseudobase for YX.
Importantly, QCB0 inherits its cartesian-closed structure also from the cate-

gory Rept: the standard constructions of product representations and function
space representations preserve admissibility. A third supercategory from which
QCB0 inherits its product space and function space constructions is the cate-
gory ωEqu of countably based equilogical spaces (cf. [11]). The category ωEqu
can be considered as an exemplification of the domain-theoretic approach to
Computable Analysis (cf. [1]). The fact that QCB0 is a common subcategory
of Rept and ωEqu via structure-preserving inclusion functors explains why
the TTE computational model agrees to a large extent with domain-theoretic
computational models, namely on spaces that can be built from countably based
T0-spaces by forming: finite or countable products, exponentials, (sequentialized)
subspaces, finite or countable coproducts, T0-quotients.

An interesting subcategory of QCB0 is the category ωP of topological predo-
mains (cf. [19, 2]). It consists of those qcb-spaces that are monotone convergence
spaces. A monotone convergence space is a topological space X such that its
specialization order7 is a dcpo and every open of X is Scott-open w.r.t. the spe-
cialization order. The category ωP enjoys similar closure properties to QCB0.

Theorem 7. ([2]) The category ωP is cartesian-closed with countable limits and
colimits.

Topological predomains are a topological generalisation of dcpos which offer
certain advantages over traditional dcpo-based domain theory: they can be used
to model combinations of features such as effectivity, computational effects and
polymorphism that traditional domain theory is unable to handle simultaneously.

5 Conclusion

We have introduced admissibility as a property guaranteeing well-behavedness of
representations. The category QCB0 of spaces equipped with admissible repre-
sentations has nice characterisations. Moreover, QCB0 enjoys very good struc-
tural properties allowing to model various aspects of computation.
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Abstract. In Bishop-style constructive algebra it is known that if a
module over a commutative ring has a Noetherian basis function, then it
is Noetherian. Using countable choice we prove the reverse implication
for countable and strongly discrete modules. The Hilbert basis theorem
for this specific class of Noetherian modules, and polynomials in a single
variable, follows with Tennenbaum’s celebrated version for modules with
a Noetherian basis function. In particular, the usual hypothesis that the
modules under consideration are coherent need not be made. We further
identify situations in which countable choice is dispensable.
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1 Introduction

This article is conceived in the realm of constructive algebra [1] which parallels
Bishop’s constructive analysis [2, 3]. As compared with the – then dubbed clas-
sical – customary way of doing mathematics, the principal characteristic of the
framework created by Bishop is the exclusive use of intuitionistic logic. According
to Richman [4], this allows to view Bishop’s theory as a generalisation of clas-
sical mathematics. Given Richman’s more recent proposal to do Bishop-style
constructive mathematics even without countable choice [5], we will indicate
throughout where this principle is used and under which additional hypotheses
its exertion can be avoided.1

One of the first constructively interesting proofs of the Hilbert basis the-
orem for modules over a commutative ring was given by J. Tennenbaum in

1 As laid out in [2], p. 9, Bishop’s clear-cut position was that “the axiom of choice . . .
is not a real source of nonconstructivity in classical mathematics. A choice function
exists in constructive mathematics, because a choice is implied by the very meaning
of existence.” This argument was considered to apply at least to countable and
dependent choice, which principles still are widely used in Bishop-style construc-
tive mathematics (for a discussion we refer to [6]). These choice principles were
considered to be particularly indispensable for the theory of Noetherian rings and
modules ([1], p. 107).
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his thesis [7], with the existence of a Noetherian basis operation as his par-
ticular notion of Noetherianity. The customary definition of the module being
Noetherian is classically equivalent to the existence of a Noetherian basis op-
eration, and with the appropriate form of the axiom of choice at hand any
such operation gives rise to a function. While every discrete module that ad-
mits a Noetherian basis function is known to be Noetherian in the sense of
Richman and Seidenberg ([1], VIII.4.1), it has not been clarified yet whether
– or under which circumstances – Noetherian modules have Noetherian basis
functions.

In the present paper we investigate the connection between Noetherianity and
the existence of a Noetherian basis function, and show – making use of count-
able choice – that for countable and strongly discrete modules the two notions
are equivalent (Theorem 1). We thus partially refute the conjecture, made in
[1], VIII.4, Exercise 4, that Noetherianity is “probably not” sufficient for the
existence of a Noetherian basis function on a strongly discrete module. In com-
bination with Tennenbaum’s result in the form of [1], VIII.4.4, we eventually
obtain the Hilbert basis theorem for countable and strongly discrete Noetherian
modules (Corollary 1). This approach enables one to do without the usually
made additional assumption that the modules are coherent as long as one is
content with the case of univariate polynomials.

We further refer to Perdry’s article [8] for a comparison of several concepts of
Noetherianity (exclusive of Tennenbaum’s but inclusive of an inductive variant
due to Martin-Löf [9]), and of the corresponding versions of the Hilbert basis
theorem. A choice-free constructive approach to the Hilbert basis theorem for
coherent modules was given in [10]; the ascending tree condition Richman used
in that approach is equivalent to his and Seidenberg’s ascending chain condition
whenever countable choice is assumed.

Notation. If S is a set, we write S∗ for the set of finite sequences of elements of S,
and SN for the set of infinite sequences. For a mapping f : A→ B and a subset S
of A, let f [S] denote the image of S under f . We suppose that N = {1, 2, 3, . . .}
and N0 = {0, 1, 2, . . .}.

A subset T of a set S is said to be detachable if for every x ∈ S one can decide
whether x ∈ T or x �∈ T , where the latter stands for the negation of the former.
A set S is called discrete if every singleton subset of S is detachable: that is, if
for all x, y ∈ S one can decide whether x = y or x �= y, where again the latter
stands for the negation of the former.

A set S is called finitely enumerable if for some n ∈ N0 there is a surjective
mapping from {1, . . . , n} to S, which encompasses the case n = 0 of S = ∅. If
a discrete set S is finitely enumerable, then it is even finite: that is, there is a
bijective mapping from {1, . . . , n} to S for some n ∈ N0.

Throughout this paper, let R be a commutative ring with unit. For an R-
module M and a finitely enumerable subset S = {x1, . . . , xn} thereof, the sub-
module of M that is generated by S will be denoted by (x1, . . . , xn)R. Any
submodule of this kind is called finitely generated.
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2 Noetherian Modules

The probably best known constructively relevant definition of a Noetherian mod-
ule is due to Richman [11] and Seidenberg [12]. It requires the set of finitely
generated submodules to satisfy the following ascending chain condition:

Definition 1. An R-module M is called Noetherian if for every sequence A1 ⊆
A2 ⊆ . . . of finitely generated submodules of M one can find an index n ∈ N
such that An = An+1.

Note that this definition only refers to finitely generated submodules, and does
not require the ascending chain of submodules to eventually stop. It is clear
from the definition, however, that for any such sequence there exist arbitrarily
large indexes n ∈ N with An = An+1. One easily proves that Noetherianity à
la Richman and Seidenberg is classically equivalent to the usual definition of a
Noetherian module.

Examples of Noetherian modules are the following: finite modules; the ring of
integers Z; every discrete field; and – by the Hilbert basis theorem from [1], VIII.1
– the polynomial ring R[X1, . . . , Xn] over any coherent Noetherian ring R, such
as Z or a discrete field ([1], p. 196). The algebraic numbers, for instance, form a
discrete field ([1], p. 189).

Definition 2. An R-module M is called strongly discrete if every finitely gen-
erated submodule of M is detachable.

Needless to say, if A = (x1, . . . , xn)R is a finitely generated submodule of M ,
then b ∈ A means that one can find r1, . . . , rn ∈ R such that b =

∑n
i=1 rixi,

whereas b �∈ A stands for the negation of b ∈ A: that is, b �= ∑n
i=1 rixi for all

r1, . . . , rn ∈ R.
The examples of Noetherian modules given above are all strongly discrete. A

strongly discrete module is often said “to have detachable (finitely generated)
submodules”. Note that an R-module M is strongly discrete if and only if M/A
is discrete for every finitely generated submodule A of M ; in particular, if M is
strongly discrete, then it is discrete.

The following characterisation of Noetherianity for strongly discrete modules
makes it easier to compare this notion with the existence of a Noetherian basis
function.

Proposition 1. Let M be a strongly discrete R-module.

M is Noetherian ⇔ ∀(xi) ∈MN∃n ∈ N : xn ∈ (x1, . . . , xn−1)R .

Proof. Assume first that M is a Noetherian R-module. Let x1, x2, . . . be an
infinite sequence in M , and set Ai := (x1, . . . , xi)R for every i ∈ N. Obviously,
A1, A2, . . . is an ascending chain of finitely generated submodules of M . As M
is Noetherian, there exists an index n ∈ N such that An = An+1, which is
equivalent to xn+1 ∈ (x1, . . . , xn)R.
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For the converse, let A1, A2, . . . be an ascending chain of finitely generated
submodules of M . Construct a sequence x1, x2, . . . of elements of M , and a
strictly increasing sequence α(1), α(2), . . . of positive integers such that

Aj = (xα(j), . . . , xα(j+1)−1)R

for every j ∈ N. Now construct a sequence β(1), β(2), . . . of positive integers such
that for every j ∈ N the following two conditions hold:

(i) α(j) ≤ β(j) ≤ α(j + 1)− 1 , and
(ii) if xβ(j) ∈ (x1, . . . , xα(j)−1)R, then

xi ∈ (x1, . . . , xα(j)−1)R for all α(j) ≤ i ≤ α(j + 1)− 1.

Note that we always can find such β(j)’s: in the case that there exists an i ∈
{α(j), . . . , α(j + 1) − 1} such that xi /∈ (x1, . . . , xα(j)−1)R, we let β(j) be the
smallest i of this kind; in the other case, we could take any index between α(j)
and α(j + 1)− 1, but to pin down one of them, we set β(j) = α(j).

Now consider the sequence xβ(1), xβ(2), . . . in M . By hypothesis, there exists
n ∈ N such that

xβ(n) ∈ (xβ(1), . . . , xβ(n−1))R .

Since β(1) < . . . < β(n− 1) ≤ α(n)− 1, it follows that

xβ(n) ∈ (x1, . . . , xα(n)−1)R .

By the construction of the sequence β(1), β(2), . . ., we thus have

xi ∈ (x1, . . . , xα(n)−1)R

for every i ∈ {α(n), . . . , α(n+ 1)− 1}, which is to say that An = An+1.  !

In [11], p. 441 the right-hand equivalent of Proposition 1 was seen, also for a
strongly discrete module, to be equivalent to the existence of a Noetherian basis
operation à la Tennenbaum, which thus is a further equivalent of the module
being Noetherian.

3 Noetherian Basis Functions

We suppose that every mapping ϕ : M∗ → R∗ which occurs in the sequel has
the property that ϕ[Mn+1] ⊆ Rn for every n ∈ N.

Definition 3. Let M be a discrete R-module. A Noetherian basis function for
M is a mapping ϕ : M∗ → R∗ such that for every infinite sequence x1, x2, . . . of
elements of M there exists an index N ≥ 2 such that xN =

∑N−1
i=1 rixi, where

(r1, . . . , rN−1) = ϕ(x1, . . . , xN ).
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In the definition of a Noetherian basis function given in [1], VIII.4, the existence
of arbitrary large indexes N ≥ 2 with the required property is asserted, which
clearly follows from the definition we use ([1], VIII.4, Exercise 3).

To see that every finite R-module M admits a Noetherian basis function
([1], VIII.4, Exercise 1), define the mapping ϕ : M∗ → R∗ by setting

ϕ(x1, . . . , xk) := (r1, . . . , rk−1)

where

ri :=
{

1 if xi = xk and xj �= xk for all j < i
0 otherwise

for i ∈ {1, . . . , k − 1}. This ϕ obviously is a Noetherian basis function for M .
A perhaps more interesting example of a Noetherian basis function is one

for the ring Z ([1], VIII.4.2). For integers x1, . . . , xn, compute the nonnegative
greatest common divisor d of x1, . . . , xn−1. If d = 0 (that is, if x1 = . . . = xn−1 =
0), set ϕ(x1, . . . , xn) := (0, . . . , 0); otherwise let r be the nonnegative remainder
when xn is divided by d. We choose integers z1, . . . , zn−1 such that xn − r =∑n−1

i=1 zixi, and set ϕ(x1, . . . , xn) := (z1, . . . , zn−1) to obtain a Noetherian basis
function for Z.

To avoid the seeming invocation of countable choice in the foregoing construc-
tion, it suffices to fix from the outset any variant of the Euclidean algorithm for
Z. This method can also be applied to other rings with a Euclidean algorithm,
as there is k[X ] with k a discrete field ([1], II.5.7).

As an immediate consequence of Proposition 1, if a strongly discreteR-module
has a Noetherian basis function, then it is Noetherian. This was proved for dis-
crete modules in [1], VIII.4.1 by a method similar to our proof of Proposition 1.
In [1], VIII.4, Exercise 4, the authors raise the question whether the reverse
implication – that every Noetherian module has a Noetherian basis function –
holds for strongly discrete modules, and say that this is “probably not” the case.
Although this question is still open in general, in the particular case of countable
modules, and generically with countable choice, the answer is on the positive as
we will show in the sequel.

In [1], p. 11 a set S is called countable if for some detachable subset D of N
there is a surjective mapping f from D to S. Note that this notion of a countable
set subsumes the one of a finitely enumerable set. If a discrete set S is countable,
then one can even obtain a bijection between S and a detachable subset of N
by redefining f wherever necessary to avoid all repetitions ([1], I.2, Exercise 8).
Since this fact will be crucial for the remainder of this note, we provide the
argument in some detail. Pick ∞ �∈ S such that S ∪ {∞} is a discrete set, and
define a mapping g from N to S ∪ {∞} by setting

g(n) :=
{
f(n) if n ∈ D and f(n) �∈ {g(1), . . . , g(n− 1)}
∞ otherwise

for every n ∈ N. This g induces a bijection from g−1(S) to S, and g−1(S) is a
detachable subset of N. Hence a set is countable and discrete precisely when it
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is in a one-to-one correspondence with a detachable subset of N. From now on
we will exclusively use this characterisation of the countable and discrete sets.

Unlike the general proof that a countable union of countable sets is countable,
to obtain the following more specific case there is no need to invoke countable
choice.

Lemma 1. If S is a countable and discrete set, then so is S∗.

Proof. If S is a detachable subset of N, then S∗ is a detachable subset of N∗. It
is an established fact that one can construct a bijection between N and N∗ even
in a recursive manner.  !

In view of the peculiar notion of countable set that is in vigour, we need to
rephrase the principle of countable choice in the following way:

Let A and B be sets, and F (x, y) any formula. Assume that A is a
detachable subset of N. If for every x ∈ A there is y ∈ B with F (x, y),
then there is a mapping ϕ from A to B such that F (x, ϕ(x)) for all
x ∈ A.

The particular case A = N of this statement is a common way to put countable
choice, and is readily seen to imply the general case of an arbitrary detachable
subset A of N. Whenever we speak of countable choice in the sequel, we mean
this principle in the formulation given above.

To prove the next result in its general form we seem to need countable choice;
some specific cases for which countable choice is definitely not required will be
discussed after the proof.

Theorem 1. Let M be a countable and strongly discrete R-module. If M is
Noetherian, then M admits a Noetherian basis function.

Proof. Since M is strongly discrete, for every finite sequence x1, . . . , xn in M
with n ≥ 2 there exist r1, . . . , rn−1 ∈ R such that if xn ∈ (x1, . . . , xn−1)R, then
xn =

∑n−1
i=1 rixi. Applying countable choice together with Lemma 1, we obtain

a mapping ϕ : M∗ → R∗ such that if xn ∈ (x1, . . . , xn−1)R, then

xn = ϕ(x1, . . . , xn)

⎛

⎜
⎝

x1
...

xn−1

⎞

⎟
⎠ ,

that is, xn =
∑n−1

i=1 rixi whenever ϕ(x1, . . . , xn) = (r1, . . . , rn−1).
To show that ϕ is a Noetherian basis function, let x1, x2, . . . be an infinite

sequence of elements of M . Since M is Noetherian, by Proposition 1 there is
an index N ≥ 2 such that xN ∈ (x1, . . . , xN−1)R. By the construction of ϕ it
follows that

xN = ϕ(x1, . . . , xN )

⎛

⎜
⎝

x1
...

xN−1

⎞

⎟
⎠ .

Hence ϕ is a Noetherian basis function for M .  !
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Observe that in order to obtain ϕ we have applied countable choice only to the
definition of M being a strongly discrete module. One can see this even more
clearly if one restates this definition as follows. An R-module M is strongly
discrete if and only if

∀(x1, . . . , xn) ∈M∗ ∃(r1, . . . , rn−1) ∈ R∗

xn �∈ (x1, . . . , xn−1)R ∨ xn = (r1, . . . , rn−1)

⎛

⎜
⎝

x1
...

xn−1

⎞

⎟
⎠ .

(1)

If, in addition, M is countable, then – with countable choice – from (1) we arrive
at

∃ϕ : M∗ → R∗ ∀(x1, . . . , xn) ∈M∗

xn �∈ (x1, . . . , xn−1)R ∨ xn = ϕ(x1, . . . , xn)

⎛

⎜
⎝

x1
...

xn−1

⎞

⎟
⎠ .

(2)

Any ϕ as granted by (2) is a Noetherian basis function for M whenever M is
Noetherian.

We thus have invoked countable choice for A = M∗, B = R∗, and the formula
F (x, r) which is the conjunction of |x| = |r|+ 1 and

x|x| �∈ (x1, . . . , x|x|−1)R ∨ xn = (r1, . . . , r|r|)

⎛

⎜
⎝

x1
...

x|x|−1

⎞

⎟
⎠ ,

where x ∈ M∗, r ∈ R∗, and |u| denotes the length k of any finite sequence
u = (u1, . . . , uk). This F (x, r) is decidable (because M is strongly discrete)
and quantifier-free, which prompts the question whether the specific form of
countable choice for this kind of formulas is necessary for proving Theorem 1.

The answer to this question is on the negative if, in addition, the commutative
ring R is assumed to be countable and discrete. In this case, namely, also R∗ is
countable and discrete (Lemma 1). Hence we would only need countable choice,
for F (x, y) decidable and quantifier-free, in the particular form in which both A
and B are detachable subsets of N. This form, however, is trivially valid without
any choice: a mapping ϕ as required can simply be obtained by defining ϕ(x) as
the least y ∈ B with F (x, y).

The additional condition that R is countable and discrete is satisfied auto-
matically whenever M has a free and cyclic submodule: that is, M contains an
isomorphic copy of R. In fact, if any M of this sort is countable and strongly
discrete, then R is countable and (even strongly) discrete. The reason for this is
that a detachable subset of a detachable subset of N is again a detachable subset
of N; whence every finitely generated submodule of a countable and strongly
discrete module is again countable and (even strongly) discrete.
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We conclude this note with a particular version of the Hilbert basis theorem.
For Corollary 1, countable choice is involved in equal measure as for Theorem 1,
of which it is a consequence.

Corollary 1. Let M be a countable and strongly discrete R-module. If M is
Noetherian, then the R[X ]-module M [X ] is Noetherian.

Proof. If M is Noetherian, then it has a Noetherian basis function (Theorem 1);
whence M [X ] has a Noetherian basis function according to [1], VIII.4.4. Since
M [X ], too, is discrete, we obtain with [1], VIII.4.1 that M [X ] is Noetherian.  !
As we have seen before, countable choice is not needed to prove Theorem 1
whenever R is countable and discrete; nor do the other ingredients of the proof
of Corollary 1 require countable choice. Hence the particular case M = R can
be obtained without countable choice: if R is countable, strongly discrete, and
Noetherian, then R[X ] is Noetherian.

Unlike the treatment of the Hilbert basis theorem for M = R in [1], VIII.1,
to obtain Corollary 1 we did not have to suppose that the module under consid-
eration is coherent. Among other things, this additional hypothesis appears to
be necessary to ensure that if R is strongly discrete, then so is R[X ]. We have
only needed that M [X ] is discrete, which is a trivial consequence of M being
(strongly) discrete. Without R being coherent, however, it is unclear whether
R[X ] is strongly discrete whenever so is R; whence our approach seems to be in-
applicable to rings and modules of polynomials in more than one indeterminate.
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Inverting Monotone Continuous Functions in
Constructive Analysis

Helmut Schwichtenberg

Mathematisches Institut der Ludwig–Maximilians–Universität,
Theresienstr. 39, D-80333 München, Germany

Abstract. We prove constructively (in the style of Bishop) that every
monotone continuous function with a uniform modulus of increase has
a continuous inverse. The proof is formalized, and a realizing term ex-
tracted. This term can be applied to concrete continuous functions and
arguments, and then normalized to a rational approximation of say a zero
of a given function. It turns out that even in the logical term language
“normalization by evaluation” is reasonably efficient.

1 Introduction

There have been many attempts to formalize constructive analysis as presented
in Bishop’s classic [1]. One reason to do this is to uncover the computational con-
tent of constructive proofs, an aspect that has been one of the motivations of the
FTA project [2], where Kneser’s constructive proof of the fundamental theorem
of algebra was formalized in Coq. This work has recently been extended to build
a “Constructive Coq Repository (C-CoRN)” at Nijmegen (Barendregt, Geu-
vers, Wiedijk, Cruz-Filipe [3]). However, extraction of reasonable program from
proofs in this setup turned out to be problematic. One reason is that witnesses
were missing from compuational meaningful axioms (e.g., strong extensionality
∀x,y.f(x)#f(y) → x#y), another one that the Set, Prop distinction in Coq was
found to be insufficient (cf. [3]). Here we desribe a different formalization of con-
structive analysis, from the point of view of later term extraction. In particular,
we deal with the existence of a continuous inverse to a monotonically increasing
continuous function. The proof uses the Intermediate Value Theorem IVT.

Some optimizations in definitions and proofs are necessary to produce ex-
tracted terms that can be evaluated efficiently. These are (a) addition of ex-
ternal code to the definitions of arithmetical operations, which is used (based
on the corresponding function of the programming language) when the argu-
ments are numerals; (b) introduction of the let-construct in extracted terms; (c)
“non-computational” quantifiers [4].

The paper extends [5] by a formalization of and term extraction from the
theorem on the existence of inverse functions. It turns out that in spite of the
harder theorem (compared with IVT) one obtains even better extracted terms.
– I have tried to make this paper readable independently of [5].

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 490–504, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Inverse Functions

We prove that every continuous function with a uniform modulus of increase
has a continuous inverse. A constructive proof of this fact has been given by
Mandelkern [6]. More recently, J. Berger [7] introduced a concept he called “exact
representation of continuous functions”, and based on this gave a construction
converting one such representation of an increasing function into another one
of its inverse. The proof below is based on a particular concept of a continuous
function, as a type-1 object (using separability of the real numbers).

The setup of constructive analysis is essentially the one of Bishop [1], and is
only sketched here. More detailed elaborations can be found in [8, 5].

We view a real x as a Cauchy sequence (an)n of rationals with a separately
given modulus M . When comparing two reals, x < y needs a witness, but x ≤ y
doesn’t; in fact, we can prove x �< y ↔ y ≤ x. For reals x = ((an)n,M) and
y := ((bn)n, N), define x <k y to mean 1/2k ≤ bp − ap, for p := max(M(k +
2), N(k + 2)).

Constructively we cannot compare two reals, but we can compare a real with
a proper interval:

Lemma 1 (ApproxSplit). Let x, y, z be given and assume x < y. Then either
z ≤ y or x ≤ z.

Proof. Let x := ((an)n,M), y := ((bn)n, N), z := ((cn)n, L). Assume x <k y,
and let q := max(p, L(k + 2)) and d := (bp − ap)/4.

Case cq ≤ ap+bp

2 . We show z ≤ y. It suffices to prove cn ≤ bn for n ≥ q. To
see this, observe

cn ≤ cq +
1

2k+2 ≤
ap + bp

2
+
bp − ap

4
= bp − bp − ap

4
≤ bp − 1

2k+2 ≤ bn

Case cq �≤ ap+bp

2 . We show x ≤ z, via an ≤ cn for n ≥ q.

an ≤ ap +
1

2k+2 ≤ ap +
bp − ap

4
≤ ap + bp

2
− bp − ap

4
≤ cq − 1

2k+2 ≤ cn.

This concludes the proof.  !
A continuous function f : I → R on a compact interval I with rational end
points is given by

(a) an approximating map hf : (I ∩ Q) × N → Q and a map αf : N → N such
that (hf (a, n))n is a Cauchy sequence with (uniform) modulus αf ;

(b) a modulus ωf : N → N of (uniform) continuity, which satisfies

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k for n ≥ αf (k);

αf and ωf are required to be weakly increasing. One may also add a lower bound
Nf and an upper bound Mf for all hf (a, n).
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Notice that a continuous function is given by objects of type level ≤ 1 only.
This is due to the fact that it suffices to define its values on rational numbers.

To prove the Intermediate Value Theorem, we begin with an auxiliary lemma,
which from a “correct” interval c < d (that is, f(c) ≤ 0 ≤ f(d) and 2−n ≤ d− c)
constructs a new one c1 < d1 with d1 − c1 = 2

3 (d− c).
We say that l ∈ N is a uniform modulus of increase for f : [a, b] → R if for all

c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c→ f(c) <m+l f(d).

Lemma 2 (IVTAux). Let f : [a, b] → R be continuous, and with a uniform
modulus l of increase. Assume a ≤ c < d ≤ b, say 2−n < d − c, and f(c) ≤
0 ≤ f(d). Then we can construct c1, d1 with d1 − c1 = 2

3 (d− c), such that again
a ≤ c ≤ c1 < d1 ≤ d ≤ b and f(c1) ≤ 0 ≤ f(d1).

Proof. Let c0 = c+ d−c
3 = 2c+d

3 and d0 = c+ 2(d−c)
3 = c+2d

3 . From 2−n < d− c
we obtain 2−n−2 ≤ d0 − c0, so f(c0) <n+2+l f(d0). Now compare 0 with this
proper interval, using ApproxSplit. In the first case we have 0 ≤ f(d0); then let
c1 = c and d1 = d0. In the second case we have f(c0) ≤ 0; then let c1 = c0 and
d1 = d.  !
Theorem 1 (IVT). If f : [a, b] → R is continuous with f(a) ≤ 0 ≤ f(b),
and with a uniform modulus of increase, then we can find x ∈ [a, b] such that
f(x) = 0.

Proof. Iterating the construction in the auxiliary lemma IVTAux above, we con-
struct two sequences (cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f(cn) ≤ 0 ≤ f(dn),

dn − cn =
(
2/3
)n(b− a).

Let x, y be given by the Cauchy sequences (cn)n and (dn)n with the obvious
modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.  !
From the Intermediate Value Theorem we obtain

Theorem 2 (Inv). Let f : [a, b] → R be continuous with a uniform modulus
of increase, and assume f(a) ≤ a′ < b′ ≤ f(b). We can find a continuous
g : [a′, b′] → R such that f(g(y)) = y for every y ∈ [a′, b′] and g(f(x)) = x for
every x ∈ [a, b] such that a′ ≤ f(x) ≤ b′.

Proof. Let f : [a, b] → R be continuous with a uniform modulus of increase, that
is, some l ∈ N such that for all c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c→ f(c) <m+l f(d).

Let f(a) ≤ a′ < b′ ≤ f(b). We construct a continuous g : [a′, b′] → R.
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Let u ∈ [a′, b′] be rational. Using f(a)−u ≤ a′−u ≤ 0 and 0 ≤ b′−u ≤ f(b)−u,
the IVT gives us an x such that f(x) − u = 0, as a Cauchy sequence (cn). Let
hg(u, n) := cn. Define the modulus αg such that for n ≥ αg(k), (2/3)n(b − a) ≤
2−ωf (k+l+2). For the uniform modulus ωg of continuity assume a′ ≤ u < v ≤ b′

and k ∈ N. We claim that with ωg(k) := k+ l+ 2 (l from the hypothesis on the
slope) we can prove the required property

|u− v| ≤ 2−ωg(k)+1 → |hg(u, n)− hg(v, n)| ≤ 2−k (n ≥ αg(k)).

Let a′ ≤ u < v ≤ b′ and n ≥ αg(k). For c(u)
n := hg(u, n) and c

(v)
n := hg(v, n)

assume that |c(u)
n − c

(v)
n | > 2−k; we must show |u− v| > 2−ωg(k)+1.

By the proof of the Intermediate Value Theorem we have

d(u)
n − c(u)

n ≤ (2/3)n(b− a) ≤ 2−ωf (k+l+2) for n ≥ αg(k).

Using f(c(u)
n ) − u ≤ 0 ≤ f(d(u)

n ) − u, the fact that a continuous function f has
ωf as a modulus of uniform continuity gives us

|f(c(u)
n )− u| ≤ |(f(d(u)

n )− u)− (f(c(u)
n )− u)| = |f(d(u)

n )− f(c(u)
n )| ≤ 2−k−l−2

and similarly |f(c(v)n ) − v| ≤ 2−k−l−2. Hence, using |f(c(u)
n ) − f(c(v)n )| ≥ 2−k−l

(which follows from |c(u)
n − c

(v)
n | > 2−k by the hypothesis on the slope),

|u− v| ≥ |f(c(u)
n )− f(c(v)n )| − |f(c(u)

n )− u| − |f(c(v)n )− v| ≥ 2−k−l−1.

Now f(g(u)) = u follows from

|f(g(u))− u| = |hf (cn, n)− u| ≤ |hf (cn, n)− hf (cn,m)|+ |hf (cn,m)− u|,

which is ≤ 2−k for n,m ≥ αf (k+ 1). Since continuous functions are determined
by their values on the rationals, we have f(g(y)) = y for y ∈ [a′, b′].

For all x ∈ [a, b] with a′ ≤ f(x) ≤ b′, from g(f(x)) < x we obtain the
contradiction f(x) = f(g(f(x))) < f(x) by the hypothesis on the slope, and
similarly for >. Using u �< v ↔ v ≤ u we obtain g(f(x)) = x.  !

As an example, consider the squaring function f : [1, 2] → [1, 4], given by the
approximating map hf (a, n) := a2, constant Cauchy modulus αf (k) := 1, and
modulus ωf (k) := k+1 of uniform continuity. The modulus of oncrease is l := 0,
because for all c, d ∈ [1, 2]

2−m ≤ d− c→ c2 <m d2.

Then hg(u, n) := c
(u)
n , as constructed in the IVT for x2 − u, iterating IVTAux.

The Cauchy modulus αg is such that (2/3)n ≤ 2−k+3 for n ≥ αg(k), and the
modulus of uniform continuity is ωf (k) := k + 2.
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3 Formalization

We now aim at formalizing the proof above, with the planned extraction of
realizing terms in mind. For this purpose it is clearly important to represent the
underlying mathematical objects in an appropriate way.

It is tempting to start with groups, rings, fields etc. (as in [2, 3]). However, it
turned out that in such a general approach it is hard to control the computational
content of the proofs, and hence its extracted terms. This does not mean that
an abstract approach is impossible for our task, but for the moment we prefer
the more “concrete” setup, with explicit constructions of the objects.

– Positive natural numbers are written in binary; we take them as generated
from 1 by two successors n )→ 2n and n )→ 2n+ 1. In the corresponding free
algebra we have the constructors One, SZero and SOne.

– An integer is either a positive number, or zero, or a negative number.
– A rational is a pair of an integer and a positive, written i#n. Notice that

equality of rationals is not the literal one, but given by the usual equivalence
relation.

– A real is a pair of a Cauchy sequence of rationals and a modulus. We view the
reals as a data type (i.e., no properties), with constructor RealConstr as M,
whose components are written x seq and x mod. Within this data type we
inductively define the predicate Real x, meaning that x is a (proper) real.

– A continuous function is viewed as an element of a data type with constructor
ContConstr, whose fields are written f doml, f domr (for the left and right
end point of its domain), f approx (for the approximating function), f uMod
(for the uniform Cauchy modulus) and f uModCont (for the modulus of
uniform continuity). Within this data type we have an inductively defined
predicate Cont f, meaning that f is a (proper) continuous function.

From this material we can now build typed lambda terms, as usual. They are
terms in the sense of Gödel’s T [9], that is, contain (structural) recursion oper-
ators for every data type (i.e., free algebra), with arbitrary value types. These
terms are the basis of our logical (better: arithmetical) system, which contains
an induction scheme (w.r.t. arbitrary formulas) for every data type.

The formalization itself is (some¡what tedious but) straightforward;
proof scripts are available at |www.minlog-system.de—, in the directory
|examples/analysis—.

4 Terms and Their Evaluation

4.1 Computation Rules

Computable functionals are defined by “computation rules” [10, 11]; these rules
are added to the standard conversion rules of typed λ-calculus. To simplify equa-
tional reasoning, terms with the same normal form are identified.

A system of computation rules for a defined constant D consists of finitely
many equationsDP i = Qi (i = 1, . . . , n) with constructor patterns P i, such that
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P i and P j (i �= j) are non-unifiable. Constructor patterns are lists of applicative
terms with distinct variables, defined inductively as follows (we write P (x) to
indicate all variables in P ; all expressions must be type-correct):

– x(x) is a constructor pattern.
– If C is a constructor and P (x) a constructor pattern, then (CP )(x) is a

constructor pattern.
– If P (x) and Q(y) are constructor patterns whose variables x and y are

disjoint, then (P , Q)(x,y) is a constructor pattern.

One instance of such rules is the definition of the fixed point operator Yρ of
type (ρ⇒ ρ) ⇒ ρ, by Yρf = f(Yρf), which clearly defines a partial functional.
Another important example are the (Gödel) structural recursion operators.

However, in practice one wants to define computable functionals by recursion
equations, and if possible consider total functionals only. This can be achieved if
the patterns on the lhs are “complete” (as for the structural recusion operator)
and moreover the rules terminate (as for Gödel’s T [9]). Then every closed term
of ground type reduces to a “numeral” (or a “canonical term”), that is, a term
built from constructors only.

For example, addition for rational numbers is defined by the computation rule
converting (i1#k1)+(i2#k2) into i1*k2+i2*k1#k1*k2.

4.2 External Code as Part of Arithmetical Constants

A problem when computing on rationals with the rule above is that the gcd
is not cancelled out automatically. Therefore we add “external code” to the
internal representation of the function. It works as follows: whenever addition
for rationals is called with numerical arguments, these arguments are converted
into Scheme rationals, then added with the rational addition function of Scheme,
and the result is converted back into the internal representation (using the #-
constructor) of a rational.

4.3 Cleaning of Reals

After some computations involving real numbers it is to be expected that the
rational numbers occurring in the Cauchy sequences may become rather complex.
Hence under computational aspects it is necessary to be able to clean up a real,
as follows.

Lemma 3. For every real x = ((an)n,M) we can construct an equivalent real
y = ((bn)n, N) where the rationals bn are of the form cn/2n with integers cn,
and with modulus N(k) = k + 2.

Proof. Let cn := .aM(n) · 2n/ and bn := cn · 2−n, hence

cn
2n

≤ aM(n) <
cn
2n

+
1
2n

with cn ∈ Z.
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Then for m ≤ n

|bm − bn| = |cm · 2−m − cn · 2−n|
≤ |cm · 2−m − aM(m)|+ |aM(m) − aM(n)|+ |aM(n) − cn · 2−n|
≤ 2−m + 2−m + 2−n

< 2−m+2,

hence |bm− bn| ≤ 2−k for n ≥ m ≥ k+2 =: N(k), so (bn)n is a Cauchy sequence
with modulus N .

To prove that x is equivalent to y := ((bn)n, N), observe

|an − bn| ≤ |an − aM(n)|+ |aM(n) − cn · 2−n|
≤ 2−k−1 + 2−n for n,M(n) ≥M(k + 1)

≤ 2−k if in addition n ≥ k + 1.

Hence |an − bn| ≤ 2−k for n ≥ max(k + 1,M(k + 1)), and therefore x = y.  !

5 Extracted Terms

5.1 Realizability

We first describe some proof-theoretic background on term extraction, as it is
implemented in the Minlog proof assistant (www.minlog-system.de). It is based
on modified realizability as introduced by Kreisel [12]: from every constructive
proof M (in natural deduction) of a formula A with computational content one
extracts a term [[M ]] “realizing” A. This term usually is much shorter than the
proof it came from, because in the process all subproofs of formulas without
computational content can be ignored. The extracted term has a type τ(A)
which depends on the logical shape of the proven formula A only.

An important aspect of this “internal” term extraction (compared with say
the extraction of OCaml programs in Coq [13]) is that one stays within the
language of the logical theory, and hence – for a particular proof M – can prove
within the system that the extracted term indeed realizes the formula A (the
“Soundness Theorem”).

Of course, there is a good reason to extract programs rather than terms:
running programs is much faster than evaluating (closed) terms. However, the
point made in the previous paragraph is a strong argument for term extraction,
particularly in safety critical applications. Moreover, as should become clear
from what is done in the present paper, with some care one may well design
proofs (and the underlying data types) in such a way that the extracted terms
are short and easy to read and evaluate. One can then go on and (automatically)
translate these terms into code of a functional programming language, for faster
evaluation (cf. [5] for an example).
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5.2 Quantifiers Without Computational Content

Besides the usual quantifiers, ∀ and ∃, Minlog has so-called non-computational
quantifiers, ∀nc and ∃nc, which allow for the extraction of simpler terms. The
nc-quantifiers, which were first introduced in [4], can be viewed as a refine-
ment of the Set/Prop distinction in constructive type systems like Coq or Agda.
Intuitively, a proof of ∀nc

x A(x) (A(x) non-Harrop, i.e., with a strictly positive
occurrence of an existential quantifier) represents a procedure that assigns to
every x a proof M(x) of A(x) where M(x) does not make “computational
use” of x, i.e., the extracted term [[M(x)]] does not depend on x. Dually, a
proof of ∃nc

x A(x) is a proof of M(x) for some x where the witness x is “hid-
den”, that is, not available for computational use. Consequently, the types of
extracted terms for nc-quantifiers are τ(∀nc

xρA) = τ(∃nc
xρA) = τ(A) as opposed to

τ(∀xρA) = ρ⇒ τ(A) and τ(∃xρA) = ρ×τ(A). The extraction rules are, for exam-
ple in the case of ∀nc-introduction and -elimination, [[(λx.MA(x))∀

nc
xA(x)]] = [[M ]]

and [[(M∀nc
xA(x)t)A(t)]] = [[M ]] as opposed to [[(λx.MA(x))∀xA(x)]] = [[λxM ]] and

[[(M∀xA(x)t)A(t)]] = [[Mt]]. In order for the extracted terms to be correct the
variable condition for ∀nc-introduction needs to be strengthened by requiring in
addition the abstracted variable x not to occur in the extracted term [[M ]]. Note
that for a Harrop formula A the formulas ∀nc

x A and ∀xA are equivalent; similarly,
∃nc
x A and ∃xA are equivalent.

5.3 Animation

Suppose a proof of a theorem uses a lemma. Then the proof term contains just
the name of the lemma, say L. In the term extracted from this proof we want to
preserve the structure of the original proof as much as possible, and hence we
use a new constant cL at those places where the computational content of the
lemma is needed. When we want to execute the program, we have to replace the
constant cL corresponding to a lemma L by the extracted program of its proof.
This can be achieved by adding computation rules for cL and cGA. We can be
rather flexible here and enable/block rewriting by using animate/deanimate as
desired.

5.4 Removal of Duplicated Parts in Terms

In machine generated terms (e.g., those obtained by term extraction) it often
happens that a subterm has many occurrences in a term, which leads to unwanted
recomputations when evaluating it. A possible cure is to “optimize” the term
after extraction, and replace for instance M [x := N ] with many occurrences
of x in M by (λxM)N (or a corresponding “let”-expression). However, this
can already be done at the proof level: When an object (value of a variable or
realizer of a premise) might be used more than once, make sure (if necessary by
a cut) that the goal has the form A→ B or ∀xA. Now use the “identity lemma”
Id : P̂ → P̂ , whose predicate variable P̂ is then instantiated with A→ B or ∀xA;
its realizer has the form λf, x.fx. However, if Id is not animated, the extracted
term has the form cId(λxM)N , which is printed as [let x N M ].
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5.5 Extracted Terms

The term extracted from the proof of ApproxSplit is

(Rec real=>real=>real=>pos=>boole)
([as4,M5]
(Rec real=>real=>pos=>boole)
([as9,M10]
(Rec real=>pos=>boole)
([as13,M14,n15]
as13(M5(S(S n15))max M10(S(S n15))max M14(S(S n15)))<=
(as4(M5(S(S n15))max M10(S(S n15)))+
as9(M5(S(S n15))max M10(S(S n15))))/2)))

of type real=>real=>real=>pos=>boole. It takes three reals x, y, z with moduli
M,N,K (here given by their Cauchy sequences as4, as9, as13 and moduli M5,
M10, M14) and a positive number k (here n15), and computes p := max(M(k +
2), N(k+ 2)) and q := max(p, L(k+ 2)). Then the choice whether to go right or
left is by computing the boolean value cq ≤ ap+bp

2 .
For the auxiliary lemma IVTAux we obtain the extracted term

[f0,n1,n2]
(cId rat@@rat=>rat@@rat)
([cd4]

[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (cApproxSplit(RealConstr(f0 approx left cd5)

([n6]f0 uMod(S(S n6))))
(RealConstr(f0 approx right cd5)

([n6]f0 uMod(S(S n6))))
0
(S(S(n2+n1))))

(left cd4@right cd5)
(left cd5@right cd4)]])

of type cont=>pos=>pos=>rat@@rat=>rat@@rat. As in the proof above, it takes
a continuous f (here f0), a uniform modulus l of increase (here n1), a positive
number n (here n2) and two rationals c, d (here the pair cd4) such that 2−n <
d − c. Let c0 := 2c+d

3 and d0 := c+2d
3 (here the pair cd5, introduced via let

because it is used four times). Then ApproxSplit is applied to f(c0), f(d0), 0
and the witness n+2+ l (here S(S(n2+n1))) for f(c0) < f(d0). In the first case
we go left, that is c1 := c and d1 := d0, and in the second case we go right, that
is c1 := c0 and d1 := d.

In the proof of the Intermediate Value Theorem, the construction step in
IVTAux (from a pair c, d to the “better” pair c0, d0) had to be iterated, to produce
two sequences (cn)n and (dn)n of rationals. This is the content of a separate
lemma IVTcds, whose extracted term is
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[f0,n1,n2](cDC rat@@rat)(f0 doml@f0 domr)
([n4]cIVTAux f0 n1(n2+n4))

of type cont=>pos=>pos=>pos=>rat@@rat. It takes a continuous function
f : [a, b] → R (here f0), a uniform modulus l of increase (here n1), and a positive
number k0 (here n2) such that 2−k0 < b−a. Then the axiom of dependent choice
DC is used, to construct from an initial pair (c0, d0) = (a, b) of rationals (here f0
doml@f0 domr) a sequence of pairs of rationals, by iterating the computational
content cIVTAux of the lemma IVTAux.

The proof of the Inversion Theorem does not use the Intermediate Value
theorem directly, but its essential ingredient IVTcds. Its extracted term is

[f0,n1,n2,n3,a4,a5]
ContConstr a4 a5
([a6,n7]

left((cACT rat pos=>rat@@rat)
([a8]
(cIPT pos=>rat@@rat)
((cIPT pos=>rat@@rat)
(cIVTcds
(ContConstr f0 doml f0 domr
([a12,n13]f0 approx a12 n13-a8)
f0 uMod
f0 uModCont)
n1
n2)))

a6
n7))

([n6]n3+f0 uModCont(S(S(n6+n1))))
([n6]S(S(n6+n1)))

It takes a continuous function f (here f0), a uniform modulus l of increase (here
n1), positive numbers k0, k1 (here n2, n3) such that 2−k0−1 < b− a < 2k1 and
two rationals a1 < a2 (here a4, a5) in the range of f . Then the continuous inverse
g is constructed (via ContConstr) from

– an approximating map,
– a uniform Cauchy modulus (involving the one from f), and
– an easy and explicit modulus of uniform continuity.

The approximating map takes a, u (here a6, n7). Ignoring the computational
content cACT, cIPT of ACT, IPT (which are identities), it yields the left component
(i.e., the Cauchy sequence) of the result of applying cIVTcds to a continuous
function close to the original f .

To compute numerical approximations of values of an inverted function we
need RealApprox, stating that every real can be approximated by a rational. Its
extracted term is
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(Rec real=>pos=>rat)([as2,M3,n4]as2(M3 n4))

of type real=>pos=>rat. It takes a real x (here given by the Cauchy sequence
as2 and modulus M3) and a positive number k (here n4), and computes a rational
a such that |x−a| ≤ 2−k. Notice that the Rec-operator is somewhat trivial here:
it just takes the given real apart. This is because the data type of the reals has
no inductive constructor.

To compose Inv with RealApprox, we prove a proposition InvApprox stating
that given an error bound, we can find a rational approximating the value of the
inverted function g up to this bound. Clearly we need to refer to this value and
hence the inverted function g in the statement of the theorem, but on the other
hand we do not want to see a representation of g in the extracted term, but only
the construction of the rational approximation from the error bound. Therefore
in the statement of InvApprox we use the non-computational quantifier ∃nc (see
Sect.5.2), for the inversion g of the given continuous f . The extracted term of
InvApprox then simply is

[f0,n1,n2,n3,a4,a5,a6]
cRealApprox
(RealConstr((cInv f0 n1 n2 n3 a4 a5)approx a6)
([n8](cInv f0 n1 n2 n3 a4 a5)uMod(S(S n8))))

of type cont=>pos=>pos=>pos=>rat=>rat=>rat=>pos=>rat.
Now we “animate” the auxiliary lemmas, that is, add computation rules for

all constants with “c” in front of name of the lemma. For InvApprox this gives

[f0,n1,n2,n3,a4,a5,a6,n7]
left((cDC rat@@rat)(f0 doml@f0 domr)

([n8]
(cId rat@@rat=>rat@@rat)
([cd10]
[let cd11
((2#3)*left cd10+(1#3)*right cd10@
(1#3)*left cd10+(2#3)*right cd10)
[if (0<=(f0 approx left cd11

(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6+
(f0 approx right cd11
(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6))/2)

(left cd10@right cd11)
(left cd11@right cd10)]]))

(n3+f0 uModCont(S(S(S(S(n7+n1)))))))

Let us now use this term to compute numerical approximations of values of an
inverted function. First we construct the continuous function x )→ x2 on [1, 2],
with its (trivial) uniform Cauchy modulus and modulus of uniform continuity,
and give it the name sq:
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(define sq (pt "contConstr 1 2([a0,n1]a0*a0)([n0]1)S"))

We now apply the extracted term of theorem InvApprox to

– the continuous sq to be inverted,
– a uniform modulus l of increase,
– a positive number k0 such that 2−k0−1 < b − a, and a positive number k1

such that b− a < 2k1 (which all happen to be 1 in this case),
– two rational bounds a1, b1 for an interval in the range,

and normalize the result:

(define inv-sq-approx
(normalize-term
(apply mk-term-in-app-form
(list (proof-to-extracted-term

(theorem-name-to-proof "InvApprox"))
sq ;continuous function to be inverted
(pt "1") ;uniform modulus of increase
(pt "1") (pt "1") ;bounds for b-a
(pt "1") (pt "4") ;interval in range
))))

which prints as

[a0,n1]
left((cDC rat@@rat)(1@2)

([n2]
(cId rat@@rat=>rat@@rat)
([cd4]
[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (0<=(left cd5*left cd5-a0+

(right cd5*right cd5-a0))/2)
(left cd4@right cd5)
(left cd5@right cd4)]]))

(S(S(S(S(S(S(S n1))))))))

The term sqrt-two-approx has type rat=>pos=>rat, where the first argument
is for the rational to be inverted and the second argument k is for the error
bound 2−k. We can now directly (that is, without first translating into a pro-
gramming language) use it to compute an approximation of say

√
3 to 20 binary

digits. To do this, we need to “animate” Id and then normalize the result of
applying inv-sq-approx to 3 and 20 (we use normalization by evaluation here,
for efficiency reasons):

(animate "Id")
(pp (nbe-normalize-term-without-eta

(make-term-in-app-form sqrt-two-approx (pt "20"))))
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The result (returned in .7 seconds) is the rational

4402608752054#2541865828329

or 1.7320382149943123, which differs from
√

3 = 1.7320508075688772 at the fifth
(decimal) digit.

5.6 Translation into Scheme Expressions

For a further speed-up (beyond the use of external code; cf. Sect. 4.2), we can also
translate this internal term (where “internal” means “in our underlying logical
language”, hence usable in formal proofs) into an expression of a programming
language (Scheme in our case), by evaluating (term-to-expr inv-sq-approx):

(lambda (a0)
(lambda (n1)
(car
(((cdc (cons 1 2))
(lambda (n2)
(lambda (cd4)
(let ([cd5

(cons (+ (* 2/3 (car cd4))
(* 1/3 (cdr cd4)))

(+ (* 1/3 (car cd4))
(* 2/3 (cdr cd4))))])

(if (<= 0
(/ (+ (- (* (car cd5) (car cd5)) a0)

(- (* (cdr cd5) (cdr cd5)) a0))
2))

(cons (car cd4) (cdr cd5))
(cons (car cd5) (cdr cd4)))))))

(+ (+ (+ (+ (+ (+ (+ n1 1) 1) 1) 1) 1) 1) 1)))))

This Scheme program is very close to the internal term displayed above; we
have replaced the internal constant cDC (computational content of the axiom
of dependent choice) by the corresponding Scheme function (a curried form of
iteration):

(define cdc
(lambda (init)
(lambda (step)
(lambda (n)

(if (= 1 n)
init
((step n) (((cdc init) step) (- n 1)))))))),

the internal arithmetical functions +, *, /, <= by the ones from the programming
language and the internal pairing and unpairing functions by cons, car and cdr.
– It turns out that this code is reasonably fast: evaluating
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(((ev (term-to-expr inv-sq-approx)) 3) 200)

gives the result in .5 seconds, with an accuracy of 200 binary digits.

6 Conclusion, Future Work

The present case study shows that it is possible – albeit after some formalization
effort – to machine extract reasonable terms from proofs in constructive analysis,
and that ordinary evaluation of these terms can be used to numerically compute
approximations to say reals whose existence is claimed by the theorems, with a
prescribed precision.

As for future work, an obvious canditate is to do the same for the Cauchy-
Euler construction of approximate solutions to ordinary differential equations.
A particularly promising candiate is the treatment of ordinary differential equa-
tions in Chapt. 1 of Hurewicz’s textbook [14], which can easily be adapted to our
constructive setting. It should also be possible to compare estimates for solutions
of ordinary differential equations with the treatment of the same problem in the
interval analysis setting of Moore [15].

References

1. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
2. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A constructive proof of the fundamental

theorem of algebra without using the rationals. In Callaghan, P., Luo, Z., McKinna,
J., Pollack, R., eds.: Proc. Types 2000. Volume 2277 of LNCS., Springer Verlag,
Berlin, Heidelberg, New York (2000) 96–111

3. Cruz-Filipe, L.: Constructive Real Analysis: a Type-Theoretical Formalization and
Applications. PhD thesis, Nijmegen University (2004)

4. Berger, U.: Program extraction from normalization proofs. In Bezem, M., Groote,
J., eds.: Typed Lambda Calculi and Applications. Volume 664 of LNCS., Springer
Verlag, Berlin, Heidelberg, New York (1993) 91–106

5. Schwichtenberg, H.: Program extraction in constructive analysis. Submitted to:
Logicism, Intuitionism, and Formalism – What has become of them? (eds. S. Lind-
ström, E.Palmgren, K. Segerberg, V. Stoltenberg-Hansen) (2006)

6. Mandelkern, M.: Continuity of monotone functions. Pacific J. of Math. 99(2)
(1982) 413–418

7. Berger, J.: Exact calculation of inverse functions. Math. Log. Quart. 51(2) (2005)
201–205

8. Andersson, P.: Exact real arithmetic with automatic error estimates in a computer
algebra system. Master’s thesis, Mathematics department, Uppsala University
(2001)

9. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punkts. Dialectica 12 (1958) 280–287

10. Berger, U., Eberl, M., Schwichtenberg, H.: Term rewriting for normalization by
evaluation. Information and Computation 183 (2003) 19–42

11. Berger, U.: Uniform Heyting Arithmetic. Annals Pure Applied Logic 133 (2005)
125–148



504 H. Schwichtenberg

12. Kreisel, G.: Interpretation of analysis by means of constructive functionals of
finite types. In Heyting, A., ed.: Constructivity in Mathematics. North–Holland,
Amsterdam (1959) 101–128

13. Letouzey, P.: A New Extraction for Coq. In Geuvers, H., Wiedijk, F., eds.: Types
for Proofs and Programs, Second International Workshop, TYPES 2002. Volume
2646 of Lecture Notes in Computer Science., Springer-Verlag (2003)

14. Hurewicz, W.: Lectures on Ordinary Differential Equations. MIT Press, Cam-
bridge, Mass. (1958)

15. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)



Partial Recursive Functions in Martin-Löf
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Abstract. In this article we revisit the approach by Bove and Capretta
for formulating partial recursive functions in Martin-Löf Type Theory by
indexed inductive-recursive definitions. We will show that all inductive-
recursive definitions used there can be replaced by inductive definitions.
However, this encoding results in an additional technical overhead. In
order to obtain directly executable partial recursive functions, we in-
troduce restrictions on the indexed inductive-recursive definitions used.
Then we introduce a data type of partial recursive functions. This allows
to define higher order partial recursive functions like the map functional,
which depend on other partial recursive functions. This data type will be
based on the closed formalisation of indexed inductive-recursive defini-
tions introduced by Dybjer and the author. All elements of this data type
will represent partial recursive functions, and the set of partial recursive
functions will be closed under the standard operations for forming par-
tial recursive functions, and under the total functions.

Keywords: Martin-Löf type theory, computability theory, recursion the-
ory, Kleene index, Kleene brackets, partial recursive functions, inductive-
recursive definitions, indexed induction-recursion.

1 Introduction

A problem when developing computability theory in Martin-Löf type theory is
that the function types only contain total functions, therefore partial recursive
functions are not first class objects. One approach to overcome this problem has
been taken by Bove and Capretta (e.g. [BC05a, BC05b]), who have shown how
to represent partial recursive functions by indexed inductive-recursive definitions
(IIRD), and in this article we will investigate their approach. In order to illustrate
it, we make use of a toy example. We choose a notation which is closer to that
used in computability theory.

Assume the partial recursive function f : N ⇀ N defined by

f(0) :6 0 , f(n+ 1) :6 f(f(n)) .
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This function is constantly zero, but we want to represent it directly in Martin-
Löf type theory, so that we can prove for instance, that it is in fact constantly
zero. In order to do this, Bove and Capretta introduce

f(·)↓ : N → Set , evalf : (n : N, p : f(n)↓) → N .

Here f(n)↓ expresses that f(n) is defined and evalf (n, p) computes, depending
on n : N and a proof p : f(n)↓, the value f(n).

In the literature, f(·)↓ is often referred to as the accessibility predicate for
f . If we define for arguments a, b of f that a ≺ b if and only if the call of f(b)
recursively calls f(a), then f(a)↓ if and only if a is in the accessible part of ≺.
The approach by Bove/Capretta can be seen as a general method of determining
the accessible part of ≺ for a large class of recursively defined functions.

If we take the definition of f as it stands, we see that the definitions of
f(·)↓ and evalf refer to each other. f(·)↓ has two constructors defined0

f , definedS
f

corresponding to the two rewrite rules, and we obtain the following introduction
and equality rules:

defined0
f : f(0)↓ , evalf (0, defined0

f ) = 0 ,

definedS
f : (n : N, p : f(n)↓, q : f(evalf (n, p))↓) → f(n+ 1)↓ ,

evalf (n+ 1, definedS
f (n, p, q)) = evalf (evalf (n, p), q) .

The constructor definedS
f has arguments n : N, p : f(n)↓, and if f(n) 6 m,

a proof q : f(m)↓. Then p′ := definedS
f (n, p, q) proves f(n + 1)↓ and we have

evalf (n+1, p′) = evalf (m, q). We observe that definedS
f refers to evalf (n, p), so we

have to define simultaneously f(·)↓ inductively, while defining evalf recursively.
This is an instance of an IIRD, as introduced by Dybjer [Dyb00, Dyb94]. We
will see below that such kind of IIRD can be reduced to inductive definitions.

Bove and Capretta face the problem that they cannot define a data type of
partial recursive functions (unless using impredicative type theory) and therefore
cannot deal with partial recursive functions depending on other partial recursive
functions as an argument. A simple example would be to define depending on a
partial recursive function f : N ⇀ N (e.g. f as above)

g : List(N) ⇀ List(N) , g(l) :6 map(f, l) .

Here map(f, [n0, . . . , nk]) :6 [f(n0), . . . , f(nk)]. In order to define the above
directly, we need to define map, depending on an arbitrary partial recursive
function f . More complex examples of this kind are discussed in [BC05a].

In this article we will show how to overcome this restriction by introducing a
data type of partial recursive functions. This will be based on the closed formu-
lation of IIRD, as developed by P. Dybjer and the author. In order to have that
all functions represented by an IIRD correspond directly to a partial recursive
function, without using search functions, we will impose restrictions on the set of
IIRD used. The data type given in this article will define exactly those restricted
IIRD. We will then show that the functions given by those indices are all partial
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recursive, and that they are closed under the standard constructions for defining
partial recursive functions, and under the total functions.
Future work. With the above research we will be able to define functions
referring to indices of other partial recursive functions. However, we will not yet
be able to deal with mutually recursive functions, in which one function refers
to another as a whole. In order to deal with this, we will in a follow-up paper
introduce partial recursive functions with function arguments represented as
oracles. We will then obtain a recursion theorem stating that recursion equations
defined using this principle can always be solved.

2 Inductive-Recursive Definitions

Before formulating the data type of partial recursive definitions as a data type
of IIRD let us sketch briefly Dybjer’s notion of IIRD.

Dybjer introduced first the simpler notion of inductive-recursive definitions
(IRD). In IRD one defines a set U : Set together with a function T : U → D where
D : Type. Inductive-recursive definitions emerged first as universes, i.e. D = Set.
Universes are sets of sets, which are given by a set U of codes for sets, and a
decoding function T : U → Set, which determines for every code a : U the set
T(a) : Set it denotes.

Strictly positive inductive definitions are given by a set U together with con-
structors C : A1 → · · ·An → U, where Ai can refer to U strictly positively:
(1) Either Ai is a set, which were defined before one started to introduce U.
Arguments of C referring to such sets are called non-inductive arguments. (2)
Or Ai is of the form (B1 → · · · → Bm → U) for some sets Bi defined before U
was introduced. Arguments referring to such sets are called inductive arguments.
In dependent type theory, we can extend inductive definitions by allowing Ai to
refer to previous arguments, i.e. we get C : (a1 : A1, . . . , an : An) → U, and Ai

might depend on aj for j < i. However, closer examination reveals that only
dependencies on non-inductive arguments are possible: When introducing the
constructor C, U has not been defined yet, so we are not able to define any sets
depending on it.

In an IRD of U : Set and T : U → D, Ai might refer to previous inductive
arguments via T: if aj : Aj = (B1 → · · · → Bk → U), and j < i, then Ai might
make use of T(aj(b1, . . . , bk)). An example is the constructor Π̂ expressing the
closure of a universe under the dependent function type (which is often written
as Π(A,B)): Π̂ has type (a : U, b : T(a) → U) → U and the type of the second
argument b of Π̂ depends on T(a).

The intuition why this is a good predicative definition is that one defines the
elements of U inductively. Whenever one introduces a new element of U, one
computes recursively T applied to it. Therefore, when referring to a previous
inductive argument, we can make use of T applied to it.

When applying this principle, one notices that one often needs to define sev-
eral universes (Ui,Ti) simultaneously. Indexed inductive-recursive definitions
IIRD extend the principle of IRD so that it allows to define U : I → Set and
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T : (i : I, u : U(i)) → D[i] simultaneously for all i : I. Here I : Set, and
i : I ⇒ D[i] : Type. The constructors of U(i) might refer to U(j) for any j in a
strictly positive way, and make use of T applied to previous inductive arguments.

Reduction to inductive definitions. When formalising the representation of
partial recursive functions as IIRD in general, one wants to represent partial
recursive functions f : (x : A) ⇀ B(x) for arbitrary A : Set, B : A→ Set. Such
functions will be translated into IIRD with index set A and D[x] := B(x). Note
that D[x] : Set. In [DS06] Dybjer and the author have shown that IIRD with
D[x] : Set can always be reduced to indexed inductive definitions. We sketch
the idea briefly by taking the example from the introduction. Remember that
definedS

f had type

definedS
f : (n : N, p : f(n)↓, q : f(evalf (n, p))↓) → f(n+ 1)↓ .

In order to avoid the use of evalf (n, p) in the type of definedS
f , one introduces

first an inductive definition of a set f(n)↓aux : N → Set, with constructors

defined0,aux
f : f(0)↓aux ,

definedS,aux
f : (n : N, p : f(n)↓aux,m : N, q : f(m)↓aux) → f(n+ 1)↓aux .

Then we compute recursively evalaux
f : (n : N, p : f(n)↓aux) → N (this defini-

tion is now separated from the inductive definition of f(·) ↓) by

evalaux
f (0, defined0,aux

f ) := 0 ,

evalaux
f (n+ 1, definedS,aux

f (n, p,m, q)) := evalaux
f (m, q) .

p : f(n)↓aux proves that f(n) is defined, provided that, whenever we made use
of definedS,aux

f (n, p,m, q), we had m = evalaux
f (n, p). We introduce a correctness

predicate expressing this:

Corrf : (n : N, p : f(n)↓aux) → Set , Corrf (0, defined0,aux
f ) := True ,

Corrf (n+ 1, definedS,aux
f (n, p,m, q) :=

Corrf (n, p) ∧ Corrf (m, q) ∧m =N evalaux
f (n, p) .

One can now simulate f(·)↓ by

f(·)↓′ : N → Set , f(n)↓′ := (p : f(n)↓aux)× Corrf (n, p) ,

and simulate evalf by

eval′f : (n : N, p : f(n)↓′) → N , eval′f (n, 〈p, q〉) := evalaux
f (n, p) .

In [DS06] this reduction has been carried out in detail and there we were able
to show that indeed all IIRD with target type of T being a set can be simulated
by indexed inductive definitions.
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Note that this reduction adds an additional overhead. So we assume when ver-
ifying the correctness of partial recursive functions on the machine one probably
prefers to use the original IIRD.

Restrictions to the class of IIRD. Bove and Capretta have shown that the set
of partial recursive functions definable this way is Turing-complete – it contains
all partial recursive functions on N – and that a large class of recursion schemes
can be represented this way. However, not all IIRD having the above types
correspond to directly executable partial recursive functions.

1. We need to replace general IIRD by restricted IIRD. The concepts of general
and restricted IIRD were investigated in [DS01, DS06]. In general IIRD, one
introduces constructors for the inductively defined set U and then determines
for each constructor C depending on its arguments *a the i s.t. C(*a) : U(i).
In the example used in the introduction we used in fact such kind of general
IIRD. We have a constructor definedS

f , and we state that definedS
f (n, p, q) :

f(n+1)↓, so the index n+1 depends on the arguments n, p, q. The problem
with this is that it allows to define multivalued functions: Nothing prevents
us from adding a second constructor definedS,′

f (n) : f(n+ 1)↓, s.t.

evalf (n+ 1, definedS,′
f (n)) returns a different value, e.g. 5. This corresponds

to adding contradictory rewrite rules, such as f(n+ 1) −→ 5.
Furthermore this principle does not mean that the functions are directly
executable, unless one has a proof of f(n)↓ (in which case evalf allows of
course to compute the value of f(n)). In order to evaluate f(n), one has
to guess the arguments of the constructor in such a way that we obtain an
element of f(n)↓, which requires in general a search process. f(n) is still
partially recursive (the f(n) are always computable since one can always
search for a proof p : f(n)↓, and then compute evalf (n, p)), but we do not
regard the search for arguments as a means of directly executing a function.
In order to obtain directly executable partial recursive functions we need
to determine for each index its constructor. This corresponds to restricted
IIRD as introduced in [DS06]. If one defines in restricted IIRD U : I → Set,
one needs to determine, depending on i the set of constructors having result
type U(i). The initial example can be represented as a restricted IIRD by
defining it as follows:

f(n)↓ := case n of 0 → data C0
f

S(n′) → data CS
f (p : f(n′)↓, q : f(evalf (n′, p))↓)

So f(0) ↓ has constructor C0
f , and f(S(n′)) ↓ has constructor CS

f with argu-
ments p : f(n′)↓ and q : f(evalf (n′, p))↓.

2. In order to avoid multivalued functions, for each argument a : A there should
be at most one constructor of type f(a)↓. One can easily achieve that there
is always exactly one constructor – if there is none, one can always add the
constructor C : (p : f(a) ↓) → f(a)↓ corresponding to black hole recursion
(i.e. rewrite rule f(a) −→ f(a)).
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3. We disallow non-inductive arguments. Non-inductive arguments, except for
the empty set and the one-element set might result in multivalued functions
(different choices for one argument of the constructor might yield different
proofs of f(n)↓ and therefore different values of evalf (n, p)). Another prob-
lem with non-trivial non-inductive arguments is that when evaluating the
partial recursive function, one needs to search for instances of these non-
inductive argument. Therefore one does not obtain directly executable func-
tions. We could allow non-indexed arguments indexed over the one-element
set 1 and the empty set ∅. But arguments indexed over 1 can be ignored, and
arguments indexed over ∅ have the effect that f(a) ↑, which can alternatively
be obtained by using black-hole recursion as above.

4. Inductive arguments should be single ones. In general IIRD of a set U, the
constructor might have an inductive argument of the form (x : A) → U(i(x)).
In our setting such an inductive argument would be of the form (x : A) →
f(i(x))↓, which expresses f(i(x)) is defined for all x : A. Such an argument
requires the evaluation of f for possibly infinitely many values i(x) (x : A),
which is non-computable. One can search for a proof of (x : A) → f(i(x)) and
use this search process as a means of evaluating f . However, such a search
will miss the situation where (x : A) → f(i(x)) is true (even constructively),
but unprovable in the type theory in question. Furthermore, we do not regard
such a search process as a means of directly executing a function.
So in order to obtain directly executable functions, we need to restrict induc-
tive arguments to single valued ones, i.e. in the above situation to arguments
of the form p : f(i)↓.

3 A Data Type of Partial Recursive Functions

In [BC05a] it was pointed out that one of the limitations of their approach is that
they cannot define partial recursive functions referring to other partial recursive
functions as a whole. We have given a toy example in the introduction (the
function g : List(N) ⇀ List(N)). In computability theory one overcomes this
problem by introducing Kleene-indices for partial recursive functions. Then one
can define for instance map by having two natural numbers as arguments, one
which is a Kleene-index for a partial recursive function, and the second one a
code for a list. In order to do the same using the approach by Bove/Capretta, we
will introduce a data type of codes for the IIRD we were referring to above. This
data type is a subtype of the data type of IIRD introduced in [DS06] (see as well
[DS01, DS03, DS99]). This shows the consistency of the new rules introduced in
this article.

Assume A : Set, B : A → Set fixed. Unless explicitly needed, we suppress
in the following dependencies on A, B. We regard a partial recursive function
f : (a : A) ⇀ B(a) as being given by an IIRD, and introduce the data type Rec
of codes for those IIRD, which correspond according to the previous section to
partial recursive functions. So the set Rec will as well be the set of codes for
partial recursive functions. We have formation rule:
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Rec : Set .

The set defined inductively by a code e : Rec is given as

fe(·)↓ : A→ Set

If we understand each IIRD as defining a partial recursive function, fe(a)↓
means that the function with index e is defined for argument a. The function
defined recursively is

evale : (a : A, p : fe(a)↓) → B(a) ,

which, if the IIRD is interpreted as the definition of a partial recursive function,
computes the result of this function.

Rec is a restricted IIRD, which means that for each a : A we can determine
the type of arguments for the constructor with result fe(a)↓. Let Rec′a be the
type of codes for possible arguments for the constructor of an IIRD e with result
fe(a)↓. Then an element of Rec is given by an element of Rec′a for each a : A. So
we have the following formation and equality rule:

Rec′ : A→ Set , Rec = (a : A) → Rec′a .

The type of the arguments of the constructor of fe(a)↓ and the result of
evale(a, p) for the constructed element p will depend on fe(·)↓ and evale. Since,
when introducing Rec′a, fe(·)↓ and evale are not available, we define more gen-
erally, depending on a : A, e : Rec′a, for general X and Y , having the types of
fe(·)↓, evale respectively, the following operations:

Arga,e : (X : A→ Set, Y : (a′ : A, x : X(a′)) → B(a′)) → Set
Evala,e : (X : A→ Set, Y : (a′ : A, x : X(a′)) → B(a′),Arga,e(X,Y )) → B(a)

Arga,e(a)(fe(·)↓, evale) will be the type of the arguments of the constructor of
fe(a)↓. If using arguments p we have constructed q : fe(a)↓, then evale(a, q) =
Evala,e(a)(fe(·)↓, evale, p). If we call the constructor for fe(a)↓ tote,a, then the
introduction and equality rules for fe(·)↓ and evale are as follows:

tote,a : Arga,e(a)(fe(·)↓, evale) → fe(a)↓ ,

evale(a, tote,a(p)) = Evala,e(a)(fe(·)↓, evale, p) .

We define additionally outside type theory for closed e : Rec the partial re-
cursive function {e} : (a : A) ⇀ B(a). {e} will be defined in such a way that
we can prove outside type theory {e}(a)↓ ⇔ ∃p.p : fe(a)↓ and that if p : fe(a)↓,
then {e}(a) 6 evale(a, p).

In order to define {e}(a), we define recursively (outside type theory) an aux-
iliary partial recursive function

computeaux : (e : Rec, a : A, e′ : Rec′a) ⇀ B(a)
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computeaux(e, a, e′) roughly speaking computes the subcomputation of {e}(a),
where we consider the subcode e′ of e(a). However, in the definition we do not
assume e′ to be a subcode of e(a). Then we define for e : Rec

{e}(a) 6 computeaux(e, a, e(a))

Rec′a has 2 constructors:

1. Initial (constant) case: the constructor for fe(a)↓ has no arguments (or more
precisely the trivial argument x : {∗} for the one-element set {∗}). evale(a, p)
returns, independently of p, a fixed element b : B(a):

consta : B(a) → Rec′a Arga,consta(b)(X,Y ) = {∗}
Evala,consta(b)(X,Y, ∗) = b

computeaux(e, a, consta(b)) 6 b

2. A single inductive argument. The constructor of fe(a)↓ has as an inductive
argument p : fe(a′)↓, and depending on m : evale(a′, p) later arguments. As a
partial recursive function this means that we make a recursive call to fe(a′)↓.
Depending on the result m, we choose further steps. So the constructor reca
of Rec′a needs to have as arguments a′ and a function e′ : B(a′) → Rec′a,
which determines depending on the result b : B(a′) of evale(a′, p) the later
arguments of the constructor. We obtain

reca : (a′ : A, e′ : B(a′) → Rec′a) → Rec′a
Arga,reca(a′,e′)(X,Y ) = (x : X(a′))×Arga,e′(Y (a′,x))(X,Y )

Evala,reca(a′,e′)(X,Y, 〈x, y〉) = Evala,e′(Y (a′,x))(X,Y, y)

computeaux(e, a, reca(a′, g)) 6
⎧
⎨

⎩

computeaux(e, a, g(b)),
if computeaux(e, a′, e(a)) 6 b,

⊥, if computeaux(e, a′, e(a)) ↑.

We usually omit the parameter a in consta, reca. We observe that Rec′a is an
inductively defined set: it is like a W-type with branching degrees (B(a))a:A, but
with additional leaves const(b). Arg and Eval are then defined by recursion on
Rec′a. fe(·)↓ and evale are given by an IIRD which is determined by e.

Reference to other partial recursive functions. If one wants to show the
closure of the resulting set of partial recursive functions under operations like
composition, one sees that one needs the possibility to refer to other partial
recursive functions, which is not available in the above calculus. In the context
of dependent type theory, allowing this will cause one problem: we want to refer
in the definition of partial recursive functions to other partial recursive functions
g of any type (c : C) ⇀ D(c) where 〈C,D〉 : Fam(Set). Here Fam(Set) :=
(X : Set) × (X → Set) : Type is the type of families of sets. If we want to
allow reference to arbitrary such functions, we will end up with RecA,B : Type
instead of RecA,B : Set. (We will no longer suppress the arguments A,B of
Rec.) This causes problems when defining partial recursive functions having
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elements of RecA,B as arguments. However, one can usually restrict the domain
and codomain of partial recursive functions used to elements of a universe, and
therefore obtain RecA,B to be a set. If one is for instance interested in functions
occurring in traditional computability theory only, one can restrict oneself to a
universe {Nk | k ∈ N}, i.e. U := N : Set and for n : N T(n) := Nn : Set.

In order to keep the notations simple we will in the following extend RecA,B
to Rec+

A,B in such a way that it refers to partial recursive functions of arbitrary
〈C,D〉 : Fam(Set), which means it is a true type, and keep in mind that if 〈C,D〉
are restricted to elements of a universe, we obtain Rec+

A,B : Set.
There are two alternative ways of dealing with reference to other partial re-

cursive functions:

1. The conceptually easier one is to treat such references as recursive calls of
simultaneously defined functions. In order to represent f : (a : A) ⇀ C(a)
which makes use of g : (a : A′) ⇀ C′(a), we combine f , g into one function
fg : (a : A′′) ⇀ C′′(a) as follows:
We have 〈A,C〉, 〈A′, C′〉 : Fam(Set). Define

〈A,C〉 ⊕ 〈A′, C′〉 := 〈A+A′, [C,C′]〉

where A+A′ is the disjoint union of A and A′ and

[C,C′] : (A+A′) → Set ,
[C,C′](inl(x)) := C(x) , [C,C′](inr(x′)) := C′(x′) .

Let 〈A′′, C′′〉 := 〈A,C〉 ⊕ 〈A′, C′〉. Then define

f ⊕ g : (a : A′′) ⇀ C′′(a) ,
(f ⊕ g)(inl(a)) 6 f(a) , (f ⊕ g)(inr(b)) 6 g(b) .

Define embinl : (a : A,Rec′A,C,a) → Rec′A′′,C′′,inl(a) and
embinr : (a′ : A′,Rec′A′,C′,a′) → Rec′A′′,C′′,inr(a′), by replacing all occurrences
of rec(x, g) by rec(inl(x), g) or rec(inr(x), g), respectively.
Let fg := f ⊕ g. Assume we can define f recursively by making use of g.
We obtain an index efg of fg by setting efg(inr(b)) := eg(b) and defining
efg(inl(a)) like the recursive definition of f , but replacing recursive calls to
f(a′) by recursive calls to fg(inl(a′)) and calls of g(b) by recursive calls to
fg(inr(b)).
As an example we show how to define,
assuming g : (a : A) ⇀ C(a), h : (a : A) → C(a) ⇀ B(a),
the function f : (a : A) ⇀ B(a) , f(a) 6 h(a, g(a)) .
Let C′ := (a : A)× C(a), B′ : C′ → Set, B′(〈a, c〉) := C(a).
Let h′ : (c : C′) ⇀ B′, h′(〈a, c〉) := h(a, c) be the uncurried form of h.
Let eg : RecA,C , eh′ : RecC′,B′ be indices for g and h′.
Let 〈A+, B+〉 := 〈A,B〉 ⊕ 〈A,C〉 ⊕ 〈C′, B〉.
Let fgh := f ⊕ g ⊕ h′.
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Let inf , ing, inh be the left, middle and right injection from A, A, C′, re-
spectively, into A+.
Let e′g := λb.embing (eg(b)) : (b : B) → Rec′A+,B+,ing(b) ,

e′h := λc.embinh
(eh(c)) : (c : C′) → Rec′A+,B+,inh(c) .

We introduce an index efgh : RecA+,B+ as follows:

efgh(ing(b)) := e′g(b) , efgh(inh(c)) := e′h(c)
efgh(inf (a)) := rec(ing(a), λc.rec(inh(〈a, c〉), λb.const(b)))

Using extensional equality one can see that there is a bijection
g
∼=(a) : fefgh

(ing(a))↓ ∼= feg (a)↓, and we have
evalefgh

(ing(a), p) = evaleg (a, g∼=(a, p)), similarly for fefgh
(inh(a))↓ and

feh
(a)↓. Furthermore, the argument of the constructor totefgh,inf (a) for

fefgh
(inf (a))↓ has type

(p : fefgh
(ing(a))↓)× (fefgh

(inh(〈a, evalefgh
(ing(a), p)〉))↓ × {∗}) ,

and we have

evalefgh
(inf (a), totefgh,inf (a)(〈p, 〈q, ∗〉〉)

= evalefgh
(inh(〈a, evalefgh

(ing(a), p)〉), q)
Modulo the aforementioned isomorphisms, this means that fefgh

(inf (a))↓ iff
there exists p : feg (a)↓ and q : feh

(〈a, evaleg (a, p)〉)↓, and that
evalefgh

(inf (a), ) = evaleh
(〈a, evaleg (a, p)〉, q), i.e. the function defined by

efgh composed with inf is the composition of the functions given by eg and
eh.
In general we define

Rec+
A,B := (C : Set)× (D : C → Set)× RecC+A,[D,B] ,

and for e = 〈C,D, e′〉 : Rec+
A,B we define f+e (·)↓ : A→ Set,

f+e (a)↓ := fe′(inr(a))↓ and eval+e : (a : A, p : f+e (a)↓) → B(a),
eval+e (a, p) := eval+e′(inr(a), p).

2. The approach which is easier for implementing proofs is to extend Rec by a
constructor which calls a partial recursive function having an arbitrary type.
So we extend RecA,B, Rec′A,B,a to types Rec+

A,B, Rec+,′
A,B,a with an additional

constructor

calla : (C : Set, D : C → Set, e : Rec+
C,D, c : C, g : D(c) → Rec+,′

A,B,a)
→ Rec+,′

A,B,a

Arga,calla(C,D,e,c,g)(X,Y ) = (p : fC,D,e(c)↓)×Arga,g(evalC,D,e(c,p))(X,Y )
Evala,calla(C,D,e,c,g)(X,Y, 〈p, q〉) = Evala,g(evalC,D,e(c,p))(X,Y, q)

Note that with this approach Rec+
C,D : Type are defined simultaneously for

all 〈C,D〉 : Fam(Set) and simultaneously with fC,D(·)↓, evalC,D, Arg, Eval.
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With both approaches we can show the following theorem:

Theorem 1. (a) The type of partial recursive functions represented by Rec+

contains all total functions and is closed under composition, primitive recur-
sion into higher types, and the μ-operator for partial recursive functions.

(b) All partial recursive functions Nn ⇀ N are represented in Rec+
Nn,N. For this

the restriction of calls of other partial recursive functions to types being ele-
ments of a universe containing {Nk | k ∈ N} suffices.

(c) If e : Rec+
A,B is derived without a context, then we have {e}(a)↓ iff p : fe(a)↓

for some p. Furthermore, if p : fe(a)↓, then {e}(a) 6 evale(a, p), and {e} is
partial recursive.
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Abstract. In this paper we take up the study of Henkin quantifiers with
boolean variables [4], also known as partially ordered connectives [19].
We consider first-order formulae prefixed by partially ordered connec-
tives, denoted D, on finite structures. D is characterized as a fragment
of second-order existential logic Σ1

1♥, whose formulae do not allow exis-
tential variables as arguments of predicate variables. By means of a game
theoretic argument, it is shown that Σ1

1♥ harbors a strict hierarchy in-
duced by the arity of predicate variables, and that it is not closed under
complementation. It is further shown that allowing at most one existen-
tial variable to appear as an argument of a predicate variable, already
yields a logic coinciding with full Σ1

1 .

Keywords: Henkin quantifiers, partially ordered connectives, NP vs.
coNP, finite model theory.

1 Introduction

Fagin’s Theorem [9]—characterizing NP in terms of the expressive power of
Σ1

1 over finite models—reveals the intimate connection between finite model
theory and complexity theory. As a methodological consequence it appears that
questions and results regarding a complexity class may bear relevance for logic
and vice versa. For instance, the complexity theorist’s headache caused by the
NP = coNP-problem can now be shared by the logician working on theΣ1

1 = Π1
1 -

problem.1 Indeed, logicians working in finite model theory address this problem.
By and large they go about by mapping out fragments of various logics. A case
in point is Fagin’s [10] study of the monadic fragments of Σ1

1 and Π1
1 , showing

that they do not coincide.
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The results in [10] aroused a lot of interest in monadic languages [2, 3, 20], but
we are still waiting for methods to separate binary, existential, second-order logic
from 3-ary, existential, second-order logic, see [5], or even from binary, universal,
second-order logic.

The present paper will be concerned with the finite model theory of languages
involving (what we will call) Henkin quantifiers with restricted quantifiers, also
known as partially ordered connectives. Henkin quantifiers Hn

kxy are objects of
the form ⎛

⎜
⎝

∀x11 . . . ∀x1k ∃y1
...

. . .
...

...
∀xn1 . . . ∀xnk ∃yn

⎞

⎟
⎠ (1)

that prefix first-order formulae φ. Here and henceforth, a series of variables
as in x11, . . . , xnk is abbreviated by x. On suitable structures A, the formula
Hn
kxy φ(x,y) is defined to be true iff there are k-ary functions f1, . . . , fn on the

universe of A such that

A |= ∀x φ(x, f1(x1), . . . , fn(xn)) (2)

where xi = xi1, . . . , xik. It is a milestone result in the theory of Henkin quan-
tication that the logic obtained by applying Henkin quantifiers to first-order
formulae, denoted H, coincides with Σ1

1 , cf. [8, 21]. Referring to Fagin’s Theo-
rem, Blass and Gurevich [4, Theorem 1] draw the conclusion that NP can be
characterized in terms of H as well. In the same publication the authors study
what constraints can be imposed on the existentially quantified variables in a
Henkin quantifier, such as y in (1), without the quantifier losing its power to
express NP-complete problems. It turns out that Henkin quantifiers of the form

(∀x11 . . . ∀x1k ∃α1
∀x21 . . . ∀x2k ∃α2

)

(3)

cannot express NP-complete problems, unless NL = NP. The variables α1 and
α2 appearing in (3) are boolean variables that range over a fixed two-element
domain. In this sense ∃αi is a ‘restricted quantifier’, whence the term ‘Henkin
quantifier with restricted quantifiers’.

The model theory for Henkin quantifiers with restricted quantifiers was taken
up in [19], be it under the name of ‘partially ordered connectives’ and written
in the following format:

⎛

⎜
⎝

∀x11 . . . ∀x1k
∨
i1

...
. . .

...
...

∀xn1 . . . ∀xnk
∨
in

⎞

⎟
⎠ (4)

denoted Dn
kxi. The usage of the symbol

∨
reflects the fact that the variables

ij range over a fixed finite domain. Sandu and Väänänen [19, Proposition 2]
show that any first-order formula φ prefixed by the partially ordered connective
D2

1xi can be translated into H2
1xy φ′, for some first-order φ′. Furthermore, they
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provide an Ehrenfeucht-Fräıssé game for partially ordered connectives and use it
to prove non-definability results. Note that there are first-order formulae φ that
can express NP-complete problems, when prefixed with the partially ordered
connective D3

1xi, in virtue of Blass and Gurevich’s result; 3-colorability of graphs
is a case in point. Other publications on Henkin quantifiers and partially ordered
connectives in relation to complexity theory include [13, 14, 16, 17, 18].

In this paper we characterize the logic D—the result of applying (4) to first-
order formulae for arbitrary k, n—as a fragment of Σ1

1 . The relevant fragment
only allows universally quantified variables to appear as arguments of (existen-
tially quantified) predicate variables. As this fragment is rather natural, it may
be of interest to the descriptive complexity community to observe that (a) D
can express a property expressible in (k+1)-ary, existential, second-order logic
that cannot be expressed in k-ary, existential, second-order logic; and that (b)
D is not closed under complementation, as it can express 2-Colorability but
not its complement. Along the way we prove that the Henkin quantifier H2

1x is
not definable in D and that D is strictly contained in NP.

In Section 2, we introduce the apparatus necessary to get going. In Section
3, D is characterized as a fragment of Σ1

1 . Using this characterization, we prove
result (a). In Section 4, an Ehrenfeucht-Fräıssé game for D is given, and it is
used to show that D is not closed under complementation, cf. (b). In Section 5,
we show that if Σ1

1♥ is extended so as to allow predicate variables to have at
most one existential variable among their arguments, the resulting logic coincides
with full Σ1

1 .

2 Preliminaries
A vocabulary τ is a finite set of relation symbols, rigidly including the equality
symbol. Vocabularies do not contain constant or function symbols. Results can
easily be extended to vocabularies with constant symbols, though. A finite τ-
structure A = 〈A, 〈RA〉R∈τ 〉 consists of a finite set A, referred to as the universe
of A, and interpretations of the relation symbols of τ on A. Here and henceforth,
every structure is finite and for this reason we omit mentioning this. The equality
symbol is interpreted as the identity relation. If τ only contains one binary
relation symbol, other than the equality symbol, then any τ -structure is called a
digraph (directed graph). If G = 〈G,RG〉 is a digraph and RG is symmetric, then
G is a graph. A class relevant to this paper is n-Colorability holding of those
finite graphs whose chromatic number is ≤ n. Conversely, let n-Colorability

denote the complement of n-Colorability with respect to the class of graphs.
Define an implicit matrix τ-formula γ as a function of type {0, 1}k → FO(τ),

where k is an integer and FO(τ) is first-order logic over τ . Let Dk(τ) be the
logic with formulae of the form Dn

kxi γ(i)(x), for arbitrary n. The notions of
bound and free variable are canonically extended from first-order logic so as to
apply to the variables i as well. A sentence is a formula without free variables.
We shall usually omit explicit indication of as many variables from the formulae
as possible without losing readability. In this manner we may write Dn

kγ instead
of Dn

kxi γ(i)(x). Put D(τ) =
⋃
k Dk(τ).
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Let A be a τ -structure and let Γ = Dn
kxi γ(i)(x) ∈ D. Then, Γ is true on A

iff there exist functions f1, . . . , fn : Ak → {0, 1} such that

A |= ∀x γ(f1(x1), . . . , fn(xn))(x) (5)

Let Σ1
1,k(τ) be the fragment of Σ1

1(τ) whose predicate variables have arity
≤ k. Our particular interest will pertain to the fragments Σ1

1,k(τ), called k-ary,
existential, second-order logic. If k equals 1 or 2, we arrive at monadic and binary,
existential, second-order logic: Σ1

1,1(τ) = MΣ1
1(τ) and Σ1

1,2(τ) = BΣ1
1(τ). For

the semantics of first and second-order logic, we refer the reader to [6].
If Φ and Ψ are τ -sentences for which the satisfaction relation |= is defined,

and for every τ -structure we have that A |= Φ iff A |= Ψ , then we say that they
are equivalent.

Let L(τ) and L′(τ) be logics for which |= is defined and let C be a class of (fi-
nite) τ -structures. Then C is characterized by Φ ∈ L(τ) if for every τ -structure A
it is the case that A ∈ C iff A |= Φ. If some of its formulae characterize the class
C, then L(τ) is said to characterize or express C as well. We write L(τ) ≤ L′(τ)
to denote that for every formula Φ ∈ L(τ) there is an equivalent Ψ ∈ L′(τ). We
write L(τ) = L′(τ), if L(τ) ≤ L′(τ) and L(τ) ≥ L′(τ). If L(τ) ≤ L′(τ) and there
is a class characterizable in L′(τ) that is not characterizable in L(τ), we write
L(τ) < L′(τ).

By means of a game theoretical argument we show that D cannot characterize
the class of structures with a universe of even cardinality, Even. The latter class,
however, is definable by a Henkin quantifier with unrestricted quantifiers.

Proposition 1. There exists a first-order formula φ, such that H2
1 φ character-

izes Even.

Proof. Structure A has a universe A with even cardinality iff there exists a func-
tion f : A→ A such that for every a ∈ A, f(f(a)) = a and f(a) �= a. The latter
condition is expressed by the following formula: H2

1x1x2y1y2 φ(x1, x2, y1, y2),
where φ(x1, x2, y1, y2) = (x1=x2 → y1=y2) ∧ (y1=x2 → y2=x1) ∧ (x1 �=y1). �

3 A Characterization of Dk

In this section Dk(τ) is characterized as a fragment of Σ1
1,k(τ). First we lay down

a translation result. To this end, let Γ = Dn
k γ be a Dk(τ)-formula, where

Γ = Dn
k γ =

⎛

⎜
⎝

∀x11 . . . ∀x1n
∨
i1

...
. . .

...
...

∀xk1 . . . ∀xkn
∨
ik

⎞

⎟
⎠ γ (6)

Define the translation of Γ into Σ1
1,k(τ), written T (Γ ), as follows

∃X1 . . . ∃Xk∀x

⎡

⎢
⎣

X1(x1) ∧ . . . ∧ Xk(xk) → γ(1, . . . , 1)(x)
...

¬X1(x1) ∧ . . . ∧ ¬Xk(xk) → γ(0, . . . , 0)(x)

⎤

⎥
⎦ (7)
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where the Xi are k-ary predicate variables. The square brackets enclosing the
implications should be read as their conjunction; using them reflects the matrix-
style of presenting γ. The block of implications is referred to as γ’s explication.
The translation hinges on the insight that every function f : Ak → {0, 1} can be
mimicked by the set X = {a ∈ Ak | f(a) = 1}.
Proposition 2. For every sentence Γ ∈ Dk(τ), Γ and T (Γ ) are equivalent.

We proceed by giving a characterization of Dk as a fragment of Σ1
1,k.

Definition 1. Let Φ be a second-order τ-formula. Call Φ sober if for every
predicate variable X in Φ, it is the case that (i) X is not bound in Φ and (ii)
X(x) occurring in Φ implies that all variables in x are free in Φ. Let Σ1

1♥k(τ)
be the fragment of Σ1

1,k(τ) containing all formulae of the form

∃X1 . . .∃Xm∀x1 . . .∀xn Φ (8)

where Φ is sober. Put Σ1
1♥(τ) =

⋃
kΣ

1
1,k♥(τ).

So any sober formula is a second-order formula, but only in virtue of the
fact that it contains predicate variables. If Φ is a sober formula occurring in a
Σ1

1,k♥(τ)-formula as in (8), then there are no existentially quantified variables
among the arguments of a predicate variable. In Section 5 we see that the slight-
est extension in this respect results in a logic that enjoys the expressive power
of full NP.

As an example, consider the Σ1
1♥-formula ∃X1∃X2∃X3∀x1∀x2 (Φ ∧ Φ′) that

characterizes 3-Colorability, where (Φ ∧ Φ′) is a sober formula:

Φ =

⎛

⎝
∨

i∈{1,2,3}
Xi(x1)

⎞

⎠ ∧
⎛

⎝
∧

i∈{1,2,3}

∧

j∈{1,2,3}−{i}
¬(Xi(x1) ∧Xj(x1))

⎞

⎠ (9)

Φ′ =

⎛

⎝
∧

i∈{1,2,3}
(Xi(x1) ∧Xi(x2) → ¬R(x1, x2))

⎞

⎠ (10)

Theorem 1. Dk(τ) = Σ1
1,k♥(τ). Hence, D(τ) = Σ1

1♥(τ).

Proof. The inclusion from-left-to-right is accounted for by the translation T (·).
The converse inclusion is more involved, hinging on the claim that every sober
formula is equivalent to the explication of an implicit matrix formula. �

The characterization of D may speed up the finding of interesting properties it
enjoys, for second-order logic happens to be more intensively studied than par-
tially ordered connectives. Finding formulae with partially ordered connectives
expressing a particular property on structures can be hard labor. Now that we
have characterized Dk, we can safely conclude that any property expressible in
Σ1

1,k♥(τ) is expressible in Dk(τ) as well. A concrete—and relevant!—example
of this mode of research can be found in the following theorem.

Theorem 2. Let k ≥ 2 be an integer and let τk be a vocabulary with at least one
k-ary relation symbol and the linear order symbol2 <. Then, Dk−1(τk) < Dk(τk).
2 That is, on a τk-structure A, the extension of < is a linear order on A.
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Proof. Ajtai [1] proved the following result: Let k ≥ 2 and let τk = {P,<}, where
P is a k-ary relation symbol. Then, the class Ck of τk-structures A such that PA

has even cardinality is not characterizable in Σ1
1,k−1(τk), but it is characterizable

in Σ1
1,k(τk).

3

To separate Dk from Dk−1, we show that Ck is expressible by a formula in
Dk(τk). This suffices to prove the statement, since by Theorem 1, Σ1

1,k−1♥(τk)
is a fragment of Σ1

1,k−1(τk), and for this reason cannot express Ck.
Intuitively, the Σ1

1,k♥({P,<})-formula Υk that characterizes Ck over
τk-structures lifts the linear order < to a linear order ψk of k-tuples. With re-
spect to this lifted linear order, Υk expresses that there exists a subset of k-tuples
of objects from the domain Q such that

1. Q is a subset of PA;
2. the ψk-minimal k-tuple that is in PA is also in Q, and the ψk-maximal

k-tuple that is in PA is not in Q;
3. if two k-tuples are in PA and there is no k-tuple in between them (in the

ordering constituted by ψk) that is in PA, then exactly one of the k-tuples
is in Q.

We omit further details in the interest of space. �

4 Ehrenfeucht-Fräıssé Game for D

Ehrenfeucht-Fräıssé games or model comparison games are usually employed to
prove that some property is not definable in a certain logic. These games were
first introduced for first-order logic in [7, 11].

Let the quantifier rank of a first-order formula be its maximum number
of nested quantifiers. Let m be an integer. If A,B are τ -structures, xA =
〈xA

1 , . . . , x
A
r 〉 ∈ Ar, and xB = 〈xB

1 , . . . , x
B
r 〉 ∈ Br, then the m-round

Ehrenfeucht-Fräıssé game on the structures A and B, denoted by

EFFO
m (〈A,xA〉, 〈B,xB〉) ,

is an m-round game proceeding as follows: There are two players, Spoiler and
Duplicator. During the ith round, Spoiler first chooses a structure A (or B) and
an element called ci (or di) from the domain of the chosen structure. Duplicator
replies by choosing an element di (or ci) from the domain of the other structure
B (or A). Duplicator wins the play 〈〈c1, d1〉, . . . , 〈cm, dm〉〉, if the relation

{〈xA
i , x

B
i 〉 | 1 ≤ i ≤ r} ∪ {〈ci, di〉 | 1 ≤ i ≤ m} (11)

is a partial isomorphism between A and B; otherwise, Spoiler wins the play. If
against any sequence of moves by Spoiler, Duplicator is able to make her moves
3 The result uses hypergraphs, that is, structures interpreting relation symbols of un-

bounded arity. As a consequence, the result does not imply that Σ1

1,2(τ ) is strictly
weaker than Σ1

1,3(τ ), where τ is a vocabulary that contains only unary and binary
predicates, cf. [5].
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so as to win the resulting play, we say that Duplicator has a winning strategy in
EFFO

m (〈A,xA〉, 〈B,xB〉). The notion of winning strategy for Spoiler is defined
analogously. By the Gale-Stewart Theorem [12], Ehrenfeucht-Fräıssé games are
determined; that is, precisely one of the players has a winning strategy. The
effectiveness of these games is established in the following seminal result.

Theorem 3 ([7, 11]). For every integer m, the following are equivalent:

– 〈A,xA〉 and 〈B,xB〉 satisfy the same first-order formulae (possibly with free
variables from x) of quantifier rank ≤ m

– Duplicator has a winning strategy in EFFO
m (〈A,xA〉, 〈B,xB〉).

Readers unfamiliar with these games may find it helpful to consult [6], and
[10, 15] for similar games for MΣ1

1 .
The notion of quantifier rank is extended to implicit matrix formulae as fol-

lows: qr(γ) = max{qr(γ(i)) | i ∈ {0, 1}k}, for γ of type {0, 1}k → FO.
The model comparison game for D has two phases: a watercoloring phase and

a first-order phase. Let A and B be τ -structures and let m be an integer. Then,
the m-round, watercolor Dn

k -Ehrenfeucht-Fräıssé game on the structures A and
B, denoted as

EFDn
k

m (A,B) ,

is an (m+1)-round game proceeding as follows: First we have the watercol-
oring phase. Spoiler picks out for every 1 ≤ i ≤ n a subset Ai from Ak.
Duplicator picks out a subset Bi of Bk, for every 1 ≤ i ≤ n. Next, Spoiler
chooses a tuple xB

i ∈ Bk, for every 1 ≤ i ≤ n, and Duplicator replies by
choosing a tuple xA

i ∈ Ak. If for every 1 ≤ i ≤ n the selected tuples satisfy
xA
i ∈ Ai iff xB

i ∈ Bi, then the game proceeds to the first-order phase as
EFFO

m (〈A,xA〉, 〈B,xB〉); otherwise, Duplicator loses right away.

It is interesting to note that in the first-order Ehrenfeucht-Fräıssé game that
is started up after the watercolor phase, the actual colorings are immaterial. The
watercolors fade away quickly, so to say.

Proposition 3. Let A and B be τ-structures, and let k, n be integers. Let Γ =
Dn
k γ be any Dk-sentence with qr(γ) ≤ m. Then, the first assertion implies the

second:

– Duplicator has a winning strategy in EFDn
k

m (A,B)
– A |= Γ implies B |= Γ .

Hence, if the first assertion holds for arbitrary k, n, then the second assertion
holds for every Γ ∈ D, where qr(Γ ) ≤ m.

Proof. The game is a simple adaptation of the one presented in [19]. �

Fagin [10] showed that the monadic fragments of Σ1
1 and Π1

1 do not coincide, as
the latter harbors Connected but the former does not. Thus we say that MΣ1

1
is not closed under complementation.
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Using the model comparison games for D, we show that D is not closed under
complementation either. This result may be interesting, because D = Σ1

1♥ is
a fragment of Σ1

1 that is not bounded by the arity of the predicate variables
and has a non-empty intersection with k-ary, existential, second-order logic, for
arbitrary k, see Theorem 2. Clearly, these properties are not enjoyed by MΣ1

1 .
For any two τ -structures A and B with non-intersecting universes, let A ∪B

denote the τ -structure with universe A∪B and RA∪B = RA∪RB, for any R ∈ τ .

Theorem 4. 2-Colorability cannot be expressed in D. Hence, D is not
closed under complementation.

Proof. For contradiction, suppose 2-Colorability were characterizable in D.
So there would be a particular sentence in D that characterizes
2-Colorability, say Γ . This sentence Γ would have a partially ordered con-
nective with dimensions k, n prefixing an implicit matrix τ -formula of quantifier
rank m. Now if we are able to find structures A and B such that (i) A is not
2-colorable but B is 2-colorable, and (ii) Duplicator has a winning strategy in
EFDn

k
m (A,B), we may reason as follows: Since Γ is supposed to characterize

2-Colorability, we derive from (i) that A |= Γ and B �|= Γ . But from (ii)
and A |= Γ it follows by Proposition 3, that B |= Γ . A contradiction. So if such
structures A and B are found for all m, k, n, we may conclude that no sentence
Γ exists in D that expresses 2-Colorability.

It remains to be shown that for arbitrary m, k, n, there indeed exist graphs
A and B meeting (i) and (ii). To this end, fix integers m, k, n and consider the
graphs C and D, where

C = {c1, . . . , cN}
RC = the symmetric closure of {〈ci, ci+1〉 | 1 ≤ i ≤ N − 1} ∪ {〈cN , c1〉}
D = {d1, . . . , dN+1}

RD = the symmetric closure of {〈di, di+1〉 | 1 ≤ i ≤ N} ∪ {〈dN+1, d1〉}

and N = 2m+k·n. So C and D are cycles of even and odd length, respectively. A
cycle is 2-colorable iff it is of even length, hence D is not 2-colorable whereas C
is. Obviously, the structure C ∪D is not 2-colorable either.

Let us proceed to show that Duplicator has a winning strategy in
EFDn

k
m (C∪D,C). Suppose Spoiler selects, for every 1 ≤ i ≤ n, a setXi ⊆ (C∪D)k .

Let Duplicator respond with Xi restricted to C, that is, with Yi = Xi ∩ Ck, for
every 1 ≤ i ≤ n. Suppose Spoiler selects the tuple xC

i ∈ Ck, for every 1 ≤ i ≤ n.
Let Duplicator respond by simply copying these tuples on (C ∪ D)k, that is,
setting xC∪D

i = xC
i . The game advances to the first-order phase, since obviously

xi ∈ Xi iff xi ∈ Yi. A standard argument suffices to show that Duplicator has a
winning strategy in

EFFO
m (〈C ∪D,xC∪D

1 , . . . ,xC∪D
n 〉, 〈C,xC

1 , . . . ,x
C
n〉) ,

compare [6, p. 23].
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As noted in Introduction, Blass and Gurevich have shown that D can char-
acterize the class of 3-colorable graphs. In the same way it is capable of charac-
terizing 2-Colorability. We just showed that the complement of this class is
not expressible in D. Therefore, D is not closed under complementation. �

Since C’s universe has even cardinality but D’s has not, we conclude that also the
class Even is not characterizable in D. By contrast, in Proposition 1 we showed
that this class is characterizable by a sentence of the form H2

1 φ. So already the
simplest Henkin quantifier not definable in first-order logic, cannot be defined
in D. Since Even is obviously characterizable in binary Σ1

1 , D < Σ1
1 .

5 Revisiting Σ1
1♥

We mapped out some finite model theory for D and observed that it is not
closed under complementation, and not bounded by an arity constraint. We
saw that D comprises a fragment of Σ1

1 whose formulae do not allow for a
single existential variable to appear as the argument of a predicate variable.
Amusingly, this boundary is rather sharp: already the slightest extension yields
a logic coinciding with Σ1

1 . Let us write Σ1
1♣ for the fragment of Σ1

1 that has
formulae of the form

∃X1 . . .∃XmQ1x1 . . .Qnxn Φ (12)

where Φ is sober as before, and for at most one i ∈ {1, . . . , n}, we have that
Qi = ∃; all other quantifiers are universal quantifiers. Using a result by Krynicki
[16], it is not hard to see that Σ1

1♣ = NP on finite structures. Krynicki showed,
namely, that first-order logic prefixed by the quantifier below (with unbounded
k) coincides with full Σ1

1 :
(∀x11 . . . ∀x1k

∨
i

∀x21 . . . ∀x2k ∃y
)

(13)

The semantics of (13) is readily defined in view of the semantics of (1) and (4),
involving one function variable of type Ak → {0, 1} and one function variable
of type Ak → A. The former function variable can be mimicked by a k-ary
predicate variable as in the translation T (·). The latter k-ary function variable
can be mimicked by a (k+1)-ary predicate variable along the obvious path, be
it at the cost of introducing one existential quantifier.
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Abstract. We continue the study of P systems with mobile membranes
introduced in [7], which is a variant of P systems with active mem-
branes, but having none of the features like polarizations, label change
and division of non-elementary membranes. This variant was shown to
be computationally universal (RE) using only the simple operations of
endocytosis and exocytosis; moreover, if elementary membrane division
is allowed, it is capable of solving NP-complete problems. It was shown
in [5] that 4 membranes are sufficient for universality while using only
endo/exo operations. In this paper, we study the computational power of
these systems more systematically: we examine not only the power due
to the number of membranes, but also with respect to the kind of rules
used, thereby trying to find out the border line between universality and
non-universality. We show that 3 membranes are sufficient for computa-
tional universality, whereas two membranes are not, if λ-free rules are
used.

1 Introduction

P systems are a class of distributed parallel computing models inspired from the
way the living cells process chemical compounds, energy, and information. One of
the central operations in cell biology is cell division, and with this inspiration, P
systems with active membranes were introduced in [12]. This variant was shown
to be computationally universal as well as to be able to solve hard problems. The
features used by this variant include the use of polarizations (+, -, 0) and division
of non-elementary as well as elementary membranes, giving rise to an exponential
workspace. These features are quite powerful, thus making the system powerful.
Many attempts have been made to define equivalent systems having none of
the above features, but in general, removal of one feature has requested the
introduction of other powerful operations [13]. [7] is an attempt in this direction,
wherein a variant of P systems with none of the above mentioned features was
introduced, but instead use two simple operations : endocytosis and exocytosis.
These operations are different and simpler than the operations considered in [1],
[2], [4] and [3]. In [7], computational universality of these systems was obtained
using 9 membranes. This was then improved to 4 membranes in [5]. However, the
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power of 3 and 2 membranes was not clear. It was also not clear whether the kind
of evolution rules used, could have any significant effect on the computational
power.

In this paper, we improve the universality result of [5] obtaining a universality
result with 3 membranes. Further, we try to understand and analyze where the
borderline between universality and non-universality lies. For instance, what
happens when two membranes are used instead of three? We obtain a very
subtle borderline here with two membranes : if λ-free rules are used, we show
that it is impossible to obtain universality, whereas if general rules are used with
two membranes, the power remains open. This leaves a very interesting question
open about the power of two kinds of systems : those with two membranes having
λ-rules and those with three membranes having λ-free rules. To the best of our
knowledge, this is the first time a characterization of the computational power
of P systems has been made, based on λ-free and λ-rules. In formal language
theory, inclusion of λ-rules is known to increase the computational power of
certain systems (eg. MATac and MAT λac) from non-RE to RE [14], but we
do not know the effect of this as far as P systems are concerned. However, we
conjecture that two membranes with λ-rules cannot be equivalent to RE and
hence that the universality result with three membranes is optimal with respect
to the number of membranes.

The next section is devoted towards some formal language theory prerequi-
sites. In Section 3, we recall the basics of P systems with mobile membranes,
whose power we investigate, in this paper. Section 4 describes the universality of
3 membranes, and states the upper and lower computational bounds of systems
with two membranes, the proofs of which can be found in the full version of the
paper [6].

2 Some Prerequisites

We refer to [14] for the elements of formal language theory we use here. We list
a few notions and notations: N denotes the set of natural numbers; V denotes
a finite alphabet; V ∗ is the is the free monoid generated by V under the op-
eration of concatenation and the empty string denoted by λ, as unit element;
by NFIN,NREG,NCF,N0L,NRCp,f ,NCS and NRE we denote the family
of finite sets, regular sets, context-free sets, zero-interaction Lindenmayer sets,
random-context sets, context-sensitive sets and recursively enumerable sets of
natural numbers, respectively. These can also be looked at as the family of sets
of numbers recognized by these languages. For k ≥ 1 and a family of languages
FL, by NkFL we denote the length sets of FL excluding the initial segment upto
k−1. Equivalently, NkFL = {k+L | L ∈ NFL}, where k+L = {k+n | n ∈ L}.
A multiset over an alphabet V is represented by a string over V (and by all its
permutations) and each string precisely identifies a multiset. It is known that
NFIN ⊂ NREG = NCF ⊆ N0L ⊂ NRCp,f ⊆ NCS ⊂ NRE.

We briefly mention the definition of random context grammars and 0L systems
here, since we use them in Theorem 1. A random context grammar is a construct
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G = (N,T, S,R) where N is the set of non-terminals, T is the set of terminals, S
is the start symbol and R is a set of rules of the form p : (A→ w,E1, E2) where
A→ w is a context-free production overN∪T and E1, E2 are subsets of N . Then,
p can be applied to a string x ∈ (N ∪ T )∗ only if x = x1Ax2, E1 ⊆ alph(x1x2),
and E2 ∩ alph(x1x2) = ∅. alph(x1x2) stands for the set of symbols occurring in
x1x2. If E1 or E2 is the empty set, then no condition is imposed by E1 or E2
respectively. E1 is said to be permitting and E2 is said to be the set of forbidding
context conditions of p. We denote by RCp,f the family of languages generated
by random context grammars with permitting and forbidding contexts and λ-
free rules. It is known that the family RCp,f is closed with respect to left quotient
by letters, where the left quotient of a family L of languages with respect to a
symbol a is defined as ∂la(L) = {x | ax ∈ L}.

A 0L system is a construct G = (V,w,R) where V is an alphabet, w ∈ V ∗ is
the axiom, and R is a finite set of rules of the form a → v with a ∈ V, v ∈ V ∗

such that for each a ∈ V , there is atleast one rule a ∈ v in R. For w1, w2 ∈ V ∗, we
write w1 ⇒ w2 if w1 = a1a2 . . . an, w2 = v1v2 . . . vn, for ai → vi ∈ R, 1 ≤ i ≤ n.
The language generated by G is L(G) = {x ∈ V ∗ | w ⇒∗ x}.

For basic elements of membrane computing we refer to [13]; for the state-
of-the art of the domain, the reader may consult the bibliography from the
web address http://psystems.disco.unimib.it. For proving computational
universality, we use the concept of Minsky’s register machine [11].

The proofs about membrane systems in this paper are based on the concept
of Minsky’s register machine [11]. Such a machine runs a program consisting of
numbered instructions of several simple types. Several variants of register ma-
chines with different number of registers and different instruction sets were shown
to be computationally universal (e.g., see [10], [11] for some original definitions
and [8] for the definitions we use in this paper).

An n-register machine is a construct M = (n, P, i, E) , where: (i) n is the num-
ber of registers, (ii) P is a set of labeled instructions of the form j : (op (r) , k, l),
where op (r) is an operation on register r of M , j, k, l are labels from the set
Lab (M) (which numbers the instructions in a one-to-one manner), (iii) i is the
initial label, and (iv) E is the final label.
The machine is capable of the following instructions:

(add(r), k, l): Add one to the contents of register r and proceed to instruction
k or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.
(sub(r), k, l): If register r is not empty, then subtract one from its contents
and go to instruction k, otherwise proceed to instruction l.
halt: Stop the machine. This additional instruction can only be assigned to
the final label E.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα → Nβ, α, β > 0; starting with
(n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed f (n1, . . . , nα) =
(r1, . . . , rβ) if it halts in the final label E with registers 1 to β containing
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r1 to rβ . If the final label cannot be reached, then f (n1, . . . , nα) remains unde-
fined.

A deterministic m-register machine can also analyze an input (n1, . . . , nα) ∈
Nα

0 in registers 1 to α, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful. In their non-deterministic variant,
n-register machines can compute any recursively enumerable set of non-negative
integers (or of vectors of non-negative integers). Starting with all registers being
empty, we consider a computation of the n-register machine to be successful, if
it halts with the result being contained in the first (β) register(s) and with all
other registers being empty. In fact, [11] has shown that 3 registers are enough
for computing any recursively enumerable set of numbers, such that the input
is in register 1, register 3 is never decremented, and the machine, when it halts,
has the output in register 3.

3 P Systems with Mobile Membranes

We now briefly recall P systems with mobile membranes introduced in [7]. A
P system with mobile membranes is a construct Π = (V,H, μ, w1, . . . , wn, R),
where: n ≥ 1 (the initial degree of the system); V is an alphabet (its elements
are called objects); H is a finite set of labels for membranes; μ is a membrane
structure, consisting of n membranes, labeled (not necessarily in a one-to-one
manner) with elements of H ; w1, w2, . . . , wn are strings over V , describing the
multisets of objects placed in the n regions of μ, and R is a finite set of develop-
mental rules, of the following forms:
a. [ma→ v]m, for m ∈ H, a ∈ V, v ∈ V ∗; object evolution rules.
b. [ha]h[m ]m → [m[hb]h]m, for h,m ∈ H, a, b ∈ V ; endocytosis rules: an ele-
mentary membrane labeled h enters the adjacent membrane labeled m, under
the control of object a; the labels h and m remain unchanged during this process,
however, the object a may be modified to b during the operation; m is not nec-
essarily an elementary membrane.
c. [m[ha]h]m → [m ]m[hb]h, for h,m ∈ H, a, b ∈ V ; exocytosis: an elementary
membrane labeled h is sent out of a membrane labeled m, under the control of
object a; the labels of the two membranes remain unchanged, but the object a
from membrane h may be modified during this operation; membrane m is not
necessarily elementary.
d. [ha]h → [hb]h[hc]h, for h ∈ H, a, b, c ∈ V ; division rules for elementary mem-
branes: in reaction with an object a, the membrane labeled h is divided into two
membranes labeled h, with the object a replaced in the two new membranes by
possibly new objects. Note that we do not use division rules for our investiga-
tions in this paper. The rules are applied according to the following principles:

1. All rules are applied in parallel, non-deterministically choosing the rules,
the membranes, and the objects, but in such a way that the parallelism is
maximal; this means that in each step we apply a set of rules such that no
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further rule can be added to the set, no further membranes and objects can
evolve at the same time.

2. The membrane m from each type (a) – (c) of rules as above is said to
be passive, while the membrane h is said to be active. In any step of a
computation, any object and any active membrane can be involved in at
most one rule, but the passive membranes are not considered involved in the
use of rules (hence they can be used by several rules at the same time as
passive membranes); for instance, a rule [ma→ v]m, of type (a), is considered
to involve only the object a, not also the membrane m.

3. The evolution of objects and membranes takes place in a bottom-up manner.
After having a (maximal) set of rules chosen, they are applied starting from
the innermost membranes, level by level, up to the skin membrane (all these
sub-steps form a unique evolution step, called a transition step).

4. When a membrane is moved across another membrane, by endocytosis or
exocytosis, its whole contents (its objects) are moved; because of the bottom-
up way of using the rules, the inner objects first evolve (if there are rules
applicable for them), and then any membrane is moved with the contents as
obtained after this inner evolution.

5. If a membrane exits the system (by exocytosis), then its evolution stops,
even if there are rules of type (a) which would be applicable to it provided
that the membrane would be in the system.

6. All objects and membranes which do not evolve at a given step (for a given
choice of rules which is maximal) are passed unchanged to the next config-
uration of the system.

By using the rules in this way, we get transitions among the configurations
of the system. A sequence of transitions is a computation, and a computation is
successful if it halts (it reaches a configuration where no rule can be applied).
During a computation, membranes can leave the skin membrane (by means of
rules of type (c)). The number of objects present in each membrane that is sent
out of the system contributes to the output. If only one membrane is sent out
at the end of a halting configuration, then the number of objects present in that
membrane is the output of the system. If multiple membranes are sent out, then
each membrane contributes a number. The set of all such numbers is the output
of a successful computation; a non-halting computation provides no output.

The set of all numbers computed in this way by Π is denoted N(Π).
The family of all sets of numbers N(Π) generated by systems Π having at-
most n membranes, using endocytosis and exocytosis rules, is denoted by
NMPλ

n (endo, exo)). If no rules of the from a → λ are used in Π , then we omit
the superscript λ. If a type of rules is not used, then we omit its “name” from
the list. For instance, if only exocytosis rules are used and if all rules are λ-free,
we write or NMPn(exo). Note that the exocytosis rules allow only replacing an
object by another object and hence, any membrane leaving the skin membrane
has at least one object. Thus, NMPn(endo, exo) ≥ 1, n ≥ 2.

Lemma 1. NMPn(endo, exo) ⊆ NMPλ
n (endo, exo).
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4 The Power of Endocytosis and Exocytosis

We first examine the power of systems with 2 membranes. We show that with
2 membranes one can compute all numbers (≥ 1) that are computable by a 0L
system (lower bound). We also show that we can obtain an sub Turing ( < RE)
upper bound for systems of degree two, with λ-free rules.

Theorem 1. 1. NMP2(exo) ⊆ N1RCp,f ⊂ N1RE, 2. N10L ⊆ NMPλ
2 (exo).

Proof. In systems with two membranes μ = [1[2 ]2]1, [2 ]2 is the output mem-
brane and there are no endo operations. Thus, there is only one exo operation
(when membrane 2 is sent out of the skin) and object evolution rules for mem-
branes 1,2. Further, none of the objects in membrane 1 contribute to the output.
Therefore, without loss of generality, to assume that membrane 1 is empty, while
considering systems with 2 membranes. For a detailed explanation of this claim,
see [6].

Table 1. Rules for the random context grammar

1. (S → Ow, ∅, ∅)
2. (O → F, ∅, V ′ ∪ V ′′ ∪ {ηa | a ∈ V })
3. (a → v′, {F}, {O, E}), if a → v ∈ R

4. (a → a′, {F}, {O, E}), if a ∈ U2

5. (F → O, ∅, V ∪ V ′′ ∪ {ηa | a ∈ V })
6. (a′ → a, {O}, {F, E})
7. (a → ηb, {F}, {O, E} ∪ {ηe | e ∈ V }), if [

1
[
2
a]

2
]
1

→ [
2
b]

2
[
1
]
1

8. (a′ → a′′, {F} ∪ {ηe}, ∅), for a, e ∈ V

9. (a → a′′, {F} ∪ {ηe}, ∅), where a ∈ U1, e ∈ V

10. (a → a′′, {F} ∪ {e′′}, ∅), where a ∈ U1, e ∈ V

11. (a′ → a′′, {F} ∪ {e′′}, ∅), for a, e ∈ V

12. (F → E, ∅, V ∪ V ′)
13. (ηa → â, {E}, V ∪ V ′ ∪ {ηe | e ∈ V }), a ∈ V

14. (a′′ → â, {E}, V ∪ V ′ ∪ {ηe | e ∈ V }), a ∈ V

15. (E → H, ∅, V ∪ V ′ ∪ V ′′ ∪ {ηa | a ∈ V }), a ∈ V .

We give the idea behind 1 as well as the construction of a RCp,f system. The
detailed explanations of correctness can be found in the full version of the paper
[6]. We show that N1MP2(exo) ⊆ N1RCp,f , which implies N1MP2(exo) ⊂
N1RE since N1RCp,f ⊆ N1CS ⊂ N1RE.
Let Π = (V, {1, 2}, [1[2 ]2]1, ∅, w,R) be a P system with mobile membranes of
degree two. Let U1, U2 be two subsets of V such that

U1 = {a ∈ V | all rules for a are of the form [1[2a]2]1 → [2b]2[1 ]1},
U2 = {a ∈ V | a has no rules in R}

For the alphabet V , let V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V }, V̂ = {â |
a ∈ V }. Let us construct a random context grammar G = (N,T, S,R′) with
N = V ∪ V ′ ∪ V ′′ ∪ {ηa | a ∈ V } ∪ {F,O,E}, T = {H} ∪ V̂ . The rules R′ are
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given in Table 1. We obtain a string Hw,w ∈ V̂ ∗ in L(G), where, the length of
w would be same as the number of symbols in the membrane that is sent out.
Since we have an extra symbol H here, we can take a left quotient of the string
Hw with respect to the letter H , and obtain w. Since the family RCp,f is closed
with respect to left quotient by letters, w is also in L(G). This establishes the
claim made by 1.

The proof of 2 is as follows: Consider any 0L system G = (V,w, P ) and
construct the P system Π1 = (V ∪ {d}, {1, 2}, [1[2 ]2]1, w1, wd,R) such that
d /∈ V and having rules R = P ∪ {[2d → d]2, [1[2d]2]1 → [2d]2[1]1}. Note that
w1 can be any arbitrary multiset. Clearly, the rules in P can be applied as long
as we want, along with d→ d, and at any point, we can use the exo rule. Clearly,
membrane 2 has an extra d and the multiplicities of objects in V will be same
as that computed by the 0L system.  !
Next we show computational universality can be obtained with 3 membranes.

Theorem 2. N1RE = NMPλ
3 (endo, exo).

Proof. We only prove the assertion N1RE ⊆ NMPλ
3 (endo, exo), and infer the

other inclusion from the Church-Turing thesis. The proof is based on the ob-
servation that each set from N1RE is the range of a recursive function. Thus,
we will prove the following assertion. For each recursively enumerable function
f : N → N, there is a mobile P System Π with 3 membranes satisfying the
following condition: For any arbitrary x ∈ N, the system Π first “generates” a
multiset of the form ox1 and halts if and only if f(x) is defined, and, if so, the
result of the computation is f(x).

In order to prove this assertion, we consider a register machine with 3 registers,
the last one being a special output register which is never decremented. Let there
be a program P consisting of n instructions P1, . . . , Pn which computes f . Let
Pn correspond to the instruction HALT and P1 be the first instruction. The
input value x is expected to be in register 1 and the output value in register 3.
Without loss of generality, we can assume that all registers other than the first
one are empty at the beginning of a computation.
We construct the mobile P system Π = (V,H, μ, w1, w2, w3, R) where

V = {s, s1, s2, s′1, s′2, s′′1 , s′′2 , s′′′2 } ∪ {a, d, d′, e, e′, N} ∪ {o1, o2, o3}
∪ {Pi | 1 ≤ i ≤ n} ∪ {P i

kj , P
m
l | 1 ≤ i ≤ 6,m = 1, 2, j = (sub(1), k, l)}

∪ {Qm
l , Q

i
kj | 1 ≤ i ≤ 6,m = 1, 2, and j = (sub(2), k, l)}

∪ {E,E′, E′′, E′′′, E4, E5, E6, †},
H = {1, 2, 3}, μ = [3[1 [2 ]2 ]1]3, w1 = sa, w2 = s2, w3 = ∅.

Proof Idea: Membrane 1 contains the current contents of registers 1 and 3 (in
the form of o1, o3), and membrane 2, the current contents of register 2 (as o2).
A copy of the current instruction is always kept in both membranes 1 and 2.
This helps to decrement the registers 1 and 2, separately in the two membranes,
and to update the next instruction. When the halting instruction E is obtained,
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the contents of register 3, present in membrane 1 is the output. We have the
following rules:

1.Creation of ox1 , x ≥ 0 in membrane 1, representing input x in register 1

1. [2s2 → s2]2, [1s→ s1]1, 2. [1s1 → o1s1]1, [1s1 → s1]1,
3. [1 [2s2]2 ]1 → [2s

′
2]2[1 ]1,

4. [1a]1[2 ]2 → [2 [1 † ]1]2, [1s1]1[2 ]2 → [2 [1s
′
1]1]2, [2s

′
2 → s′′2 ]2,

5. [2 [1a]1 ]2 → [1N ]1[2 ]2, [1s
′
1 → s′′1 ]1, [2s

′′
2 → s′′′2 ]2,

6. [1s
′′
1 → P1]1, [2s

′′′
2 → P1]2, [ iN → λ] i, i = 1, 2.

We start with the initial configuration [3 [1 [2s2]2 sa]1 ]3. Rule 1 is first applied
to membranes 1 and 2, replacing s by s1 in membrane 1. In the next few steps,
rule 2 can be used, creating as many o1’s as required, and assuming that s2 → s2
is used in membrane 2. At some point, rule 3 is used, by which membranes
1 and 2 become adjacent to each other, and s2 becomes s′2. Next, we have
two choices for membrane 1 : either the endo rule (4) involving a or the endo
rule (4) involving s1 has to be applied. In the former case, we get an infinite
computation (rule 29), so let us assume we replace s1 by s′1 using the endo
rule for s1. In parallel, s′2 evolves to s′′2 in membrane 2. We have now reached
the configuration [3 [2 [1as

′
1o
i
1]1 s

′′
2 ]2 ]3. Rules 5, 6 now follow, leading to the

configuration [3 [2P1]2[1P1o
i
1]1 ]3.

2.Simulation of instructions Pj , where j = (add(r), k), 1 ≤ j, k ≤ n, 1 ≤ r ≤ 3

7. [1Pj → orPk]1, [2Pj → Pk]2, j = (add(r), k), r = 1, 3,
8. [2Pj → o2Pk]2, [1Pj → Pk]1, j = (add(2), k).

Assume we are in a configuration [3 [1Pio
q
1o

t
3]1[2Pio

u
2 ]2 ]3, q, t, u ≥ 0. If Pi :

(add(r), k), r ∈ {1, 3}, then, in membrane 1, we replace Pi by o1Pk or o3Pk
and in membrane 2, we replace Pi by Pk. A similar case holds for incrementing
register 2. Thus, membrane 1 contains the current contents of registers 1 and 3,
and membrane 2 contains the contents of register 2.
3.Simulation of instructions Pj , where j = (sub(1), k, l), 1 ≤ j, l, k ≤ n
We look at the simulation of an instruction decrementing register 1. We need to
ensure that after simulation, we either have Pl in membranes 1 and 2 (if register
1 was zero) or have Pk in both membranes (if register 1 was non-zero). We look
at both the cases here.
Case 1: Register 1 is non-zero Let [3 [2o

u
2Pj ]2[1Pjo

s
1o
t
3]1 ]3, s > 0 be the cur-

rent configuration. We start with rule 9, by which membrane 1 enters membrane
2 replacing Pj by P 1

kj , while, in membrane 2, Pj evolves to P 1
kj . In the next

step, since o1’s are present in membrane 1, rule 10 is applied, by which mem-
brane 1 comes out of membrane 2, replacing an o1 by d, while, in parallel, P 1

kj

evolves into P 2
kj in both membrane 1 and 2. In the next step, we have two

choices of applicable rules : rules 11,19 in parallel, or rule 12. Rule 11 is a trap
rule, and the symbol † can never be removed. By rule 12, P 2

kj evolves into P 3
kj

in both membranes, and membrane 2 enters membrane 1. Rule 13 comes next,
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Table 2. Rules for decrementing register 1

9.[
1
Pj ]

1
[
2

]
2

→ [
2

[
1
P 1

kj ]1]2, [2Pj → P 1

kj ]2
10. [

2
[
1
o1]

1
]
2

→ [
1
d]

1
[
2

]
2
, [

i
P 1

kj → P 2

kj ] i
, i = 1, 2

Register 1 non-zero Register 1 is zero
11 [

1
d]

1
[
2

]
2

→ [
2

[
1

† ]
1

]
2

12 [
1
P 2

kj → P 3

kj ]1, [2P
2

kj ]2[1 ]
1

→ [
1

[
2
P 3

kj ]2 ]
1

13 [
1
P 3

kj → P 4

kj ]1, [1[2P
3

kj ]2 ]
1

→ [
2
P 4

kj ]2[1 ]
1

14 [
2
P 3

kj → †]
2

15 [
2
P 4

kj → P 5

kj ]2, [1P
4

kj ]1[2 ]
2

→ [
2
[
1
P 5

kj ]1 ]
2

16 [
2

[
1
d]

1
]
2

→ [
1
N ]

1
[
2

]
2
,

[
i
P 5

kj → P 6

kj ] i
, i = 1, 2

17 [
i
P 6

kj → Pk]
i
, i = 1, 2

18 [
2

[
1
P 2

kj ]1 ]
2

→ [
1
P 1

l ]
1
[
2

]
2

19 [
2
P 2

kj → eP 1

l ]
2

20 [
2
e]

2
[
1

]
1

→ [
1
[
2
N ]

2
]
1
,

[
i
P 1

l → P 2

l ]
i
, i = 1, 2

21 [
1

[
2
P 2

l ]
2

]
1

→ [
2
Pl]

2
[
1

]
1
,

[
1
P 2

l → Pl]
1

22 [
2
P 2

l → †]
2

P 3
kj evolves into P 4

kj , and membrane 2 comes out of membrane 1. Now we have
[3 [2P

4
kjo

u
2 ]2[1P

4
kjo

s−1
1 ot3]1 ]3. In the next step, 15 is the only applicable rule, by

which P 4
kj is replaced by P 5

kj in both membranes, and membrane 1 enters mem-
brane 2. We now use rule 16 to remove the d introduced by rule 10, obtaining
[3 [2P

6
kjo

u
2 ]2[1NP

6
kjo

m
1 o

q
3]1 ]3. Rules 17 and 6 are used next, replacing both P 6

kj ’s
by Pk, the next instruction, and erasing N .
Case 2 : Register 1 is zero Let [3 [2o

u
2Pj ]2[1Pjo

t
3]1 ]3 be the current configura-

tion. The initial two steps in both membranes is same as in Case 1. The difference
is that we do not have an o1 in membrane 1. To proceed, we use rule 18 to mem-
brane 1 and rule 19, to P 2

kj in membrane 2. This gives [3 [2o
u
2eP

1
l ]2[1P

1
l o

t
3]1 ]3.

In the next step, 20 is the only applicable rule, which removes e in the process
of membrane 2 entering membrane 1, while P 1

l becomes P 2
l in both membranes.

Next, P 2
l is replaced by Pl in both membranes by rule 21 and N is erased. Note

that not using the rules as mentioned here would give no result.
4.Simulation of instructions Pj , where j = (sub(2), l, k), 1 ≤ j, l, k ≤ n
The simulation of an instruction decrementing register 2 is analogous to that
of register 1, the only difference being that we use as intermediate symbols Qjk

instead of Pjk, and d′, e′ instead of d, e.
5. Halting and Handling Exception: Let Pn = E be the halting instruction

23. [1E]1[2]2 → [2 [1E
′]1 ]2, 24. [1E

′ → E′′, E4 → E′′]1,

25. [2 [1E
′′]1 ]2 → [1E

′′′]1[2 ]2, 26. [1E
′′]1[2 ]2 → [2 [1E

4]1 ]2,

27. [1E
′′′ → E5, E5 → E6]1, 28. [3 [1E

6]1 ]3 → [1o3]1[3 ]3,
29. [ i† → †] i, i = 1, 2, 30. [1 † ]1[2 ]2 → [2 [1 † ]1 ]2, 31. [1E

′′ → †]1.

Assume that we reach the halting instruction Pn. This means, we are in a con-
figuration [3 [1Eo

i
1o

j
3]1[2Eo

k
2 ]2 ]3, i, j, k ≥ 0. Clearly, there are no instructions

to be simulated after E. Rule 23 is used, by which membrane 1 enters membrane
2, replacing E by E′. Nothing happens to the contents of membrane 2 from this
point onward. If there are o1’s in membrane 1, they will be removed and mem-
brane 1 will come out of membrane 2, by rule 10. In parallel, E′ evolves to E′′
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by rule 24. Next, rule 26 is used, by which membrane 1 again enters membrane
2, replacing E′′ by E4. The o1’s, if any, are removed and E4 is replaced by E′′.
This continues as long as there are o1’s in membrane 1. When all the o1’s are
exhausted, we obtain the configuration [3 [2 Eo

k
2 [1E

′′oj3]1]2 ]3, j, k ≥ 0.
The only applicable rule next, is 25, by which, membrane 1 comes out of mem-

brane 2, replacing E′′ by E′′′, giving the configuration [3 [1E
′′′oj3]1[2Eo

k
2 ]2 ]3.

E′′′ next evolves into E5 by rule 27. In parallel, rule 30 (if applicable) will be
used, provided a trap symbol † was introduced in membrane one in the past. If
this happens, we get no output, since there is no way to send membrane 1 out of
membrane 2. Otherwise, we replace in the next step, E5 by E6 and subsequently
by o3 (rule 28) while expelling membrane 1 out of the system. Membrane 1 will
contain j + 1 o3’s, j ≥ 0, provided j was the output of the register machine.  !
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Gödel’s Conflicting Approaches
to Effective Calculability

Wilfried Sieg

Department of Philosophy
Carnegie Mellon University

Identifying the informal concept of effective calculability with a rigorous mathe-
matical notion like general recursiveness or Turing computability is still viewed as
problematic, and rightly so. In a 1934 conversation with Church, Gödel suggested
finding axioms for the notion of effective calculability and “doing something
on that basis” instead of identifying effective calculability with λ-definability;
that identification he found “thoroughly unsatisfactory”. He introduced in his
contemporaneous Princeton lectures (Gödel 1934) the class of general recursive
functions through the equational calculus, but was not convinced at the time
that this mathematical notion encompassed all effectively calculable functions.
(See (Davis 1982) and (Sieg 1997).)

Gödel articulated different and conflicting approaches to the underlying
methodological issues during the three decades from 1934 to 1964. The signifi-
cant shifts in his position underline the difficulty of the problems surrounding the
Church-Turing Thesis. In (1936) and (1946) he emphasized that the importance
of the notion of general recursive function is largely due to its absoluteness. Yet
he also claimed in (193?) that the analysis of the manner in which the calcula-
tion of number theoretic functions proceeds leads to the characteristic features
of the equational calculus; thus, it provides a “correct definition” of effectively
calculable function. In (1951) he calls Turing’s reduction of the “concept of fi-
nite procedure to that of a machine with a finite number of parts” the most
satisfactory way of arriving at a precise definition of the former concept. Finally,
in (1964) Gödel saw, quite emphatically, Turing’s work as providing a correct
analysis of mechanical procedures (thus also of effective calculability) and a proof
of the fact that the analyzed notion is equivalent to that of a Turing machine.

Eight years later Gödel detected “a philosophical error in Turing’s work” (of
1936) and attributed to Turing the claim that “mental procedures cannot go be-
yondmechanical procedures”.Turing, however, didnotmaintain sucha claimwhen
reducing mechanical procedures (carried out by a human computer) to machine
computations. A deepened analysis of Turing’s reduction can serve, ironically, as
a springboard for the methodological approach Gödel had recommended in 1934,
but never followed up, namely an axiomatic characterization of computability.
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Co-total Enumeration Degrees

Boris Solon
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Abstract. This paper is dedicated to the study of the enumeration
degrees which contain sets the complements of which are the graphs of
some total functions. Such e-degrees are called co-total. That every total
e-degree a ≥ 0′

e contains such total function f that dege(graph(f)) is a
quasi-minimal e-degree has been proved. Some known results of McEvoy
and Gutteridge with the aid of co-total e-degrees become stronger as well.

The notations and terminology similar to those of the monograph [10] are used.
Let ω denote the set of positive integers; A,B, . . . , X, Y (with or without indices)
are used to denote the subsets of ω; A = ω − A; cA(x) = {(x, 1) : x ∈ A} ∪
{(x, 0) : x /∈ A} is a characteristic function of A. Let Du as usual be a finite
set with canonical index u; 〈x, y〉 be the Cantor number of an ordered pair
(x, y). If z is a Cantor number of (x, y) then let 〈z〉1 = x and 〈z〉2 = y. Let
also 〈A〉1 = {x : ∃y(〈x, y〉 ∈ A)} and 〈A〉2 = {y : ∃x(〈x, y〉 ∈ A)}. Let Wt be
a computably enumerable (c.e.) set with c.e. index t, K = {t : t ∈ Wt} and
K0 = {〈x, t〉 : x ∈ Wt}. Below symbol D is used as a variable which ranges over
a set of all finite sets.

Given a partial function α : ω → ω let dom(α), rang(α) and graph(α) =
{〈x, α(x)〉 : x ∈ dom(α)} be the domain, the range and the graph of α respec-
tively. We restrict the use of the symbols f, g only to denote total functions, i.e.
dom(f) = dom(g) = ω. If graph(α) ⊆ graph(β) then we shall write α ⊆ β for
brief. A set A is said to be single-valued, if A = τα for some partial function α.

We recall, [3], that A ≤e B (A is enumeration reducible to B orA is e-reducible
to B), if there is a uniform algorithm for enumerating A given any enumeration
of B. Formally,

A ≤e B ⇐⇒ (∃t)(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈Wt & Du ⊆ B]].

Let Φt : 2ω → 2ω : Φt(X) = {x : (∃u)[〈x, u〉 ∈ Wt & Du ⊆ X ]}. Then A ≤e

B ⇐⇒ (∃t)[A = Φt(B)]. Φt is called the enumeration operator or e-operator with
c.e. index t. Let as usual A ≡e B ⇐⇒ A ≤e B & B ≤e A, let dege(A) = {B :
B ≡e A} be the e-degree of A and finally let dege(A) ≤ dege(B) ⇐⇒ A ≤e B. It
is easy to see that this relation defines a partial ordering relation on the e-degrees.
Bold Latin letters range over e-degrees and corresponding light capital letters
automatically denote a representative set of the same degree. We will write for
partial function α, β α ≤e A or α ≤e β if τα ≤e A or τα ≤e τβ, respectively.
Denote by De a set of the e-degrees partially ordered by ≤. It is well known
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c© Springer-Verlag Berlin Heidelberg 2006



Co-total Enumeration Degrees 539

that De forms an upper semilattice with the least element 0e = {Wt : t ∈ ω} in
which the least upper bound of the e-degrees a and b is a ∪ b = dege(A ⊕ B)
where A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Following K. McEvoy [5] we define a jump operator ′ on De. Let KA = {x :
x ∈ Φx(A)} and J(A) = KA ⊕ K̄A. It is clear that J(A) ≡e A ⊕ K̄A. Let
a′ = (dege(A))′ = dege(J(A)).

An e-degree is said to be total if it contains a graph of some total function. It
is clear that an e-degree a is total iff it contains the set A such that A ≡e A⊕A.
We denote by T a partial ordering set of all total e-degrees. As for any A and B

A ≤T B ⇐⇒ A⊕A ≤e B ⊕B,

then there is the isomorphism between DT and T.
Yu. Medvedev announced in [6] that there is a non-c.e. set A such that

(∀f)[f ≤e A⇒ f is computable].

In Rogers’s monograph ([8],p.280) this result was proved in the following way:

(∃α)[α is not partial computable & (∀f)[f ≤e α→ f is computable]].

It is clear that dege(graph(α)) is not total, i.e. it is non-total. Thus De−T �= ∅. J.
Case [2] called Medvedev’s sets as quasi-minimal and their degrees quasi-minimal
e-degrees.

One of the relativizations of the notion of quasi-minimality is known as
c-quasi-minimality. A set A is called C-quasi-minimal (and the e-degree a is
called c -quasi-minimal) if C <e A and (∀f)[f ≤e A → f ≤e C]. The existence
of c-quasi-minimal e-degrees for any c ∈ De can be received from the proof of
Medvedev’s theorem in [8].

In [9] L. Sasso studies three reducibilities on partial functions which are near
to e-reducibility (and agree with e-reducibility on total functions). For these
reducibilities he introduced the notion of quasi-minimal cover for an ideal. We
give this notion for e-degrees:

Definition 1. Let A be an ideal in De, e-degree b is called a quasi-minimal
cover for A if (∀x)[x ∈ A ⇒ x ≤ b] and for all f ∈ T

f ≤ b ⇒ (∃x)[x ∈ A & f ≤ x].

It is obvious that c-quasi-minimality is a special case of the quasi-minimality
in the sense of Sasso, i.e. e-degree a is c-quasi-minimal iff a is a quasi-minimal
cover for (c) = {x : x ≤ c}.

Now we introduce the notion of co-total e-degree.

Definition 2. An e-degree dege(A) is said to be co-total if A = graph(f) for
some total function f .

Denote by CT a set of all co-total e-degrees. As every total e-degree a contains
a set A such that A ≡e A ⊕ A and A ⊕ A ≡e A⊕A thusevery total e-degree
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is co-total, i.e. T ⊆ CT. It is easy to see that Π0
1 ⊆ CT and CT

⋂
Π0

2 ⊆ Δ0
2.

L. Gutteridge showed in [4] that there are quasi-minimal co-total e-degrees, i.e.
T ⊂ CT. In [1] it was shown that under every non-zero total e-degree there are
quasi-minimal incomparable e-degrees dege(A) and dege(A) thus Δ0

2−CT �= ∅.
In particular, not every non-total e-degree is co-total. In [7] it was announced
that there is non-zero co-total e-degree a ≤ 0′

e which forms a minimal pair with
every e-degree belonging to Π0

1 . In particular, from here it follows that there are
co-total e-degrees below 0′

e not belonging to Π0
1 .

Theorem 1. Every total e-degree a ≥ 0′
e contains a total function f such that

dege(graph(f)) is the quasi-minimal e-degree.

Proof. Let a ≥ 0′
e, A be a retraceable set and {as}s∈ω be the direct enumeration

of A. We construct step by step function f with the help of the construction
which is computable in A in such way that rangf = A and dege(graph(f)) is
a quasi-minimal e-degree. At the step t + 1 we denote by ft the finite initial
segments which were constructed at the end of step t. Let lt = 1+maxdom(ft).
In the following the symbol σ is used as a variable which ranges over a set of all
finite initial A-segments (i.e. such that rang(σ) ⊂ A).

The start of the construction.
Step 0. Set f0 = ∅ and l0 = 0.
Step 2s+1. Let t = 2s. See whether

(∃D)[Φs(D) is not single − valued ]. (1)

If (1) is true then let D∗ be D which satisfies (1) and has the least canonical
index. In this case we have two subcases:

(∃σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) & Φs(graph(σ)) is single − valued ]. (2)

If (2) is true then let σ∗ be σ such that it satisfies (1.1) and its graph has the
least canonical index. Set ft+1 = σ∗.

If (2) is not true then we have

(∀σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) ⇒ Φs(graph(σ)) is not single − valued ]. (3)

Let σ∗ be such σ that its graph has the least canonical index and it satisfies the
following condition

ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) & D∗ ⊆ dom(σ) × ω − graph(σ).

Set ft+1 = σ∗.
If (1) is not true then set ft+1 = ft and we pass to the next step.
Step 2s+2. Let t = 2s+ 1. Set ft+1 = ft ∪ {(lt, as)}.
The end of the construction.
Let f =

⋃
t∈ω ft. We shall prove that function f resulting from the con-

struction satisfies the theorem. The construction is such that all steps 2s + 1
are computable in K0 ⊕ A, and all steps 2s + 2, s ∈ ω, are computable in A.
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As a ≥ 0′
e then our construction as a whole is computable in A, hence f ≤e A.

From the construction we see that rang(f) = A, hence A ≤e f .
Let total function g ≤e graph(f) and graph(g) = Φs0 (graph(f)) for some s0.

We shall consider the step 2s0 + 1, let t0 = 2s0. If at this step the condition (1)
is not true then we have

(∀D)[Φs0 (D) is single − valued ],

then Φs0 (ω) is a single-valued set. It is clear that graph(g) = Φs0(graph(f)) ⊆
Φs0(ω) and graph(g) = Φs0 (ω) by the totality of g. Hence graph(g) is c.e. and g
is a computable function.

If the condition (1) is true then for the subcase (2) we have Φs0(graph(ft0+1))
is single-valued. As graph(f) ⊆ graph(ft0+1) then

graph(g) = Φs0(graph(f)) ⊆ Φs0(graph(ft0+1)),

and then graph(g) = Φs0(graph(ft0+1)). Hence g is a computable function.
Assume that the subcase (3) holds. Then we obtain that Φs0(D∗) is not

single-valued where D∗ ⊆ graph(ft0+1) and 〈D∗〉1 ⊆ dom(graph(ft0+1)). Then
graph(g) = Φs0 (graph(f)) is not single-valued what contradicts the premise.
Thus dege(graph(f)) is a quasi-minimal e-degree and the theorem is proved
completely.

The following theorem is a stronger analogue of McEvoy’s theorem [5] which
states that for every total e-degree b ≥ 0′

e there is such quasi-minimal e-degree
a that a′ = b.

Theorem 2. For every total e-degree b ≥ 0′
e there is a co-total quasi-minimal

e-degree a such that a′ = b.

Proof. Let B ∈ b such that B ≡e cB. We construct step by step function f
which satisfies the requirements:

(Q): (∀z)[graph(f) �= Wz] & (∀g)[g ≤e graph(f) ⇒ g is computable],
(J): J(graph(f)) ≡e B.

We note that a total function which satisfies the requirement (Q) was constructed
in [4] with the help of the complex priority construction. Here we offer a simple
interval construction with the help of which we shall construct a total function
satisfying the requirements (Q) and (J).

At step t + 1 we denote by ft the finite initial segments of f which was
constructed at the end of step t. Let lt = 1 + maxdom(ft). In the following
the symbol σ is used as a variable which ranges over a set of all finite initial
segments.

The start of the construction.
Step 0. Set f0 = ∅ and l0 = 0.
Step 4s+1. Let t = 4s. See whether

(∃y)[〈lt, y〉 ∈ Ws]. (4)
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If (4) is true then set ft+1 = ft ∪ {(lt, y∗)} where y∗ is the least y satisfying
(4). If (4) is not true then set ft+1 = ft ∪ {(lt, 0)} and passes to the next step.

Step 4s+2. Let t = 4s+ 1. See whether

(∃D)[Φs(D) is not single − valued ]. (5)

If (5) is true then let D∗ be D which satisfies (5) and has the least canonical
index. In this case we have two subcases:

(∃σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) & Φs(graph(σ)) is single − valued ]. (6)

If (6) is true then let σ∗ be σ such that it satisfies (6) and its graph has the
least canonical index. Set ft+1 = σ∗.

If (6) is not true then we have

(∀σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) ⇒ Φs(graph(σ)) is not single − valued ]. (7)

Let σ∗ be such σ that its graph has the least canonical index and it satisfies the
following condition

ft ⊂ σ & 〈D∗〉1 ⊆ dom(σ) & D∗ ⊆ dom(σ) × ω − graph(σ).

Set ft+1 = σ∗.
If (5) is not true then set ft+1 = ft and we pass to the next step.
Step 4s+3. Let t = 4s+ 2. See whether

(∃σ)[ft ⊂ σ & s ∈ Φs(graph(σ))]. (8)

If (8) is true then let D∗ ⊂ graph(σ) be a finite set such that it has the least
canonical index and s ∈ Φs(D∗). Set ft+1 = σ∗ where σ∗ such that its graph has
the least canonical index, it satisfies the condition (8) and 〈D∗〉1 ⊂ dom(σ∗). If
(8) is not true then set ft+1 = ft and passes to the next step.

Step 4s+4. Let t = 4s+ 3, set

ft+1 = ft ∪ {(lt, 1− cB(s))}
and passes to the next step.

The end of the construction. Let f =
⋃
t∈ω ft. Now we shall prove that func-

tion f resulting from the construction satisfies the requirements (Q) and (J).
The steps 4s + 1, s ∈ ω provide graph(f) �= Ws. Let a total function g ≤e

graph(f) and graph(g) = Φs0 (graph(f)) for some s0. We shall consider the step
4s0+2, let t0 = 4s0+1. Repeating the corresponding part of the proof of theorem
1 we shall prove that g is a computable function. Hence the requirement (Q) is
satisfied.

Our construction provides that all steps 4s + 1, 4s + 2, 4s + 3, s ∈ ω are
computable in 0′

e and the steps 4s+ 4, s ∈ ω are computable in B. As 0′
e ≤ b

then our construction as a whole is computable in B, hence f ≤e B. From steps
4s+3 it follows

(∀x)[x ∈ Φx(graph(f)) ⇐⇒ f4x+3 �= f4x+2],

from which J(graph(f)) ≤e B.
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To check B ≤e J(graph(f)) we shall show that the sequence of initial segments
{ft}t∈ω and hence the sequence of computable sets {graph(f)t}t∈ω is computable
in J(graph(f)). Then λx.cB(x) = 1 − f4x+4(lx), therefore B ≤e J(graph(f)). It
is clear that graph(f) ≤e J(graph(f)). All steps except for 4s + 4, s ∈ ω are
computable in 0′

e, and at steps 4s+ 4, s ∈ ω we made the structure

f4s+4 = f4s+3 ∪ {(l4s+3, 1− cgraph(f)(l4s+3)},

which is computable in graph(f). Hence J(graph(f)) ≡e B and the requirement
(J) is satisfied.

Let a = dege(graph(f)). Our construction and the satisfiability of (Q) provide
that a is a co-total quasi-minimal e-degree and the satisfiability of (J) provides
that a′ = b. The following theorem is a generalization of Guttteridge’s theorem
[4] which states that there is a quasi-minimal co-total e-degree a.

Theorem 3. For every total e-degree b there is b-quasi-minimal co-total
e-degree a.

Proof. Let B ∈ b such that B ≡e cB. We construct step by step a function f
which satisfies the requirement:

(BQ): (∀s)[graph(f) �= Φs(B)] & (∀g)[g ≤e graph(f) ⇒ g ≤e B].

At the step t + 1 we denote by ft the finite initial segment of f which was
constructed at the end of step t. ft has a form cB ⊕ σt where σt is an initial
segment which we choose at step t. Let lt = 1 + maxdom(σt). In the following
the symbol σ is used as a variable which ranges over a set of all finite initial
segments. Thus f =

⋃
t∈ω ft = cB ⊕

⋃
t∈ω σt = cB ⊕ α.

The start of the construction.

Step 0. Set f0 = cB ⊕ ∅ and l0 = 0.
Step 2s+1. Let t = 2s. See whether

(∃y)[〈2lt + 1, y〉 ∈ Φs(B)]. (9)

If (9) is true then set ft+1 = ft ∪ {(2lt + 1, y∗)} where y∗ is the least y satisfy-
ing (9). If (9) is not true then set ft+1 = ft ∪ {(2lt + 1, 0)} and passes to the
next step.

Step 2s+2. Let t = 2s+ 1. See whether

(∃D)[Φs(D) is not single − valued ]. (10)

If (10) is true then let D∗ be D which satisfies (10) and has the least canonical
index. In this case we have two subcases:

(∃σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(cB ⊕ σ) &
& Φs(graph(cB ⊕ σ)) is single − valued ]. (11)

If (11) is true then let σt+1 be σ such that it satisfies (11) and its graph has the
least canonical index. Set ft+1 = cB ⊕ σt+1.



544 B. Solon

If (11) is not true then we have

(∀σ)[ft ⊂ σ & 〈D∗〉1 ⊆ dom(cB ⊕ σ) ⇒
⇒ Φs(graph(cB ⊕ σ)) is not single − valued ]. (12)

Let σt+1 be such σ that its graph has the least canonical index and it satisfies
the following condition

ft ⊂ σ & 〈D∗〉1 ⊆ dom(cB ⊕ σ) & D∗ ⊆ dom(cB ⊕ σ)× ω − graph(cB ⊕ σ).

Set ft+1 = cB ⊕ σt+1.
If (10) is not true then set ft+1 = ft and we pass to the next step.
The end of the construction.
First we shall prove that the requirement (BQ) is satisfied. Let a total function

g ≤e graph(f) and graph(g) = Φs0(graph(f)) for some s0. We shall consider the
step 2s0 + 2, let t0 = 2s0 + 1. If at this step the condition (2) is not true then
we have

(∀D)[Φs0 (D) is single − valued ],

then Φs0(ω) is a single-valued set. Then it is clear that g is a computable function.
If the condition (10) is true then for the subcase (11) we have that

Φs0 (graph(ft0+1)) = Φs0 (graph(cB ⊕ σt0+1))

and both are single-valued. As graph(f) ⊆ graph(ft0+1) then

graph(g) = Φs0(graph(f)) = Φs0 (graph(cB ⊕ σt0+1)).

Hence g ≤e B.
Assume that the subcase (12) holds. Then we obtain that Φs0(D

∗) is
not single-valued where D∗ ⊆ graph(ft0+1) and 〈D∗〉1 ⊆ dom(ft0+1). Then
graph(g) = Φs0 (graph(f)) is not single-valued what contradicts the premise.
Thus the requirement (BQ) is satisfied.

Finally let a = dege(graph(f)) where f is the result of our construction. The
construction and the steps 2s + 1, s ∈ ω guarantee b < a. The satisfiability
of (BQ) guarantees that a is b-quasi-minimal e-degree. The theorem is proved
completely.
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Abstract. A relativized version of the notion of Degree spectrum of a
structure with respect to finitely many abstract structures is presented,
inspired by the notion of relatively intrinsic sets. The connection with
the notion of Joint spectrum is studied. Some specific properties like
Minimal Pair type theorem and the existence of Quasi-Minimal degree
with respect to the Relative spectrum are shown.

1 Introduction

Let A be a countable partial structure. The Degree spectrum DS(A) of the struc-
ture A is the set of all enumeration degrees generated by all enumerations of A.
The notion is introduced by Richter in [8] and studied by Knight, Ash, Jockush,
Downey and Soskov in [7, 3, 6, 10]. It is a kind of a measure of complexity of
the structure. The Co-spectrum CS(A) of the structure A is the set of all enu-
meration degrees which are lower bounds of the DS(A). A typical example of a
Degree spectrum is the cone of all total enumeration degrees, greater than or
equal to some enumeration degree a and the respective Co-spectrum is equal to
the set of all degrees less than or equal to a. In [10] Soskov shows that the Degree
spectra behave with respect to their Co-spectra very much like the cones of enu-
meration degrees. The Degree spectra have some general and specific properties.
For example each Degree spectrum is closed upwards, i.e. if a ∈ DS(A) then
each total enumeration degree b greater than or equal to a is in DS(A). But not
every upwards closed set of enumeration degrees is a spectrum of a structure.
Some typical specific properties of the Degree spectra and their Co-spectra are
the Minimal Pair type theorem and the existence of Quasi-Minimal degree. For
every Degree spectrum DS(A) there exist total enumeration degrees f0 and f1,
elements of DS(A), which determine completely the elements of the Co-spectrum
CS(A), i.e. the set of all enumeration degrees less than or equal to both f0 and
f1 is exactly CS(A). The degrees f0 and f1 are called Minimal Pair for DS(A).
For each Degree spectrum DS(A) there is an enumeration degree q �∈ CS(A),
called Quasi-Minimal for DS(A), such that for each total degree a if a ≥ q, then
a ∈ DS(A) and if a ≤ q, then a ∈ CS(A).

In this paper we introduce and study a generalized notion of Degree spectrum
of the structure A, relatively given structures A1, . . . ,An, inspired by the notion
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thanks the anonymous referees for helpful comments.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 546–555, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Relativized Degree Spectra 547

of relatively intrinsic on A sets. An internal characterization of the relatively
intrinsic on A sets is presented in [2], [4] and in [11] with respect to the infinite
sequence of sets.

The Relative spectrum RS(A,A1, . . . ,An) of A with respect to the structures
A1, . . . ,An is the set of all enumeration degrees generated by all enumerations of
A, such that the structure Ak is relatively k-intrinsic on A, i.e. Ak is admissible in
the kth jump of A. In other words we consider the set of all enumeration degrees
of the presentations of the structure A in which the degrees of Ak fall below the
kth jump of the degrees of A, k ≤ n. We will show that this generalized notion of
Degree spectra posses all general and specific properties of the Degree spectra of
a structure. And we will compare this notion with the notion of Joint Spectrum
of A with respect to the structures A1, . . . ,An, considered in [12], [13].

2 Preliminaries

Let A = (IN;R1, . . . , Rs) be a partial structure over the set of all natural numbers
IN, where each Ri is a subset of INri and =, �= are among R1, . . . , Rs.

An enumeration f of A is a total mapping from IN onto IN.
For A ⊆ INa define f−1(A) = {〈x1 . . . xa〉 : (f(x1), . . . , f(xa)) ∈ A}. Denote

by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).
For any sets of natural numbers A and B the set A is enumeration reducible

to B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By
de(A) we denote the enumeration degree of the set A and by De the set of all
enumeration degrees. The set A is total if A ≡e A

+, where A+ = A ⊕ (IN\A).
A degree a is total if a contains the e-degree of a total set. The jump operation
“′” denotes here the enumeration jump introduced by Cooper in [5].

Let B0, . . . , Bn be arbitrary subsets of IN. Define the set P(B0, . . . , Bi) by
induction on i ≤ n, as follows:

1. P(B0) = B0;
2. If i < n, then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))′ ⊕Bi+1.

We will use the following modification of Jump Inversion Theorem from [9]:

Theorem 1 ([9]). Let {Ak
r}r∈IN, k = 0, . . . , n − 1 be n sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k < n, Ak
r �≤e P(B0, . . . , Bk) and let

Q be a total set, such that P(B0, . . . , Bn) ≤e Q. Then there exists a total set F
having the following properties:

1. Bi ≤e F
(i), for all i ≤ n;

2. Ak
r �≤e F

(k), for all r and all k < n;
3. F (n) ≡e Q.

3 Relative Spectra of Structures

Definition 2. The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A}.
Let A1, . . . ,An be arbitrary abstract structures on IN.
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Definition 3. The Relative spectrum of the structure A with respect to A1, . . . ,
An is the set

RS(A,A1, . . . ,An) = {de(f−1(A)) : f is an enumeration of A such that:
(∀k ≤ n)(f−1(Ak) ≤e (f−1(A))(k))}.

Definition 4. Let k ≤ n. An enumeration f of A is k-acceptable with respect to
the structures A1, . . . ,Ak, if f−1(Ai) ≤e (f−1(A))(i), for each i ≤ k.

In fact the Relative spectrum of A is the set, generated by all n-acceptable
enumerations of A with respect to A1, . . . , An. First we show that the Relative
spectra are closed upwards.

Lemma 5. If F is a total set, f is a n-acceptable enumeration of A with respect
to A1, . . . , An and f−1(A) ≤e F , then there exists a n-acceptable enumeration g
of A with respect to A1, . . . , An, such that

1. g−1(A) ≡e F ⊕ f−1(A) ≡e F ;
2. g−1(B) ≤e F ⊕ f−1(B), for every B ⊆ IN.

Proof (sketch). Let s �= t ∈ IN, f(xs) 6 s and f(xt) 6 t. Define

g(x) 6
⎧
⎨

⎩

f(x/2) if x is even,
s if x = 2z + 1 and z ∈ F ,
t if x = 2z + 1 and z �∈ F .

It is clear that f−1(A) ≤e g
−1(A). Since “=” and “ �=” are among the underlined

predicates of A, F ≤e g
−1(A).

Consider the predicate Ri of A. Let x1, . . . , xri be arbitrary natural numbers.
Define the natural numbers y1, . . . , yri by means of the following recursive in F
procedure. Let 1 ≤ j ≤ ri. If xj is even then let yj = xj/2. If xj = 2z + 1 and
z ∈ F , then let yj = xs. If xj = 2z + 1 and z �∈ F , then let yj = xt. Clearly

〈x1, . . . , xri〉 ∈ g−1(Ri) ⇐⇒ 〈y1, . . . , yri〉 ∈ f−1(Ri).

Thus g−1(Ri) ≤e F ⊕ f−1(A). So, we obtain that g−1(A) ≡e F ⊕ f−1(A) ≡e F .
From the definition of g it follows that g−1(B) ≤e F⊕f−1(B), for any B ⊆ IN.

Then, for each i ≤ n, g−1(Ai) ≤e F⊕f−1(Ai) ≤e F⊕(f−1(A))(i) ≤e F⊕F (i) ≡e
F (i) ≡e (g−1(A))(i).

Corollary 6. If b is a total e-degree, a ∈ RS(A, A1, . . . , An), and a ≤ b, then
b ∈ RS(A, A1, . . . , An).

Denote by Pf
k = P(f−1(A), f−1(A1), . . . , f−1(Ak)), for every enumeration f of

A and k ≤ n.

Lemma 7. Let f be an arbitrary enumeration of A, then there exists a n-
acceptable enumeration g of A with respect to A1, . . . , An, such that f−1(A) ≤e
g−1(A) and g−1(A) is a total set.
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Let Q be a total set such that Pf
n ≤e Q. Apply Theorem 1 and the construction

of Lemma 5.

Definition 8. Let k ≤ n. The kth Jump Relative spectrum of A with respect to
A1, . . . ,An is the set

RSk(A,A1, . . . ,An) = {a(k) : a ∈ RS(A,A1, . . . ,An)}.
Proposition 9. Let k ≤ n. RSk(A,A1, . . .An) is closed upwards, i.e. if b is a
total e-degree, a ∈ RS(A,A1, . . .An) and a(k) ≤ b, then b ∈ RSk(A,A1, . . . ,An).

Proof. Let G be a total set, G ∈ b, and (f−1(A))(k) ≤e G, for some n-acceptable
enumeration f of A, with respect to A1, . . . , An. Then Pf

k ≤e (f−1(A))(k) ≤e G.
By Theorem 1 there exists a total set F , such that f−1(A) ≤e F , f−1(Ai) ≤e
F (i), for i ≤ k and F (k) ≡e G. As in Lemma 5, we construct a k-acceptable
enumeration g of A, with respect to A1, . . . , Ak, so that g−1(A) ≡e F . So,
g−1(Ai) ≤e (g−1(A))(i), for i ≤ k. But for k ≤ j ≤ n we have g−1(Aj) ≤e
F ⊕ f−1(Aj) ≤e F ⊕ (f−1(A))(j) ≤e F ⊕ F (j) ≡e F (j) ≡e (g−1(A))(j). Thus
G ≡e (g−1(A))(k), de(g−1(A)) ∈ RS(A,A1, . . . ,An) and hence de(G) ∈ RSk(A,
A1, . . . , An).

4 Relative Co-spectra of Structures

Let A be a set of enumeration degrees. The co-set of A is the set of all lower
bounds of A.

Definition 10. The Relative co-spectrum of A with respect to A1, . . . ,An, is the
co-set of RS(A,A1, . . . ,An), i.e.

CRS(A,A1, . . . ,An) = {b : b ∈ De&(∀a ∈ RS(A,A1, . . . ,An))(b ≤ a)}.
Definition 11. Let k ≤ n. The Relative kth co-spectrum of A with respect to
A1, . . . ,An, is the co-set of RSk(A,A1, . . . ,An), i.e.

CRSk(A,A1, . . . ,An) = {b : b ∈ De&(∀a ∈ RSk(A,A1, . . . ,An))(b ≤ a)}.
Proposition 12. CRSk(A,A1, . . . ,Ak, . . . ,An) = CRSk(A,A1, . . . , Ak).

Proof. It is clear that RSk(A,A1, . . . ,Ak, . . . ,An) ⊆ RSk(A,A1, . . . ,Ak). Thus
CRSk(A,A1, . . . ,Ak) ⊆ CRSk(A,A1, . . . ,Ak, . . . ,An).

Let a ∈ CRSk(A,A1 . . .Ak . . . ,An), A ∈ a and assume that A �≤e (f−1(A))(k)

for some k-acceptable enumeration f of A with respect to A1, . . . ,Ak. Then A �≤e
Pf
k . Hence by Theorem 1 for B0 = f−1(A), B1 = f−1(A1), . . . , Bn = f−1(An),

Bn+1 = IN, there exists a total set F , such that f−1(A) ≤e F , for each i ≤ n
f−1(Ai) ≤e F

(i), and A �≤e F
(k). As in Lemma 5, we construct a k-acceptable

enumeration g of A with respect to A1, . . . ,Ak, such that g−1(A) ≡e F . Then
A �≤e (g−1(A))(k) and g−1(Ai) ≤e (g−1(A))(i), for i ≤ k. But for k ≤ j ≤ n,
g−1(Aj) ≤e F ⊕ f−1(Aj) ≤e F ⊕ F (j) ≡e F (j) ≡e (g−1(A))(j), i.e. g is a n-
acceptable enumeration of A with respect to A1, . . . ,An and A �≤e (g−1(A))(k),
which contradicts with the choice of A.
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In order to obtain a forcing normal form of the sets with enumeration degrees
in CRSk(A,A1, . . . , An) we shall define the notion of forcing relation τ �k Fe(x)
and the relations f |=k Fe(x), for k ≤ n, as in [11].

Let W0, . . . ,Wz, . . . be a Gödel’s enumeration of the c.e. sets and Dv be the
finite set having the canonical code v. Let f be an enumeration of A.

For every i ≤ n, e and x in IN define the relations f |=i Fe(x) and f |=i ¬Fe(x)
by induction on i:

1. f |=0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & Dv ⊆ f−1(A));
2. f |=i+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈0, eu, xu〉 &

f |=i Feu(xu) ∨ u = 〈1, eu, xu〉 & f |=i ¬Feu (xu) ∨ u = 〈2, xu〉 &
xu ∈ f−1(Ai+1)));

3. f |=i ¬Fe(x) ⇐⇒ f �|=i Fe(x).

From the definition it follows that for any A ⊆ IN and k ≤ n

A ≤e Pf
k ⇐⇒ (∃e)(A = {x : f |=k Fe(x)}).

The forcing conditions, called finite parts, are finite mappings τ of IN in IN.
For any i ≤ n, e and x in IN and every finite part τ define the forcing relations

τ �i Fe(x) and τ �i ¬Fe(x) following the definition of relation “|=i”.

1. τ �0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈We & Dv ⊆ τ−1(A));
2. τ �i+1 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈We & (∀u ∈ Dv)(u = 〈0, eu, xu〉 &

τ �i Feu (xu) ∨ u = 〈1, eu, xu〉 & τ �i ¬Feu (xu) ∨ u = 〈2, xu〉 &
xu ∈ τ−1(Ai+1)));

3. τ �i ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ ��i Fe(x)).

For any i ≤ n, e, x ∈ IN denote by X i
〈e,x〉 = {ρ : ρ �i Fe(x)}.

Definition 13. Let k ≤ n+1. An enumeration f of A is k-generic with respect
to A1, . . . ,An, if for every j < k, e, x ∈ IN

(∀τ ⊆ f)(∃ρ ∈ Xj
〈e,x〉)(τ ⊆ ρ) =⇒ (∃τ ⊆ f)(τ ∈ Xj

〈e,x〉).

In [11] the following properties of the k-generic enumerations are shown:

1. The forcing relation is monotone.
2. If f is a (k + 1)-generic enumeration of A, with respect to A1, . . . ,An, then

f |=k (¬)Fe(x) ⇐⇒ (∃τ ⊆ f)(τ �k (¬)Fe(x)).

Definition 14. Let A ⊆ IN and k ≤ n. The set A is forcing k-definable on A
with respect to A1, . . . ,An if there exist a finite part δ and e ∈ IN such that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ �k Fe(x)).

Proposition 15. Let {Ak
r}r∈IN, k = 0, . . . , n be n + 1 sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k ≤ n, the set Ak
r be not forcing

k-definable on A with respect to A1, . . . ,An. Then there exists a (n+ 1)-generic
enumeration f of A such that Ak

r �≤e Pf
k for all r and k ≤ n.
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Corollary 16. Let {Ak
r}r∈IN, k = 0, . . . , n be n + 1 sequences of subsets of

IN, such that for every r and for all k, 0 ≤ k ≤ n, the set Ak
r be not forcing

k-definable on A with respect to A1, . . . ,An. Then there exists a n-acceptable
enumeration f of A with respect to A1, . . . ,An, such that the enumeration degree
of f−1(A) is total and Ak

r �≤e (f−1(A))(k) for all r and k ≤ n.

This follows from the previous proposition, Theorem 1 and Lemma 5.

Theorem 17. For every A ⊆ IN and k ≤ n, the following are equivalent:

1. de(A) ∈ CRSk(A,A1, . . . ,An).
2. A ≤e Pf

k , for every k-acceptable enumeration f of A with respect to A1, . . . ,
Ak.

3. A is forcing k-definable on A with respect to A1, . . . ,An.

5 Normal Form Theorem

In this section a normal form of the forcing k-definable sets on the structure
A with respect to A1, . . . ,An is presented. According to [11], these sets coin-
cide with the sets which are definable on A by means of positive recursive Σ0

k

formulae [1].
Let L = {T1, . . . , Ts} be the first order language corresponding to the structure

A. Let L1, . . . ,Ln be the languages of A1, . . . ,An. Assume that the languages
L,L1, . . . ,Ln are disjoined.

For each i ≤ n, define the elementary Σ+
i formulae and the Σ+

i formulae by
induction on i, as follows.

Definition 18. (1) The elementaryΣ+
0 formulae are formulae in prenex normal

form with a finite number of existential quantifiers and a matrix which is a
finite conjunction of atomic predicates built up from the variables and the
predicate symbols T1, . . . , Ts.

(2) An elementary Σ+
i+1 formula is in the form

∃Y1 . . .∃YmΦ(X1, . . . , Xl, Y1, . . . , Ym),

where Φ is a finite conjunction of atoms built up from the variables X1, . . . ,
Xl, Y1, . . . , Ym and the predicate symbols from Li+1, Σ+

i formulae and nega-
tions of Σ+

i formulae with free variables among X1, . . . , Xl, Y1, . . . , Ym.
(3) A Σ+

i formula with free variables among X1, . . . , Xl is an c.e. infinitary
disjunction of elementaryΣ+

i formulae with free variables amongX1, . . . , Xl.

Let Φ be a Σ+
i formula with free variables among W1, . . . ,Wr and let t1, . . . , tr

be elements of IN. Then by (A,A1, . . . ,An) |= Φ(W1/t1, . . . ,Wr/tr) we denote
that Φ is true on a structure, obtained from A by adding the predicates from
A1, . . . ,An, under the variable assignment v such that v(W1) = t1, . . . , v(Wn)
= tn.
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Definition 19. Let A ⊆ IN and let k ≤ n. The set A is formally k-definable
on A with respect to A1, . . . ,An if there exists a recursive sequence {Φγ(x)} of
Σ+
k formulae with free variables among W1, . . . ,Wr and elements t1, . . . , tr of IN

such that for every x ∈ IN the following equivalence holds:

x ∈ A ⇐⇒ (A,A1, . . . ,An) |= Φγ(x)(W1/t1, . . . ,Wr/tr).

The next theorem is proved, following the construction from [11].

Theorem 20. A set A ⊆ IN is forcing k-definable on A with respect to A1, . . . ,
An if and only if A is formally k-definable on A with respect to A1, . . . ,An.

6 The Connection with the Joint Spectra

In [12] another generalization of the notion of Degree spectra is considered.

Definition 21. The Joint spectrum of A,A1, . . . ,An is the set

DS(A,A1, . . . ,An) = {a : a ∈ DS(A),a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)}.

The co-set of DS(A,A1, . . . ,An) is denoted by CS(A,A1, . . . ,An). The kth Jump
spectrum of A,A1, . . . ,An is the set DSk(A,A1, . . . ,An) of all kth jumps of the
elements of the Joint spectrum DS(A,A1, . . . ,An). The co-set of DSk(A,A1, . . . ,
An) is denoted by CSk(A,A1, . . . , An).

The properties of both notions of spectra are very similar, for example the
Joint Spectra are closed upwards, the kth Co-spectrum depends only on the first
k structures.

Proposition 22. CS(A,A1, . . . ,An) = CRS(A,A1, . . . ,An).

This follows from the fact that CS(A,A1, . . . ,An) = CS(A) by [12], and
CRS(A,A1, . . . ,An) = CSR(A) = CS(A) by Proposition 12.

The difference between the co-sets of these spectra we can see first from the
forcing normal form of both sets. In [12] is shown that for any set A ⊆ IN:

de(A) ∈ CSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1
1 (A1) . . . , f−1

k (Ak)),

for every enumerations f of A, f1 of A1, . . . , fk of Ak. While by Theorem 17:

de(A) ∈ CRSk(A,A1, . . . ,An) ⇐⇒ A ≤e P(f−1(A), f−1(A1) . . . , f−1(Ak)),

for any k-acceptable enumeration f of A with respect to A1, . . . ,Ak.
Second, from the normal form of forcing k-definable sets from [12] we know

that these sets are definable on A,A1, . . . ,An by a recursive sequence of Σ+
k

formulae, which differ from these considered here only by the induction step 2,
where the existential quantifiers for the structure Ai+1 are different from the
others. More precisely, in [12]:
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(2) An elementary Σ+
i+1 formula with free variables among X̄0 . . . X̄ i+1 is in the

form
∃Ȳ 0 . . .∃Ȳ i+1Φ(X̄0 . . . X̄ i+1, Ȳ 0, . . . , Ȳ i+1)

where Φ is a finite conjunction of Σ+
i formulae and negations of Σ+

i formu-
lae with free variables among Ȳ 0 . . . Ȳ i, X̄0 . . . X̄ i and atoms of Li+1 with
variables among X̄ i+1, Ȳ i+1;

Notice that, the variables for each structure are different. Moreover, when we get
the value of a Σ+

i formula in (A,A1 . . . ,An) under an assignment then we treat
the structure (A,A1 . . . ,An) as a many-sorted structure with separated sorts.

From this point we will prove that there are structures A and A1, for which
CS1(A,A1) �= CRS1(A,A1).

Example 23. Fix an effective bijective coding of the pairs of natural numbers.
Denote by 〈i, j〉 the code of the ordered pair (i, j). Let R and S be binary
predicates defined as follows: for every i, j ∈ IN, R(〈i, j〉, 〈i + 1, j〉), i.e. R is
the graph of the successor function for the first coordinate. For every i, j ∈ IN,
S(〈i, j〉, 〈i, j + 1〉), i.e. S is the graph of the successor function for the second
coordinate. Let A = (IN, R, S,=, �=) and let the language of A be L = (R,S,
=, �=).

Consider a set M which is Σ0
3 , but not Σ0

2 in the arithmetical hierarchy, and
let M = {j0, . . . , ji, . . .} be a fixed enumeration of the elements of M .

Define A1 = (IN, P,=, �=), where P (〈i, ji〉) ⇐⇒ ji ∈M . Let L1 = (P,=, �=).

Claim: de(M) ∈ CRS1(A,A1) and de(M) �∈ CS1(A,A1).
Let t0 = 〈0, 0〉. Then de(M) ∈ CRS1(A,A1), since

j ∈M ⇐⇒ ∃Y0 . . .∃Yi∃Z0 . . .∃Zj(Y0 = t0 & R(Y0, Y1) & . . . & R(Yi−1, Yi)
& Yi = Z0 & S(Z0, Z1) & . . . & S(Zj−1, Zj) & P (Zj)).

On the other hand if A ⊆ IN and de(A) ∈ CS1(A,A1), then A is Σ0
2 set in

the arithmetical hierarchy. This follows from the fact that for any elementary
Σ+

1 formula Φ(W1, . . . ,Wr) we can effectively find an elementary Σ+
1 formula

Ψ(W1, . . . ,Wr), where the predicate symbol P does not occur in Ψ , such that
for any fixed t1, . . . , tr ∈ IN

(A,A1) |= Φ(W1/t1, . . . ,Wr/tr) ⇐⇒ (A,A1) |= Ψ(W1/t1, . . . ,Wr/tr).

7 Minimal Pair Theorem

In [10] a Minimal Pair Theorem for Degree spectrum of a structure A is pre-
sented. There it is proved that for each constructive ordinal α there exist elements
f and g of DS(A) such that for any enumeration degree a and any β + 1 < α

a ≤ f(β) & a ≤ g(β) ⇒ a ∈ CSβ(A).

We shall prove an analogue of the Minimal Pair Theorem for the Relative spec-
trum.
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Theorem 24. For any structures A,A1, . . . ,An, there exist enumeration degrees
f and g in RS(A,A1, . . . ,An), such that for any enumeration degree a and k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CRSk(A,A1, . . . ,An).

Proof. Let h be an arbitrary enumeration of A. By Lemma 7 there exists a n-
acceptable enumeration f of A with respect to A1, . . . , An, such that h−1(A) ≤e
f−1(A) and F = f−1(A) is a total set. Hence de(F ) ∈ RS(A,A1, . . . ,An) and
since f is n-acceptable enumeration of A with respect to A1, . . . , An, F (k) ≡e
Pf
k . For each k ≤ n, denote by {Xk

r }r∈IN the sequence of all sets enumeration
reducible to Pf

k .
For each k ≤ n consider the sequence {Ak

r}r∈IN of these sets among the sets
{Xk

r }r∈IN, which are not forcing k-definable on A with respect to A1, . . . ,An. By
Corollary 16 there is a n-acceptable enumeration g such that for all r, and all
k = 0, . . . , n, Ak

r �≤e (g−1(A))(k) and g−1(A) is a total set. Let G = g−1(A). It is
clear that de(G) ∈ RS(A,A1, . . . ,An).

Suppose now, that k ≤ n and a set X , X ≤e F (k) and X ≤e G(k). From
X ≤e F

(k) and F (k) ≡e Pf
k , it follows that X = Xk

r for some r. Assume for
contradiction that X is not forcing k-definable on A with respect to A1, . . . ,An.
Then X = Ak

l for some l and then X �≤e G
(k). Hence X is forcing k-definable on

A with respect to A1, . . . ,An. By Theorem 17, de(X) ∈ CRSk(A,A1, . . . ,An).
Let f = de(F ) and g = de(G).

8 Quasi-minimal Degree

Let A be a set of enumeration degrees and co(A) be the co-set of A. The degree
q is quasi-minimal with respect to A if the following conditions hold ([10]):

1. q �∈ co(A).
2. If a is a total degree and a ≥ q, then a ∈ A.
3. If a is a total degree and a ≤ q, then a ∈ co(A).

It is shown in [10] that for any structure A, there is a quasi-minimal degree q
with respect to DS(A), i.e. q �∈ CS(A) and for every total degree a: if a ≥ q,
then a ∈ DS(A) and if a ≤ q, then a ∈ CS(A).

Theorem 25. For any structures A,A1, . . . , An there exists an enumeration
degree q such that:

1. q �∈ CRS(A,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then a ∈ RS(A,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then a ∈ CRS(A,A1, . . . ,An).

Proof (sketch). Let f be a partial generic enumeration of A constructed as in [10].
Then by [10], de(f−1(A)) is quasi-minimal with respect to DS(A). By Theorem
4. from [13] there is a quasi-minimal over f−1(A) set F , such that f−1(A) <e F ,
f−1(Ai) ≤e F

(i), for i ≤ n, and for any total set A, if A ≤e F , then A ≤e f
−1(A).



Relativized Degree Spectra 555

The set F is constructed as a partial regular enumeration which is quasi-minimal
over f−1(A) with respect to f−1(Ai), i ≤ n. Take q = de(F ).

Since de(f−1(A)) �∈ CS(A) and de(f−1(A)) < q then q �∈ CS(A). But CS(A) =
CRS(A,A1, . . . ,An).

Let X be a total set.
If X ≤e F , then by the choice of F , X ≤e f

−1(A). Thus de(X) ∈ CS(A) =
CRS(A,A1, . . . ,An) by the choice of f−1(A).

If X ≥e F , then X ≥e f
−1(A). Since “=” is in A, dom(f) ≤e X and since

X is a total set, dom(f) is r.e. in X . Let ρ be a recursive in X enumeration
of dom(f). Set h = λn.f(ρ(n)). Thus h−1(A) ≤e X and h−1(Ai) ≤e X

(i), for
i ≤ n. Construct an enumeration g as in Lemma 5, g−1(A) ≡e X , and for
each i ≤ n, g−1(Ai) ≤e X ⊕ h−1(Ai) ≤e X ⊕ X(i) ≡e (g−1(A))(i). And then
de(X) ∈ RS(A,A1, . . . ,An).
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Abstract. In this paper we first survey recent advances on phase tran-
sition phenomena which are related to natural subclasses of the recursive
functions. Special emphasis is put on descent recursive functions, witness
bounding functions for well-partial orders and Ramsey functions. In the
last section we prove in addition some results which show how the asymp-
totic of the standard Ramsey function is affected by phase transitions
for associated parameterized Ramsey functions.

1 Introduction

Phase transition is a type of behaviour wherein small changes of a parameter of a
system cause dramatic shifts in some globally observed behaviour of the system,
such shifts being usually marked by a sharp ‘threshold point’. (An everyday life
example of such thresholds are ice melting and water boiling temperatures.) This
kind of phenomena nowadays occur throughout many mathematical and com-
putational disciplines: statistical physics, evolutionary graph theory, percolation
theory, computational complexity, artificial intelligence etc.

The last few years have seen an unexpected series of achievements that bring
together independence results in logic, analytic combinatorics and Ramsey The-
ory. These achievements can be intuitively described as phase transitions from
provability to unprovability of an assertion by varying a threshold parameter
[23, 26]. Another face of this phenomenon is the transition from slow-growing to
fast-growing computable functions [25, 28].

In this paper we survey recent advances on phase transition phenomena which
are related to natural subclasses of the recursive functions.

For the purpose of motivation let us assume that we have given some algorithm
A which performs computations on a given set D of data. We assume that D is
equipped with a norm function N : D → N such that for every k ∈ N the set
{d ∈ D : N(d) ≤ k} is finite. Moreover let us assume that every computation tree
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for A is finitely branching. A transition in the computation tree is denoted by →.
Thus d→ d′ indicates that the the algorithms performs a calculation to obtain d′

out of d. IfA is terminating then every sequence d0 → d1 → d2 . . .must terminate
after finitely many steps and by our assumption on N and the branching we
obtain by König’s Lemma the following: Given k ∈ N there exists m ∈ N such
that every sequence d0 → d1 → d2 . . . with N(d0) ≤ k terminates after M steps.
The minimal such m determines the computation lengths function CompLA, i.e.
CompLA(k) is the least m such that every sequence d0 → d1 → d2 . . . with
N(d0) ≤ k terminates after m steps.

It is now quite obvious to look for methods M for proving termination of A.
Moreover in this respect it is also very natural to classify CompLA which can
be considered as some measure for the computational complexity of A.

From the logical point of view it would be nice to see whether there are
general principles yielding classifications for CompLA depending on the method
M which is used for proving termination of A.

To study phase transition phenomena in this context we equip the problem
under investigation with a control function f : N → N and we demand that
N(di) ≤ k + f(i) for any sequence of computations d0 → d1 → d2 . . . → di . . ..
Hereby we assume that f is reasonably simple. Then classifying CompLA can
be seen as a problem depending on parameters M and f . In particular when
phase transitions for CompLA are studied the function f will play the role the
order parameter plays in physics. The expectation is that for very slow growing
functions f the function CompLA has moderate complexity but that the com-
plexity of CompLA explodes as soon as f exceeds a certain threshold function.
In analogy with physics it is natural to consider renormalization and universality
in this context [27].

Investigations on this subject have given rise to rich and intriguing peaces of
logic and mathematics where methods from Ramsey theory, analytic combina-
torics and logic can be cross-fertilized.

In the following sections we consider different types of termination proof meth-
ods and consider the phase transition problem in each case separately. It is our
aim to provide rules of thumb so that it is possible to guess the phase transition
thresholds a priori. In the final section we study phase transitions in Ramsey
theory.

2 Phase Transitions for Ordinal Sequences

In this and the following section we base our investigations on a principle sug-
gested by Harvey Friedman. This turns out to be tailor made for our intended
applications.

Obviously termination proofs can be carried out by using ordinals through
mapping computation sequences into descending chains of ordinals. Typically
such a mapping assigns an ordinal to a data element in an effective way so that
resulting norms of ordinals from a descending ordinal sequence are also controlled
by a function say g : N → N.



558 A. Weiermann

After putting the problem into an abstract setting we arrive at Friedman’s
principle of combinatorial well-foundedness. For stating it let us fix a countable
ordinal α and a norm function N : α → N such that for every k ∈ N the set
{β < α : N(β) ≤ k} is finite. Let

CWF(α, g) = (∀k)(∃M)
(∀α0, . . . , αM < α)

[
(∀i ≤M)[Nαi ≤ k + g(i)] → (∃i < M)[αi ≤ αi+1]

]
.

The associatec complexity function is

D(α, g)(k) := min{M :
(∀α0, . . . , αM < α)

[
(∀i ≤M)[Nαi ≤ k + g(i)] → (∃i < M)[αi ≤ αi+1]

]}.
By Friedman’s results, it is well known that proof-theoretic ordinals α and

natural associated norm functions (e.g. given by a term length function) the
function D(α, g) grows rapidly even for rather small values of α.

To fix the context let as consider the ordinals segment of ordinals below ε0 and
define a length norm function using Cantor normal forms as follows. N(0) := 0
and N(α) := n+N(α1) + · · ·+N(αn) if α = ωα1 + · · ·+ ωαn > α1 ≥ . . . ≥ αn.
A corresponding sup norm function lh can be defined as follows |0| := 0 and
|α| = max{m1, . . . ,mn, |α1|, . . . , |αn|} if α = ωα1 ·m1 + · · ·+ ωαn ·mn > α1 >
. . . > αn.

Theorem 1 (Friedman). Let g(i) = i be the identity function and let N be
the length or sup norm.

1. D(ωd, g) is primitive recursive.
2. D(ωω, g) is Ackermannian.
3. D(ωω

d

, g) is multiple recursive.
4. D(ωω

ω

, g) is not multiple recursive.
5. If α < ε0 then D(α, g) is provably recursive in PA.
6. D(ε0, g) is not provably recursive in PA.

So pushing ordinals beyond certain thresholds is reflected by (perhaps expected)
phase transitions of the resulting complexity functions.

Another perhaps even more intriguing phase transition occurs when the ordi-
nal notation under consideration is fixed but the control function g is varied.

Further let us agree on the following assignment of fundamental sequences. If
α = ωα1 + · · ·+ωαn+1 > α1 ≥ . . . ≥ αn+1 then α[x] := ωα1 + · · ·+ωαn ·x. If α =
ωα1 + · · ·+ωαn > α1 ≥ . . . ≥ αn and αn is a limit then α[x] := ωα1 + · · ·+ωαn[x].

To be able to state the phase transition in terms of hierarchies of recursive
functions let us recall the definition of the Hardy hierarchy.

H0(x) := x

Hα+1(x) := Hα(x+ 1)
Hλ(x) := Hλ[x](x)

For a given weakly increasing unbounded function F : N → N we define its
inverse function F−1 as follows. F−1(x) := min{y : F (y) ≥ x}. Typically such
an inverse function F−1 grows rather slow when the original function F grows
reasonably fast.
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Theorem 2 (Weiermann [27]). Let gα(i) := i
1

H
−1
α (i) and let N be the length

or sup norm.

1. If α < ωω then D(ωω, gα) is primitive recursive.
2. D(ωω, gωω) is Ackermannian.

We are now going to formulate the general rationale behind this type of results.
Of fundamental importance is here the study of count functions.

Definition 1
cα(n) := |{β < α : N(β) ≤ n}|.

These count functions cα come along with an intriguing mathematical theory
which is based on generatingfunctionology [31]. To get good asymptotic bounds
on cα(n) for n large one applies Cauchy’s integral formula to the generating
function C(z) :=

∑∞
i=0 cα(n) · zn.

Theorem 3. Let N be the length norm and let the count functions be defined
with respect to this norm.

1. cωd(n) ∼ nd

(d!)2

2. log(cωω (n)) ∼ π ·
√

2n
3

3. log(cωωω (n)) ∼ π2

6
n

log(n) .

To formulate the phase transition principle let us further define α[[x]] := max
{β < α : N(β) ≤ N(α) − 1 + x}.
Rule of thumb 1. Let gα,β(x) := c−1

α[[H−1

β (i)]]
(i). If β ≤ α then D(α, gα,β) is

primitive recursive in Hβ and Hβ is primitive recursive in D(α, gα,β)

This would imply the following Rule of thumb.

Rule of thumb 2. Let gα,β(x) := c−1
α[[H−1

β (i)]]
(i). Let T be a fragment of PA with

proof-theoretic (Π0
2 -) ordinal α and let N be the length or sup norm.

1. If β < α then D(α, gα,β) is provably recursive in T
2. D(α, gα,β) is not provably recursive in T .

These general rules apply to larger segments of ordinals and lead to the following
applications (which already have been proved rigorously). Let |x| := log2(x+ 1)
be the binary length of x where |0| := 0.

Theorem 4 (Weiermann). Let n ≥ 1, T be IΣn and α := ωn+1 and let N be
the length norm. Let gα,β(n) := |i| · H

−1

β
(i)
√

logn−1(i).

1. If β < α then D(α, gn,β) is provably recursive in T
2. D(α, gα,α) is not provably recursive in T .

In case of PA we obtain the following phase transition result.
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Theorem 5 (Arai, Weiermann[1, 23]). Let gβ(n) := |i| · |i|H−1

β
(i) and let N

be the length norm.

1. If β < ε0 then D(ε0, gβ) is provably recursive in PA
2. D(ε0, gε0) is not provably recursive in PA.

Remark: The phase transitions for CWF principles are in a sense continuous
since they involve H−1

α for varying α. In analogy with physics one might consider
this as a second order phase transition.

3 Phase Transitions for Sequences in Well Partial
Orderings

A partial ordering 〈X,≤X〉 is a well-partial ordering iff for all functions F : N →
X there exist natural numbers i, j such that i < j and F (i) ≤X F (j). A sequence
F : N → X is called bad if there do not exist natural numbers i, j such that
i < j and F (i) ≤X F (j). So a partial order is a well-partial order iff there does
not exist an infinite bad sequence for it.

Obviously termination proofs can be carried out by using well partial orders
through mapping computation sequences into bad sequences. Typically such a
mapping assigns an initial sequence of data elements to an element of the well-
partial order in an effective way so that resulting sequences of elements in the
well-partial-order are again also controlled in norm by some function g : X → N.

After putting the problem into an abstract setting we arrive at Friedman’s
principle of combinatorial well-partial-orderedness. For stating it let us fix a well
partial order 〈X,≤X〉 and a norm function N : X → N such that for every k ∈ N
the set {β ∈ X : N(β) ≤ k} is always finite. Let

CWP(X, g) = (∀k)(∃M)
(∀α0, . . . , αM < α)

[
(∀i ≤M)[Nαi ≤ k+g(i)] → (∃i ≤M)(∃j ≤M)[i < j∧αi ≤

αj
]
. The associated complexity function is

D(X, g)(k) := min{M :
(∀α0, . . . , αM < α)

[
(∀i ≤M)[Nαi ≤ k+g(i)] → (∃i ≤M)(∃j ≤M)[i < j∧αi ≤

αj
]}.
By Friedman’s results it is well known that for several natural well-partial

oders and associated norm functions (e.g. given by a length function) the function
D(α, g) grows rapidly.

Basic examples are provided by Dickson’s Lemma and Higman’s Lemma. As-
sume that 〈Y,≤Y 〉 is a partial ordering. Then we can induce a partial ordering
≤k
Y on Y k the set of k-tuples of elements in X as follows 〈x0, . . . , xk−1〉 ≤k

Y

〈y0, . . . , yk−1〉 if xi ≤Y yi for i = 0, . . . , k − 1. Moreover we can induce a
partial ordering on Y � the set of finite sequences of elements in X as follows
〈x0, . . . , xk−1〉 ≤�

Y 〈y0, . . . , yl−1〉 if there exist i0, . . . , ik−1 such that 0 ≤ i0 <
i1 < . . . < ik−1 and such that xm ≤Y yim for m = 0, . . . , k − 1.

Theorem 6 (Dickson, Higman). If 〈Y,≤Y 〉 is a well partial ordering then so
are 〈Y k,≤k

Y 〉 and 〈Y �,≤�
Y 〉
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If Y ⊆ N then for finite sequences with values in Y there are two obvious
norm functions. Let |〈x0, . . . , xk−1〉| := max{x0, . . . , xk−1} be the sup-norm and
N(〈x0, . . . , xk−1〉) :=

∑k−1
l=0 xl be the lengths norm. (In more general situations

one defines the norms on sequences of course in terms of the norm given on the
space Y .).

Theorem 7 (Friedman). Let d = {0, . . . , d − 1} and N be well-quasiordered
by their natural orderings. Let Nd and d� be ordered be ordered by the induced
orderings. Let g(i) = i be the identity function and N be either the sup norm or
the length norm.

1. D(Nd, g) is primitive recursive.
2. k )→ D(Nk, g)(k) is Ackermannian.
3. D(d�, g) is multiple recursive.
4. k )→ D(k�, g)(k) is not multiple recursive.

Theorem 8 (Weiermann [30]). Let k = {0, . . . , k−1} be well-quasiordered by
its natural ordering. Let d� be ordered by the induced ordering. Let gr(i) = r · |i|
and N be the length norm.

1. If r < 1 then k )→ D(k�, gr) is multiple recursive.
2. If r > 1 then k )→ D(k�, g)(k) is not multiple recursive.

We conjecture that k )→ D(k�, gr) is multiple recursive for r = 1.

Theorem 9 (Weiermann [27]). Let gα(i) := i
1

H
−1
α (i) and N be the sup or

length norm.

1. If α < ωω then k )→ D(Nk, gα)(k) is primitive recursive.
2. k )→ D(Nk, gωω)(k) is Ackermannian.

To obtain farer reaching well-partial orders it is convenient to consider finite
trees under homeomorphic embeddability. To stay within the realm of ε0 it is
convenient to restrict the consideration to the set B of binary trees. A convenient
way to introduce B is as follows. Let 0 be a constant (a 0-ary function symbol)
and let ϕ be a binary function symbol. Let B be the least set of terms such that

1. 0 ∈ B
2. If α, β ∈ B then ϕ(α, β) ∈ B.

In the sequel we abbreviate ϕ(α, β) by ϕαβ. The homeomorphic embeddability
relation � is the least binary relation on B such that

1. If α = 0 then α� β.
2. If α = ϕα1α2 and β = ϕβ1β2 and α� β1 or α� β2 then α� β.
3. If α = ϕα1α2 and β = ϕβ1β2 and α1 � β1 and α2 � β2 then α� β.

Theorem 10 (Higman, Kruskal [9]). 〈B,�〉 is a well partial order.
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Theorem 11 (Friedman). Let g(i) = i. Then the function D(B, g) is not
provably recursive in PA.

The associated phase transition result runs as follows. Let N(0) := 0 and
N(ϕαβ) := 1 + (α) +N(β).

Theorem 12 (Weiermann [30]). Let gr(i) = r·|i| and let N be a length norm.

1. If r ≤ 1
2 then k )→ D(B, gr) is elementary recursive.

2. If r > 1
2 then k )→ D(B, g)(k) is not provably recursive in PA.

Extraction of a general pattern from Theorem 8 and Theorem 12 leads to the
following rule.

Rule of thumb 3. Assume that 〈Y,≤Y 〉 is a normed well partial ordering of
maximal order type α such that log2 |{y ∈ Y : N(y) ≤ n}| ∼ n · c for some c > 1.
Let gr(i) := r · |i|.
1. If r ≤ 1

log
2
(c) then D(Y, gr) is elementary recursive.

2. If r > 1
log

2
(c) then D(Y, gr) eventually dominates Hβ for all β < α.

The phase transitions for CWP principles in case of Higman’s Lemma or the
Higman-Kruskal theorem are in a sense discontinuous since they appear at a
real number threshold. In analogy with physics one might consider this as a first
order phase transition.

4 Phase Transitions in Ramsey Theory

In principle termination proofs can also be carried out by using Ramseyan the-
orems by providing appropriate partitions having only finite homogeneous sets
but this connection seems us to be artificial at present. In this section we study
therefore thresholds which are associated to Ramseyan statements as an investi-
gation in its own right. We also indicate how classical open problems in Ramsey
theory can be attacked via studying associated phase transitions.

4.1 Phase Transitions for Rapidly Growing Ramsey Functions

Let us recall the classical Kanamori-McAloon and the Paris-Harrington princi-
ples. If X ⊆ N, d ∈ N, let [X ]d be the set of all subsets of X with d elements. As
usual in Ramsey Theory, we identify a positive integer m with its set of prede-
cessors {0, . . . ,m− 1}. If C is a colouring defined on [X ]d (with values in N) we
write C(x1, . . . , xd) for C({x1, . . . , xd}) where x1 < · · · < xd. A subset H of X is
called homogeneous or monochromatic for C if C is constant on [H ]d. We write

X → (m)dk

if for all C : [X ]d → k there exists H ⊆ X s.t. card(H) = m and H is ho-
mogeneous for C. Ramsey [17] proved the following result, known as the Finite
Ramsey Theorem.

(∀d)(∀k)(∀m)(∃�)[� → (m)dk].



Phase Transition Thresholds for Some Natural Subclasses 563

Let Let Rd
k(m) := min{� : � → (m)dk}. Erdös and Rado gave in [7] a primitive

recursive upper bound on Rd
k(m) as a function of d, k,m. The asymptotics of Rd

k

is a main concern in Ramsey Theory [8] and we will come back to it later.
The Paris-Harrington principle is a seemingly innocent variant of the Finite

Ramsey Theorem. Let f be a number-theoretic function. A set X is called f -
relatively large if card(X) ≥ f(minX). If f = id, the identity function, we call
such a set relatively large or just large. We write

X →∗
f (m)dk

if for all C : [X ]d → k there exists H ⊆ X s.t. card(H) = m, H is homogeneous
for C and H is relatively f -large. The Paris-Harrington principle is just the
Finite Ramsey Theorem with the extra condition that the homogeneous set is
also relatively large.

(PH) :≡ (∀d)(∀k)(∀m)(∃�)[� →∗
id (m)dk].

Paris and Harrington showed by model-theoretic methods that (PH) is true but
unprovable in PA.

Let Rd
k(f)(m) := min{� : �→∗

id (m)dk}.
The following phase transition result has been obtained for the parameterized

Ramsey functions Rd
k(f). Let | · |d be the d-times iterated binary length function

and log∗ the inverse of the superexponential function: Recall that

|x| := log2(x + 1), |x|d+1 := ||x|d|, and log∗ x := min{d : |x|d ≤ 2}
Recall that for a weakly increasing and unbounded function f : N −→ N we we
denote by f−1 the functional inverse of f .

Theorem 13 (Weiermann [26]). For α ≤ ε0 let

fα(i) = |i|H−1

α (i).

Then

1. The function d, k,m )→ Rd
k(log∗)(m) is primitive recursive

2. For any fixed positive integer the function d, k,m )→ Rd
k(| · |q)(m) is not

provably recursive in PA.
3. The function d, k,m )→ Rd

k(fα)(m) is provably recursive in PA iff α < ε0.

The phase transition in case of fixed dimension d can be characterized as follows.

Theorem 14 (Weiermann [29]). Let

fdα(i) =
⌊ |i|d
H−1
α (i)

⌋

.

Then for d fixed the function
k,m )→ Rd+1

k (fdα)(m) is provably total in IΣd iff α < ωd+1.
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Now let us consider the Kanamori McAloon Ramseyan theorem.
Fix a number-theoretic function f : N → N . A function C : [X ]d → N is

called f -regressive if for all s ∈ [X ]d such that f(min(s)) > 0 we have C(s) <
f(min(s)). When f is the identity function we just say that C is regressive. A
set H is min-homogeneous for C if for all s, t ∈ [H ]d with min(s) = min(t) we
have C(s) = C(t). We write

X → (m)df-reg

if for all f -regressive C : [X ]d → N there exists H ⊆ X s.t. card(H) = m and
H is min-homogeneous for C. In [10] Kanamori and McAloon introduced the
following statement and proved it for any choice of f .

(KM)f :≡ (∀d)(∀m)(∃�)[� → (m)df-reg].

The main result of [10], proved by a model-theoretic argument, is that (KM)id
is unprovable in PA. As a corollary one obtains the (provable in PA) equivalence
of (KM) with (PH).

Let Rd
min(f)(m) := min{[� : �→ (m)df-reg]}.

In his Ph.D. thesis [15], Lee showed that the situation of Theorem 13 occurs
in the case of (KM). That is, the phase transition threshold is the same as the
one for (PH) when unbounded dimensions are considered.

Theorem 15 (Lee [15]). For α ≤ ε0 let

fα(i) = |i|H−1

α (i).

Then

1. The function d, k,m )→ Rd
min(log∗)(m) is primitive recursive

2. For any fixed positive integer the function d, k,m )→ Rd
min(| · |q)(m) is not

provably recursive in PA.
3. The function d, k,m )→ Rd

min(fα)(m) is provably recursive in PA iff α < ε0.

Carlucci, Lee and Weiermann obtained the following phase transition in case of
fixed dimensions.

Theorem 16 (Carlucci, Lee, Weiermann[3]). Let

fdα(i) = . H−1
α (i)
√

logd(i)/.
Then the function d,m )→ Rd+1

min (fα)(m) is provably recursive in IΣd iff α <
ωd+1.

Remarks:

1. The case d = 1 has been treated already by Kojman, Lee, Omri and Weier-
mann in [12] generalizing methods from Kojman and Shelah [13] and [5].

2. Related phase transition results can be shown for Friedman’s Ramsey the-
orem and the canonical Ramsey theorem [Carlucci Weiermann, in prepara-
tion].
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4.2 A Phase Transition for R3
3

Let us recall that for given positive integers d and c the Ramsey function Rd
c

is defined as follows: Rd
c (m) is the least number R such that for every function

F : [R]d → c there exists a set Y ⊆ [R] such that F  [Y ]d has a constant value
and card(Y ) ≥ m. It is well known that there exists constants c1, c2, c3, c4 such
that for all but finitely many m

2c1·m
2 ≤ R3

2(m) ≤ 22c2·m
(1)

and
2c3·m

2(log(m))2 ≤ R3
3(m) ≤ 22c4·m

. (2)

For c ≥ 4 it is known that there exists a double exponential lower bound for the
function R3

c . The asymptotics of R3
2 and R3

3 are not known. It is a longstanding
open problem to prove or disprove that R3

3 has a double exponential lower bound.
(As far as we know the Erdös award offered for solving this problem is USD 500.)

For attacking this problem (and related problems) we propose to investigate
the phase transition problem for the associated Paris Harrington function R3

3(f)
(resp. other Paris Harrington functions in question). We show that a classification
for the phase transition for R3

3(f) will yield advance on the asymptotic of R3
3.

We now study the grwoth rate behaviour of the function R3
3(f) from the pre-

vious section when f varies from very slow growing functions f to slow growing
functions f .

Theorem 17. Let f(i) = 1
c4
||i||. Then R3

3(f)(m) ≤ 22c4·m
for all but finitely

many m.

Proof. By (2) there is a number K such that for R3
3(m) ≤ 22c4·m

for all m ≥ K.
We show that R3

3(f)(m) ≤ R3
3(m) =: R. Let F : [R]3 → 3 be given. Then

there exists Y ⊆ R such that F  [Y ]3 has constant value and card(Y ) ≥ m.
We claim that even card(Y ) ≥ f(min(Y )) is true. Indeed f(min(Y )) ≤ f(R) ≤
f(22c4·m

) = m ≤ card(Y ).

Theorem 18. Let α > 0 and f(i) = |i|α. If R3
3(m) ≤ 2m

1

α for infinitely many

m then R3
3(f)(m) ≤ 2m

1

α for infinitely many m.

Proof. Pick an m such that R3
3(m) ≤ 2m

1

α . We show that R3
3(f)(m) ≤ R3

3(m)
=: R. Let F : [R]3 → 3 be given. Then there exists Y ⊆ [R] such that F  [Y ]3

has constant value and card(Y ) ≥ m. We claim that even card(Y ) ≥ f(min(Y ))

is true. Indeed f(min(Y )) ≤ f(R) ≤ f(2m
1

α ) = m ≤ card(Y ).

Corollary 1. Let α > 0 and f(i) = |i|α. If R3
3(f)(m) > 2m

1

α for all but finitely

many m then R3
3(m) > 2m

1

α holds for all but finitely many m.

Proof. If R3
3(f)(m) > 2m

1

α for all but finitely many m then there are not infi-

nitely many m such that R3
3(f)(m) ≤ 2m

1

α hence there are not infinitely many
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m such that R3
3(m) ≤ 2m

1

α and hence R3
3(m) > 2m

1

α holds for all but finitely
many m.

Theorem 19. Let ε > 0. If f(i) = ε · |i| then R3
3(f) eventually dominates every

primitive recursive function.

Theorem 20. Let ε > 0, α := 1
2 + ε and f(i) = |i|α. Then R3

3(f)(m) ≥
22(1+ε)

m/2

for all but finitely many m.

Proof. Choose δ > 0 sufficiently small so that

(2 − δ)(
1
2

+ ε) > 1 +
3
2
ε. (3)

Choose K0 such that R3
2(m) ≥ 2m

2−δ

+1 for m ≥ K0. We show that the asserted

inequality holds for m ≥ 2K
1+

3

2
ε

0 + 1. Define

v0 := 1,
v1 := R3

2(m)− 1,
vi+1 := R3

2(f(vi))− 1 for i ≥ 1,
v := vm′−1,

where m′ is the least integer not greater then m
2 .

Choose G1 : [v0, v1[3→ 2 such that for all Y with G0  [Y ]3 having constant
value we have card(Y ) < m. Choose Gi+1 : [vi, vi+1[3→ 2 such that for all Y
with G0  [Y ]3 having constant value we have card(Y ) < f(vi).

Define G : [v0, v[3→ 3 as follows

G(x, y, z) :=

{
Gi(x, y, z) if vi ≤ x < y < z ≤ vi+1 for some i
3 otherwise

(4)

We claim that v < R3
3(f)(m). The counter example partition is provided by

G. Assume that Y ⊆ v and that G  [Y ]3 has constant value. We have to show
that card(Y ) < max{m, f(min(Y )} =: m′′. We may assume that card(Y ) ≥ 3.

Case 1: Y ⊆ [v0, v1[. Then G0  [Y ]3 = G  [Y ]3 has constant value. Hence
card(Y ) < m ≤ m′′.

Case 2: Y ⊆ [vi, vi+1[ for some i with 0 < i < m′ − 1. Then Gi  [Y ]3 = G 

[Y ]3 has constant value. Hence card(Y ) < f(vi)) ≤ f(min(Y )) ≤ m′′.
Case 3: For all i < m′−1 the set Y is not contained in [vi, vi+1[. Then G  [Y ]3

has constant value 3. Moreover for all i < m′ − 1 we have

card(Y ∩ [vi, vi+1[) ≤ 2. (5)

Indeed if we would find three elements x, y, z in some Y ∩ [vi, vi+1[ then

G(x, y, z) �= 3.
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By (5) we obtain that card(Y ) ≤ (m′ − 1) · 2 < m ≤ m′′.
We now claim that

vi ≥ 2K
(1+

3

2
ε)

i

0 (6)

and
f(vi) ≥ K0 (7)

for i ≥ 1. Proof of the claim by induction on i. Let us check the case i = 1. Then

v1 = R3
2(m)− 1 ≥ m ≥ 2K

(1+
3

2
)
1

0 and f(v1) = |v1|
1

2
+ε ≥ |2m2−δ |

1

2
+ε ≥ m1+ 3

2
ε ≥

K0. Now assume that the claim holds for i. Since f(vi) ≥ K0 we can apply the
asymptotic for R3

2 to f(vi). We thus obtain

vi+1 = R3
2(f(vi))− 1

≥ 2(f(vi))2−δ

≥ 2(K
1+

3

2
ε)

i

0
)α·(2−δ)

≥ 2K
(1+

3

2
·ε)

i+1

0 .

This moreover implies f(vi+1) ≥ K0.

Summing up we have shown R3
3(f)(m) > 2K

(1+
3

2
·ε)

m′−1

0 . Thus for all but

finitely many m we obtain R3
3(f)(m) > 2K

(1+ε)
m/2

0 .

Similarly one shows the following result indicating the relevance of the thresh-
old at 1

2 .

Theorem 21. Let δ ≥ 2, γ > 0. and ε > 0. Put α := 1
δ + ε and f(i) =

|i|α. Assume that R3
2(n) ≥ 2n

δ·γ for all but finitely many n. Then R3
3(f)(m) ≥

22(1+ε)
m

)

for all but finitely many m.

Remark: Related phase transitions can be proved for all functions Rd
3 for d ≥ 3.

4.3 A Phase Transition for R2
2

Finally we study the Ramsey function for pairs. Here we study a phase transition
in terms of densities a concept which goes back to J. Paris [11]. Let f be a number
theoretic function. We call a finite set X of natural numbers 0-dense(f, k, l)
iff card(X) ≥ max{3, f(min(X))}. We call X n + 1-dense(f ,k, l) iff for any
F : [X ]k → l there exists a Y ⊆ X such that F  [Y ]2 is constant and Y is
n-dense(f ,k, l).

Recall that R2
2(k) is the least m such that for every F : [m]2 → 2 there exists

a monochromatic Y ⊆ m such that card(Y ) ≥ k. Then, by Erdös’s probabilistic
method, we know the classical lower bound R2

2(k) ≥ 2
k
2 for all k [8]. Elementary

combinatorics yields further the well known upper bound R2
2(k) ≤ 22·k for all k

[8]. It is open (an Erdös USD 100 problem) whether the limit limk→∞(R2
2(k))

1

k

exists. (Determing the value is an Erdös USD 250 problem.)
Let log4 denote the logarithm with respect to base 4.
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Theorem 22. Let f(i) := �log4(log4(i− 1
2 ))2. Assume that

ρ := lim
k→∞

(R2
2(k))

1

k

exists. Let

μ := inf{r ∈ R : (∃K)(∀m ≥ K) [44m

, 44m

+ .(r)�(r)m�/[ is 2− dense(f, 2, 2)}.

Then ρ = μ.

Proof. It is easy to see that [44m

, 44m

+ 44m

[ is 2− dense(f, 2, 2)} using the well
known upper bound on R2

2. Thus μ ≤ 4 and ρ ≤ 4. In the sequel we assume
ρ < 4. In the case ρ = 4 we have R2

2(m) < 44m

for almost all m and the following
argument shows that μ ≤ ρ.

To prove ρ ≥ μ let ε > 0. We may assume ρ + ε ≤ 4. Then for almost all m
we have

R2
2(m) < .(ρ+ ε)m/. (8)

In particular for allmost all m we have

R2
2(.(ρ+ ε)m/) < .(ρ+ ε)�(ρ+ε)

m�/. (9)

For m large enough so that (8) and (9) hold let Im := [44m

, 44m

+ .(ρ +
ε)�(ρ+ε)

m�/[. We claim that Im is 2 − dense(f, 2, 2). Let P : [Im]2 → 2 be any
partition. Then there exists by (9) a Y ⊂ Im such that P  [Y ]2 is constant and
such that card(Y ) ≥ .(ρ+ ε)m/. We claim that Y is 1−dense(f, 2, 2). For prov-
ing this let Q : [Y ]2 → 2 be any partition. Then there exists by (8) a Z ⊆ Y such
that Q  [Z]2 is constant and card(Z) ≥ m. We claim that Z is 0−dense(f, 2, 2).
Indeed, f(min(Z) ≤ f(44m

+ .(ρ + ε)�(ρ+ε)
m�/) ≤ f(44m · 2) ≤ m ≤ card(Z).

Thus ρ+ ε ≥ μ for any ε > 0, hence ρ ≥ μ.
To prove μ ≥ ρ let again ε > 0. Then for almost all m we have

R2
2(m) > .(ρ− ε)m/. (10)

In particular for allmost all m we have

R2
2(.(ρ− ε)m/) > .(ρ− ε)�(ρ−ε)

m�/. (11)

Let for large enough m Jm := [44m

, 44m

+ .(ρ− ε)�(ρ−ε)
m�/[. We claim that Jm

is not 2 − dense(f, 2, 2). Indeed, by (11) there exists a partition P : [Jm]2 → 2
such that card(Y ) < .(ρ + ε)m/ for all Y ⊆ Jm such that P  [Y ]2 is constant.
Pick any such Y . We claim that Y is not 1− dense(f, 2, 2). Indeed by (11) there
exists a partition Q : [Y ]2 → 2 such that card(Z) < m for all Z ⊆ Y with
Q  [Z]2 is constant. We claim that any such Z is not 0− dense(f, 2, 2). Indeed,
f(min(Z) ≥ f(44m

) ≥ m > card(Z). Thus ρ− ε < μ for any ε > 0, hence ρ ≤ μ.

Similar proofs yield the following results.
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Theorem 23. Let f(i) := �log4(log4(i− 1
2 ))2. Assume that

ρ := lim
k→∞

(R2
2(k))

1

k

exists. Let

μ := sup{r ∈ R : (∃K)(∀m≥K)[44m

, 44m

+.(r)�(r)m�/[ is not 2−dense(f, 2, 2)}.

Then ρ = μ.

Theorem 24. Let f(i) := �log4(log4(i− 1
2 ))2. Assume that

μ = sup{r ∈ R : (∃K)(∀m ≥ K)[44m

, 44m

+.(r)�(r)m�/[ is not 2−dense(f, 2, 2)}

= inf{r ∈ R : (∃K)(∀m ≥ K) [44m

, 44m

+ .(r)�(r)m�/[ is 2− dense(f, 2, 2)}.
Then

ρ := lim
k→∞

(R2
2(k))

1

k

exists and ρ = μ.
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Non-deterministic Halting Times for
Hamkins-Kidder Turing Machines

P.D.Welch

School of Mathematics, University of Bristol
p.welch@bristol.ac.uk

In this talk we consider some issues related to the Infinite Time Turing Machine
(ITTM) model of Hamkins & Lewis [3]. In particular our main results (Proposi-
tions 1 & 2) relate to Bounding times of the lengths of certain computations, and
their application to certain questions raised in [2] on “non-determinism” both
in terms of non-deterministically halting ordinals (Theorem 2) and pointclasses
defined by using such non-deterministic machines (Proposition 6).

In ITTM’s, a standard Turing machine (with some inessential minor modifi-
cations) is allowed to run transfinitely in ordinal time. The machine’s behaviour
at limit stages of time λ is completely specified by requiring that (i) the ma-
chine enter a special limit state qL; (ii) the read/write head return to the initial
starting cell at the leftmost end of the tape; (iii) the cell values - which we shall
assume are taken from the alphabet of {0, 1} - are the limsup of their previous
values: that is if cell i on the tape has contents Ci(γ) ∈ {0, 1} at time γ, then
Ci(λ) = lim supγ→λ〈Ci(γ)|γ < λ〉. The original machine specified three infinite
tapes: input, scratch, and output, with a read/write head positioned over one
cell from each tape simultaneously. The machine’s actions at successor stages is
determined by its (finite) program in the ordinary way.

A number of intriguing questions immediately spring to mind. The question
of the identity of the “decidable” reals (for which x ∈ 2 is there a program
Pe which halts on all inputs, and so that on input x Pe halts with output 1:
“Pe(x)↓ 1” ?), and of the semi-decidable reals, is answered in Welch[7]. Hamkins
& Lewis [3] had previously showed, inter alia, that Π1

1 predicates of reals are
decidable, and that the decidable, (and semi-decidable) pointclasses of reals are
strictly between Π1

1 and Δ1
2 in the projective hierarchy.

We shall be concerned here rather with the question of halting times , or how
long such a computation takes, if it is going to halt.

Definition 1. Pe(x) ↓α will denote that program Pe(x) ↓ in exactly α steps.
Pe(x)↓≤α, Pe(x)↓<αare defined analogously.

To clarify the above: Pe(x)↓α means that at ordinal time α the read/write head
is in particular state qs and is reading a triple of cells (one from each of the three
tapes) so that it’s program determines that it goes into a halting state qh. Thus
a machine may halt exactly at some limit stage of time α where then qs = qL.

Suppose x is simple: perhaps it is an integer (i.e. it is a binary code for n ∈
followed by an infinite string of 0’s), perhaps it is 0 (in the above sense) itself.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 571–574, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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What possible halting times as e varies are there for Pe(x)? [3] calls an ordinal
clockable if it is the halting time of a computation with input 0.

Further, let us define:

Definition 2. “Pe(x)↓ y” will denote that Pe(x)↓ and that y ∈ 2 is the con-
tents of the output tape on halting. (Again Pe(x)↓α y etc. are defined analo-
gously).

Then we say that y is writable if it is the output of some program: Pe(0)↓ y. An
ordinal β is writable if some y ∈ WO is writable, and y codes a wellordering of
rank β. What possible ordinals are writable? It is easy to adjust a program that
demonstrates that β is writable, to one that shows β′ < β is writable for some
particular β′. Thus the writable ordinals are an initial segment, λ, of all ordinals.
Hamkins and Lewis [3] showed that there are gaps in the clockable ordinals, and
also the following:

Theorem 1. (Hamkins and Lewis [3]) If β is admissible then it is not clockable.

(For notions of admissible ordinal and admissible set see [1].) Welch [8] shows that
λ, the suprema of the writable ordinals, is also the supremum of the clockable
ordinals.

One may generalise these questions to those involving arbitrary input x. The
following is Definition 24 of Deolalikar, Hamkins & Schindler [2]:

Definition 3. An ordinal α is nondeterministically clockable if there is an al-
gorithm Pe which halts in time at most α for all input and in time exactly α for
some input.

Symbolically: α is nondeterministically clockable iff

∃e ∈ [∀x ∈ 2 Pe(x)↓≤α ∧∃x ∈ 2 Pe(x)↓α].

This notion arises in the paper [2], which was concerned with various complex-
ity pointclasses defined using halting times of computations on these machines,
with or without existential ‘non-determinacy’ witnesses. A Turing machine is
is non-deterministic if, in effect, tests all possible runs Pe(x). An ordinal α is
then non-deterministically clockable, if such a machine halts on all inputs in less
than or equal to α steps, and halts on some input in exactly α steps. Hence the
nomenclature in the last definition.

We show the following by applying the Barwise Compactness Theorem ([1]).

Theorem 2. If β is admissible then it is not nondeterministically clockable.

This is in fact a corollary of a more general Bounding Lemma (where we identify
with 2 ):

Proposition 1. (Bounding Lemma) Suppose β be admissible. Let F : −→
be an ITTM-computable total function, so that ∀xPe(x)↓≤β where Pe computes
F . Then ∃γ < β ∀xPe(x)↓<γ .
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Let x ∈ 2 . Then, as is usual, we let ωx1ck denote the supremum of all ordinals
that are recursive in x (that is, those ordinals α with a corresponding y ∈ WO
with rank of y equalling α, and the characteristic function of y is Turing recursive
(in the ordinary sense of recursive) in x.

The following question is posed in [2]:

Question 6. Suppose an algorithm halts on each input x in fewer than ωx1ck
steps. Then does it halt uniformly before ω1ck?

As they say an affirmative answer explains some of the phenomena observed in
their paper. It is perhaps somewhat remarkable that processes that uniformly
are required to halt only by an ordinal recursive in the input, in fact must halt
uniformly by some recursive ordinal, but the next proposition shows that this is
indeed the case (we drop the subscript ck and write ωx1 for the first ordinal not
recursive in x etc.). We prove that we have Uniform Bounding:

Proposition 2. Let F : −→ be ITTM-computable and total as witnessed
by the program Pe. If ∀xPe(x)↓<ωx

1 then ∃γ < ω1ck ∀xPe(x)↓<γ .

What we are calling here the Uniform Bounding Lemma is in fact a straightfor-
ward application of the Bounding Lemma in Higher Recursion Theory. Although
that is usually stated close to the form Spector gave it ([6], or see [4] 4A.5) con-
cerning as it does Σ1

1 sets of codes for recursive ordinals, the argument applies
in general to sets of ordinal codes defined by Σ1

1 -formulae - and we use it as
such.

We consider some further queries arising from the paper [2]. These concerned
various complexity pointclasses defined using halting times of computations on
Infinite Time Turing machines, with or without existential ‘non-determinacy’
witnesses. These classes were first explicitly introduced by Schindler in [5].

Definition 4. Let f : −→ On. (i) A ∈ P f if there is an infinite time Turing
machine deciding (with a 0, 1 output), whether or not each x ∈ A in fewer than
f(x) many steps.

(ii) A ∈ NPf when there is an infinite time Turing machine T such that x ∈ A
if and only if there is y ∈ such that T accepts (x, y), and further T halts on
any input (x, y) in fewer than f(x) many steps.

We thus think of f as a bounding function on the number of steps needed to
determine whether x is, or is not, in some pointclass A, by using some total (so
always either accepting or rejecting) ITTM program. Here f may be a constant
function, and in the case that it is, with constant value ωω then [2] call the
pointclasses P and NP . They analyse these classes for a variety of f and show,
for example:

Theorem 3. [2] P �= NP ∩ co-NP .

Concomitant with the classes P f are the following pointclasses definable in a
simple way over the f(x) level of the constructible hierarchy over x :
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Definition 5. Γ f = {A ⊆ : ∃Σ1ϕ∀x[x ∈ A←→ Lf(x)[x] |= ϕ[x]]}.
So, as in [2] Sect.6, call f suitable if for any x f(x) ≥ ω+1 and for any x, y x ≤T

y =⇒ f(x) ≤T f(y).
Now let f be suitable, such that for any x ∈ Lf(x)[x] is an admissible set

that is a union of admissible sets. Then:

Proposition 3. NP f = Γ f ;P f = Γ f∩co-Γ f = NP f∩coNP f . Thus in general
NP f does not equal the dual class Γ f ∩ co-Γ f .

This answers another of the queries of [2].
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Abstract. Although Kurt Gödel does not figure prominently in the his-
tory of computabilty theory, he exerted a significant influence on some of
the founders of the field, both through his published work and through
personal interaction. In particular, Gödel’s 1931 paper on incomplete-
ness and the methods developed therein were important for the early
development of recursive function theory and the lambda calculus at the
hands of Church, Kleene, and Rosser. Church and his students studied
Gödel 1931, and Gödel taught a seminar at Princeton in 1934. Seen in the
historical context, Gödel was an important catalyst for the emergence of
computability theory in the mid 1930s.

1 Introduction

Kurt Gödel’s contributions to logic rank among the most important work in
logic, and among the most important in 20th century mathematics. The theory
of computability, and much of theoretical computer science more generally, has
its roots, historically as well as conceptually, in the field of logic, and so it is a
given that many of Gödel’s results are also important in the field of theoretical
computer science. However, it would be an exaggeration to say that Gödel was
himself a pioneer of the field. That distinction belongs to those who lay the
groundwork for a mathematical analysis of the concept of computation: Church,
Kleene, Post, Rosser, and Turing, and those who followed in their footsteps.
Nevertheless, the early work of Church, Kleene and Rosser was heavily influenced
by Gödel, and it is perhaps not an exaggeration to say that their work was made
possibly only by Gödel’s earlier contributions.

The historical background both for Gödel’s early work and that of Church,
Rosser, and Kleene lies in the context of the foundational debate of the 1920s.
Hilbert’s program for the foundations of mathematics was the driving force be-
hind many of the advances in logic during that time. His belief that all mathe-
matical questions are in principle decidable underwrote his belief that the formal
systems of mathematics considered then, such as arithmetic, analysis, and set
theory, are complete in the sense that for any sentence A in the respective lan-
guage, either A or ¬A is derivable in the system. (Although Hilbert himself had
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reservations whether this is the case in “higher domains”, e.g., set theory, he did
believe it was true for first and second-order arithmetic.) In a related sense, this
was also the basis for Hilbert’s conjecture that first-order logic is complete in
the sense that any valid sentence is derivable from the axioms of the predicate
calculus. (It was known by the mid 1920s that first-order logic is not complete
in the first, syntactic sense described above—there are formulas A such that
neither A nor ¬A is derivable in first-order logic alone.) It was also the basis
for his aim in the work on the decision problem for logic, i.e., that it should be
possible to find a procedure to decide, for any given sentence of first-order logic,
whether it is provable from the axioms of the predicate calculus or not. Hilbert’s
firm belief that classical mathematics is secure in the sense that the axioms of
arithmetic and set theory do no lead to contradictions suggested that it should
be possible to prove that these axioms are consistent, and since the statement
of consistency is a purely combinatorial one about what sequences of formulas
of certain sorts there are, that consistency could be proved using elementary,
“finitary” methods. These methodologically motivated questions, then, guided
the work of the Hilbert school: to solve the decision problem by giving a decision
problem for predicate logic; to prove that arithmetic and logic are complete; and
to find a finitary consistency proof of arithmetic and analysis.

In 1929 and 1930, Gödel solved the latter two problems. In his dissertation
(1929; 1930), he showed that first-order logic is complete, and in his Habilita-
tionsschrift (1930; 1931) he showed that arithmetic is incomplete. Very soon
afterward he himself accepted the consequence of the second incompleteness
theorem that no finitary consistency proof of arithmetic can be given, a conse-
quence that others (e.g., von Neumann and Herbrand) accepted more readily.
Although Church and Turing gave the definitive (negative) solution to the deci-
sion problem, Gödel also actively contributed to the literature on Hilbert’s first
task (Gödel, 1932, 1933).

Church’s first publications on the λ-calculus were similarly concerned with
foundational problems in mathematics: Church’s stated aim was to develop
a new axiomatization of logic which avoids the paradoxes, but in a manner
different from Russell’s theory of types or axiomatic set theory. Although we
now think of the (simple) λ-calculus as a formalism for expressing computable
functions, Church did not originally conceive of it in that way—for him, the
system which evolved into the λ-calculus was a logical formalism which, he
hoped, would be capable of serving as a contradiction-free formalization of
mathematics. Unfortunately, Church’s original system proved to be inconsis-
tent (Kleene and Rosser, 1935). Kleene’s and Rosser’s proof that it was incon-
sistent made essential use of the method of Gödel coding introduced in (Gödel,
1931). Kleene’s (1935) development of arithmetic and the representability of re-
cursive functions within the λ-calculus was motivated, in part, by the aim of
reproducing Gödel’s incompleteness result in the context of the λ-calculus, and
his important normal form theorem also relied on Gödel coding. It was in the
context of this turn towards metamathematical investigations of the λ-calculus
along the lines of Gödel (1931) that the notion of λ-definability achieved pride
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of place in the work of Church, Kleene, and Rosser. The positive results ob-
tained by Kleene to the effect that a great many recursive functions could be
formalized in the λ-calculus led Church to formulate what now has come to be
known as Church’s Thesis, viz., that every effectively computable function is
λ-definable. And again it was Gödel, who at the time (1934) was in Princeton,
who led Church and his students to take a broader view: his skepticism about
Church’s thesis when first formulated regarding λ-definability and his proposal
that general recursiveness might be a better candidate for a precise charac-
terization of effective computability led Kleene to show that the two notions
are coextensive: every λ-definable function is general recursive and conversely
(Kleene, 1936b).

In what follows, I will give an outline of the early history of recursion theory,
with special emphasis on the role Gödel and his results played in it. In my
survey of these developments, I rely heavily on the recollections of Kleene (1981;
1987) and the analyses of Davis (1982) and Sieg (1997), as well as chapter V of
Dawson’s (1997) biography of Gödel.

2 Church’s System and Gödel’s Incompleteness Result

In the years 1929–1931, Church developed an alternative formulation of logic
(Church, 1932, 1933), which he hoped would serve as a new foundation of math-
ematics which would avoid the paradoxes. Church taught a course on logic in
the Fall of 1931, where Kleene, then a graduate student, took notes. During that
time, Church and Kleene were first introduced to Gödel’s work on incomplete-
ness: the occasion was a talk by John von Neumann on Gödel’s work. Church
and Kleene immediately studied the paper in detail. At the time, it was not yet
clear how general Gödel’s results were. Church believed that the incompleteness
of Gödel’s system P (a type-theoretic higher-order formulation of Peano arith-
metic) relies essentially on some feature of type theory, and that Gödel’s result
would not apply to Church’s own system. It nevertheless seems like it became a
pressing issue for Church to determine to what extent Gödel’s results and meth-
ods could be carried out in his system. He set Kleene to work on the task of
obtaining Peano arithmetic in the system. Kleene succeeded in carrying this out
in the first half of 1932. It involved, in particular, showing that various number-
theoretic functions are λ-definable. In July 1932, Gödel wrote to Church, asking
if Church’s system could be proved consistent relative to Principia Mathematica.
Church was skeptical of the usefulness of such a relative consistency proof. He
wrote,

In fact, the only evidence for the freedom from contradiction of Principia
Mathematica is the empirical evidence arising from the fact that the
system has been in use for some time, many of its consequences have
been drawn, and no one has found a contradiction. If my system be
really free from contradiction, then an equal amount of work in deriving
its consequences should provide an equal weight of empirical evidence
for its freedom from contradiction. [. . . ]
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But it remains barely possible that a proof of freedom from contra-
diction for my system can be found somewhat along the lines suggested
by Hilbert. I have, in fact, made several unsuccessful attempts to do this.

Dr. von Neumann called my attention last fall to your paper entitled
“Über formal unentscheidbare sätze der Principia Mathematica.” I have
been unable to see, however, that your conclusions in §4 of this paper
apply to my system. Possibly your argument can be modified so as to
make it apply to my system, but I have not been able to find such a
modification of your argument. (Church to Gödel, July 27, 1932. Gödel
2003a, 368–369).

Section §4 of Gödel (1931) which Church mentions here is the section in which
Gödel sketched the second incompleteness theorem. Since Gödel did not provide
a complete proof of the theorem—indeed, the first complete proof did not appear
until Hilbert and Bernays (1939)—Church was surely justified in doubting that
the result applies to his system. It leaves open the question, however, of whether
Church believed, at the time, that the construction of the first incompleteness
theorem do go through in his system.

Kleene reports (Crossley, 1975) that he carried out the development of Peano
arithmetic in Church’s system between January and June 1932, and then wrote
up the results over the following year. The paper reporting these results (Kleene,
1935) was received by the American Journal of Mathematics on October 9, 1933,
and in revised version on June 18, 1934. The paper also contains the arithmeti-
zation of syntax, making use of Gödel’s methods and results, and a proof that
all primitive recursive functions are λ-definable. Kleene also showed that for any
formula in the formalism of Principia Mathematica, the question of whether it is
provable is equivalent to the question of whether a certain expression of Church’s
system has a normal form. Only a few months after Kleene submitted the final
version of his paper, in November 1934, Rosser and he submitted another pa-
per to the Annals of mathematics (Kleene and Rosser, 1935). In it, they showed
that Church’s system, as well as Curry’s combinatory logic (Curry, 1930), were
inconsistent. In their proof, they again made extensive use of Gödel’s arithmeti-
zation of syntax, and were able to derive a version of Richard’s paradox within
the system. The fragment of Church’s system with the logical axioms removed
is demonstrably consistent: it is the simple λ-calculus (see Barendregt 1997 for
the impact of λ-calculus in computer science, and Seldin 2006 for a history of
the λ-calculus).

Church, then, turned out to be right: Gödel’s second incompleteness theorem
does not apply to his system—because the theorem only applies to consistent
formal systems. But in order to obtain this result, and many of the positive
results due to Kleene which provided the foundation for Church’s undecidability
results a year later, Gödel’s methods were of crucial importance, both because
they motivated a certain line of inquiry and because Kleene, Rosser, and Church
were able to build on them.

The methods introduced in Gödel (1931) and used by Kleene and Rosser to
show that Church’s system was inconsistent also figure prominently in Church’s
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negative solution of the decision problem. Church (1935, 1936b) first showed
that the question of whether a given expression of the λ-calculus has a normal
form is not recursive. In the same paper, Church also stated what is now known
as “Church’s Thesis,” viz., that the general recursive functions (and hence, the
λ-definable ones) are just the “effectively computable” ones. The theorem and
the thesis combine to yield the result that having a normal form is not an
effectively decidable property. The genesis of Church’s Thesis will be outlined in
the next section. Here, I want to stress only that the result itself, and with it the
negative solution of the decision problem for first-order logic (Church, 1936a),
made essential use of Gödel’s work.

Kleene (1987) himself emphasizes the importance of Gödel (1931) in the work
that he and Rosser carried out in their seminal contributions to recursion theory
in the early 1930s:

After the colloquium [by von Neumann in the fall of 1931], Church’s
course continued uninterruptedly concentrating on his formal system;
but on the side we all read Gödel’s paper, which to me opened up a
whole new world of fascinating ideas and perspectives.

3 Gödel and Church’s Thesis

Gödel’s (1931) had a dramatic and lasting influence on the pioneers of recursion
theory and the development of the λ-calculus. Gödel had a more direct and
personal influence in the formation of Church’s thesis. He visited Princeton in
the 1933/34 academic year and gave a series of lectures there between February
and May 1934, which was attended by Church, Kleene, and Rosser. Kleene’s
work on defining various number-theoretic functions in the λ-calculus (1935) first
prompted Church to put forward a tentative version of the thesis in late 1933
or early 1934, in the form: every effectively calculable function is λ-definable. In
conversation, Gödel expressed skepticism about the thesis.

Towards the end of his Princeton lectures, Gödel introduced the notion of
general recursive function. This notion was based on a suggestion by Herbrand
in a letter to Gödel of April 7, 1931 (Gödel, 2003b, 14–21). In the lectures,
Gödel (1934, 368–369), defined the general recursive functions as those which
can be computed using a specific set of substitution rules from a set of defining
equations, and for which the result of the computation is uniquely determined.
(For a discussion of the connection between Herbrand’s and Gödel’s notions,
see Sieg 2005.) Gödel did not at first propose the definition of general recursive
function as an explication of the informal notion of “effectively computable,”
but only as an explication of the notion of “recursive function.” In 1931, Gödel
had introduced the primitive recursive functions (although he called them then
just “recursive functions”). It was already known since the mid-1920s (Hilbert,
1926; Ackermann, 1928) that there are non-primitive recursive functions which
can be defined by double recursion, and in the early 1930s, Péter (1934, 1935)
studied such recursive functions in more detail.
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Gödel was interested in a precise characterization of intuitively recursive func-
tions. Kleene (1936b) soon succeeded in establishing that the general recursive
functions are exactly the λ-definable ones, and this seems to have been a reason
for Church to propose his thesis in print in 1935. Kleene (1936a) is a system-
atic study of Gödel’s class of general recursive functions. It contains Kleene’s
normal form theorem, that every general recursive function can be written as
f(μx[g(x) = 0]), with f , g primitive recursive, Kleene’s T predicate, and exam-
ples of non-recursive functions and relations based on it.

For a more detailed historical discussion on the origin of Church’s Thesis and
Gödel’s influence, see Davis (1982) and Sieg (1997).

4 Gödel and Complexity Theory

Another work of Gödel’s played a role in the development and gradual acceptance
of Church’s Thesis—although Gödel himself apparently became convinced of the
truth of the thesis only through Turing’s work. That work was an abstract on
length of proofs (Gödel, 1936). In stating his Thesis, Church (1936b, §7) had
introduced the notion of functions computable in a logic S: f is is computable
in S if there is some term φ so that for every numeral m there is a numeral n
with S � φ(m) = n iff f(m) = n (following Kleene 1952, §59, such functions are
also called reckonable in S). In a note added in proof, Gödel (1936) remarked
that this notion of computability is absolute, in the sense that if a function is
computable in a higher-order system S, it already is computable in first-order
arithmetic—i.e., the general recursive functions are all the functions computable
in any consistent system S containing arithmetic. The reason for this is, of
course, that if the system is formal in the sense that its proofs are recursively
enumerable, then then function is computable by searching through all proofs
until one finds one of φ(m) = n, and this procedure is insensitive to the logical
strength of the theory S. This result served both Church and later also Gödel
as evidence for the Church-Turing Thesis (see Gödel 1946 and Sieg 1997, 2006).

The main part of (Gödel, 1936), however, was not concerned with computabil-
ity so much as with proof complexity. The result that Gödel announced concerned
speed-up of proofs (measured as number of symbols) between n-th and (n+1)st-
order arithmetic. (Buss 1994 contains a proof of the result.) 20 years later, Gödel
was again thinking about proof complexity. In an intriguing letter to John von
Neumann on March 20, 1956 (Gödel, 2003b, 372–377), Gödel discussed the com-
plexity of deciding for a formula A of first-order logic, whether A has a proof
with k symbols or less. Cook has shown that this problem is NP-complete (see
Hartmanis 1989 and Buss 1995).

Unlike Gödel’s earliest work, his thoughts on proof complexity and feasible
computation in the letter to von Neumann had no impact on the historical
development of computability and complexity theory. It nevertheless shows that
questions of the nature of computability, even though they were not at the
forefront of Gödel’s thought or prominent in his publications, did occupy Gödel
throughout his professional career.
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Buss, Samuel R. 1994. On Gödel’s theorems on lengths of proofs I: Number of
lines and speedups for arithmetic. Journal of Symbolic Logic 39: 737–756.
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Monatshefte für Mathematik und Physik 40: 433–443. Reprinted and trans-
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Kleene, Stephen C. 1987. Gödel’s impression on students of logic in the 1931s. In
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Abstract. In mathematics, various representations of real numbers
have been investigated. Their standard effectivizations lead to equivalent
definitions of computable real numbers. For the primitive recursive level,
however, these effectivizations are not equivalent any more. Similarly, if
the weaker computability is considered, we usually obtain different weak
computability notions of reals according to different representations of
real number. In this paper we summarize several recent results about
weak computability of real numbers and their hierarchies.

1 Introduction

The classic computability theory is a well developed theory which deals with
the effectivity of subsets and functions on discrete domains like natural num-
bers. For the real numbers, we consider w.l.o.g. the reals x ∈ [0, 1] which are
corresponded naturally to their binary expansion set A ⊆ N in the way of
x = xA :=

∑
n∈A 2−(n+1). If a set is identified with its characteristic sequence,

then the real xA of binary expansion A can also be denoted by 0.A. In this way,
the computability of subsets of natural numbers can be transferred straightfor-
wardly to reals as follows: a real xA is computable if A ⊆ N is a computable
set. In other words, xA is computable if there is an effective procedure to write
down its binary expansion one bit after another. This is essentially the definition
of Turing [24] and it is robust because Robinson [20] and others (see [12, 19])
have shown that, computable reals can be defined equivalently by Dedekind
cuts, Cauchy sequences and other representations of reals too. For instance, x
is computable iff it has a computable Dedekind cut Lx := {r ∈ Q : r < x}; iff
there is a computable sequence (xs) of rational numbers which converges to x
effectively in the sense that (∀n ∈ N)(|xn − xn+1| ≤ 2−n), etc. This means that
the computability of reals is independent of their representations. The class of
computable reals is denoted by EC (for Effctively Computable).

Similarly, we can define the notion of Turing reducibility of reals as follows: xA
is Turing reducible to xB (denoted by xA ≤T xB) iff A ≤T B. Two reals x, y are
Turing equivalent (denoted by x ≡T y) if x ≤T y and y ≤T x. The Turing degree
degT (x) of a real x is defined as the class of all reals which are Turing equivalent
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to x, i.e., degT (x) := {y ∈ R : y ≡T x}. Obviously, these are independent of their
representations too (see, e.g., [5]). Because of the correspondence between reals
and subsets of natural numbers, we can identify the Turing degree degT (xA) of a
real xA and the Turing degree degT (A) := {B ⊆ N : A ≡T B} of the set A ⊆ N.
Thus, we can say that a degree of real is c.e. if it contains at least a c.e. set.

This nice story does not work any more if we consider the computability
notion which are strictly stronger or weaker than the standard computability. In
the following sections, we summarize the results related to these stuffs.

2 Strong Computability

Let F be a class of functions f : N → N. By means of functions of F we can
define the following classes of reals.

C1(F ) := {x ∈ R : (∃f, g ∈ F )(∀n)(|x − f(n)/g(n)| ≤ 2−n)

Cb2(F ) := {x ∈ R : (∃f ∈ F )((∀n)(0 ≤ f(n) < b) & x =
∑

n∈N
f(n)b−n)}

C2(F ) := {x ∈ R : (∃f ∈ F )((∀n)(0 ≤ f(n, b) < b) & x =
∑

n∈N
f(n, b)b−n)}

C3(F ) := {x ∈ R : (∃f ∈ F )(∀m,n)(n/(m+ 1) < x ⇐⇒ f(n,m) = 0)}
C4(F ) := {x ∈ R : (∃f ∈ F )(x = [f(0), f(1), f(2), . . .])}

where [a0, a1, a2, . . .] = a0 +
1

a1 + 1
a2+···

These classes correspond respectively to the representations of reals by (fast)
Cauchy sequences, b-adic expansion, uniform b-adic expansion, Dedekind cuts
and continued fractions. If F is the class of computable functions, then all classes
defined above are the same. This means that the standard computability of reals
is independent of the their representations. For the class PF of polynomial time
computable functions, we have

Theorem 2.1 (Ko [8, 9])

1. C4(PF ) = C3(PF ) = C2
2(PF ) � C1(PF );

2. C1(PF ) is a real closed field.

The primitive recursiveness of the reals was first systematically investigated by
Specker [23]. He shows that decimal Dedekind cuts, expansions and Cauchy se-
quences lead to different versions of primitive recursiveness of reals. Later on,
Peter [13], Mostowski [11], Lehman [10] investigated other versions of primi-
tive recursiveness of reals. We summarize some of their results as the following
theorem, where PR is the class of primitive recursive functions.

Theorem 2.2 (Specker [23], Peter [13], Mostowski [11], Lehman [10])

1. C4(PR) � C3(PR) = C2(PR) �
⋂

b>1 Cb2(PR) � C1(PR);
2. x ∈ C3(PR) iff the function λn..nx/ is primitive recursive;
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3. x ∈ C4(PR) iff x ∈ C1(PR) and x is recursively irrational in the sense that
(∀n,m)(|x −m/n| ≥ 1/g(n)) holds for a primitive recursive function g.

4. The class C1(PR) is a field.

The reals of classes C1(PF ) and C1(PR) are called polynomial time computable
and primitive recursive, respectively.

3 Computably Enumerable Reals

The classes of polynomial time computable, primitive recursive and computable
reals have very nice computability as well as mathematical properties. They have
also many practical applications. However, there are practical values which can
not be characterized by these reals. For example, the length of a curve is defined
as the limit of the lengths of polygons which approximates the curve. In this
case, we might have a computable increasing sequence of the polygon-lengths
which does not converges effectively. To investigate such kind of values, we have

Definition 3.1. A real x is c.e. (co-c.e.) if there is an increasing (decreasing)
computable sequence (xs) of rational numbers which converges to x. The classes
of c.e. and co-c.e. reals are denoted by CE and co -CE.

C.e. and co-c.e. reals are also called left and right computable because they can
be approximated from the left and right side in the real axis and their classes are
denoted by LC and RC, respectively. Left and right computable reals together
are called semi-computable and the class of all semi-computable reals is denoted
by SC. A real x is semi-computable iff there is a computable sequence (xs)
of rational numbers which converges to x 1-monotonically in the sense that
|x− xt| ≤ |x− xs| for all t > s (see [25, 1]).

The binary expansions of c.e. reals are not necessarily c.e. as observed by
Jockusch [21] but they are strongly ω-c.e. as shown in the following theorem.

Theorem 3.2 (Calude, Hertling, Khoussainov and Wang [2]). A real
x is c.e. iff x = xA and A is a strongly ω-c.e. set in the sense that there is
a computable sequence (As) of finite sets which converges to A such that, if
n ∈ As −As+1, then there exists an m < n with m ∈ As+1 −As for all n and s.

The binary expansion leads naturally to an infinite hierarchy of c.e. reals. Soare
[21] called a c.e. real x stably c.e. if its binary expansion is d-c.e. Jockusch’s
observation gives an example of stably c.e. real. Since there exists a strongly ω-
c.e. set which is not d-c.e., the class of all stably c.e. reals is strictly between the
classes of binary c.e. and c.e. reals. There is no reason to stop here. In general,
a c.e. real is called h-stably c.e. for a function h if its binary expansion is an
h-c.e. set. Thus, the k-stably c.e., for constant k ∈ N, and the ω-stably c.e. reals
can be defined accordingly [25]. By Theorem 3.2, the classes of h-stably c.e. reals
collapse to the level λn.2n-stably c.e. for h(n) ≥ 2n for all n. For lower levels,
however, we have a proper hierarchy.
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Theorem 3.3 (Weihrauch and Zheng [25]). For any constant k, there is
a (k + 1)-stably c.e. real which is not k-stably c.e. and there exists an ω-stably
c.e. real which is not k-stably c.e. for any k ∈ N.

Additionally, Downey [4] calls a real strongly c.e. if its binary expansion is c.e.
and Wu [26] calls a real k-strongly c.e. if it is the sum of up to k strongly c.e. reals
and calls k-strongly c.e. reals regular. Wu shows that, for any k ∈ N, a k-strongly
c.e. real is 2k-stably c.e. and there is a (k + 1)-strongly c.e. real which is not k-
stably c.e. This, together with Theorem 3.3, implies that, for any k ∈ N, there is
a (k+1)-strongly c.e. real which is not k-strongly c.e. and there exists a c.e. real
which is not regular.

The semi-computable reals have a very useful necessary condition as follows.

Theorem 3.4 (Ambos-Spies, Weihrauch and Zheng [1]). If A,B ⊆ N are
Turing incomparable c.e. sets, then the real xA⊕B is not semi-computable.

In particular, this theorem implies that any non-computable c.e. degree con-
tains a non-semi-computable real and the class of c.e. reals is not closed under
subtraction.

4 Difference of c.e. Reals

The classes of c.e. and semi-computable reals are introduced naturally by the
monotonicity of sequences and have a lot of nice computability-theoretical prop-
erties. However, neither of them have nice analytical property. For example, they
are not closed under subtraction. This motivates us to explore their arithmetical
closure and leads to the following definition.

Definition 4.1. A real x is called d-c.e. (difference of c.e.) if x = y − z for
c.e. reals y, z. The class of all d-c.e. reals is denoted by DCE.

By Theorem 3.4, the class DCE is a proper superset of CE and SC, because
xA⊕B = x2A − x2B+1 is d-c.e. but not semi-computable if A and B are Turing
incomparable c.e. sets. But the difference hierarchy collapses since DCE is ob-
viously closed under addition and subtraction. Moreover, the class DCE is also
closed under multiplication and division and hence is a field. This follows from
another nice characterization of d-c.e. reals as follows.

Theorem 4.2 (Ambos-Spies, Weihrauch and Zheng [1]). A real x is d-c.e.
iff there is a computable sequence (xs) of rational numbers which converges to x
weakly effectively in the sense that the sum

∑
s∈N |xs − xs+1| is finite.

Because of Theorem 4.2, d-c.e. reals are also called weakly computable in liter-
atures [25, 1, 27]. Now it is easy to see that DCE is closed under arithmetical
operations +,−,×,÷ and hence it is the arithmetical closure of CE. Recently,
Raichev [14] shows that DCE is actually a real closed field.

There is another very interesting characterization of d-c.e. reals relating to the
Solovay reduction which classifies the relative randomness of the real numbers.
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A real x is Solovay reducible to y if there exist two computable sequences (xs)
and (ys) of rational numbers converging to x and y, respectively, such that
|x − xs| ≤ c(|y − ys|+ 2−s) for some constant c and all s (see [22, 31]). Solovay
[22] shows that any c.e. real is Solovay reducible to a c.e. random real. For
d-e.c. reals we have the following result.

Theorem 4.3 (Rettinger and Zheng [17]). A real number is d-c.e. if and
only if it is Solovay reducible to a c.e. random real.

The binary expansion of c.e reals are always λn.2n-c.e. For d-c.e. reals Zheng
[29] shows that there exists a d-c.e. real which is even not Turing equivalent to
any ω-c.e. set. More generally, about the Turing degrees of d-c.e. reals we have
the following results.

Theorem 4.4 (Downey, Wu and Zheng [3])

1. Any ω-c.e. Turing degree contains a d-c.e. real; and
2. There exists a Δ0

2-Turing degree which does not contain any d-c.e. reals.

We close our discussion about d-c.e. reals with an interesting necessary condition
as follows.

Theorem 4.5 (Ambos-Spies, Weihrauch and Zheng [1]). For any set A,
if x2A is a d-c.e. real, then A is h-c.e. for h = λn.23n.

By Ershov’s hierarchy theorem, there exists a Δ0
2-set A which is not λn.23n-c.e.

and hence x2A is not a d-c.e. real. This implies immediately that the class DCE
does not exhaust all reals with a Δ0

2-binary expansions.

5 Divergence Bounded Computable Reals

The class DCE is an arithmetical closure of CE and is actually a real closed field.
It is then natural to ask, if it is closed under total computable real functions.
Before answering this question, we introduce another class of reals at first.

Let h : N → N be a function. A real x is called h-bounded computable (h-bc,
for short) if there is a computable sequence (xs) which converges to x h-bounded
effectively in the sense that the number of non-overlapping index-pairs (i, j) with
|xi−xj | ≥ 2−n is bounded by h(n) for all n. A real x is called divergence bounded
computable (dbc for short) if it is h-bc for a computable function h ([18]).

Surprisingly, the class DBC is just the closure of c.e. reals (and hence of
d-c.e. reals) under total computable real functions.

Theorem 5.1 (Rettinger et al [18])

1. x ∈ DBC iff x = f(y) for a c.e. real y and a total computable real function.
2. The class DBC is a real closed field.
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Notice that, if A is an ω-c.e. but not λn.23n-c.e. set, then x2A is divergence
bounded computable but not d-c.e. by Theorem 4.5. This implies that DBC
properly extends the class DCE. On the other hand, by a diagonalization we
can show that there is a Δ0

2-real which is not dbc. The next theorem shows that,
even the Turing degrees of dbc reals do not exhaust all Δ0

2-Turing degrees and
this extends Theorem 4.4.

Theorem 5.2 (Zheng and Rettinger [30]). There is a Δ0
2-Turing degree

which does not contain any divergence bounded computable reals.

6 Computable Approximable Reals and More

We have seen that there exists real with a Δ0
2-binary expansion which is not dbc.

The reals of Δ0
2-binary expansion are called 0′-computable because they are the

limits of 0′-computable sequences of rational numbers which converges effectively
(Ho [7]). In addition, 0′-computable reals are simply the limits of computable
sequence of rational numbers without any extra condition and hence they are
called computably approximable (c.a., for short). The class of c.a. reals is denoted
by CA. The class CA is the largest class we discussed so far. Actually, we have
the following finite hierarchy:

EC = CE ∩ co -CE �
CE

co -CE � CE ∪ co -CE = SC � DCE � DBC � CA.

The class CA shares a lot of properties of the computable reals. For instance, it
is a real closed field and is closed under computable real functions, and so on.

Of course, the class CA can be extended further. To this end, we introduce
the following general definition of arithmetical hierarchy of reals. Let ΓQ denote
the class of computable functions f : Nn → Q for some n. Θin denotes “supin”
if n is odd, and “infin” if n is even, and Θin denotes “infin” if n is odd, and
“supin” if n is even.

Definition 6.1 (Zheng and Weihrauch [34])

1. Σ0 = Π0 = Δ0 := {x ∈ R : x is computable};
2. For n > 0,

Σn := {x ∈ R : (∃f ∈ ΓQ)x = supi1 infi2 supi3 · · ·Θinf(i1, · · · , in)};
Πn := {x ∈ R : (∃f ∈ ΓQ)x = infi1 supi2 infi3 · · ·Θinf(i1, · · · , in)};

3. Δn := Σn

⋂
Πn.

If x ∈ Σn (Πn, Δn), then we also say that x is Σn (Πn, Δn)-computable.

Obviously, we have Σ1 = CE, Π1 = co -CE. The equality Δ2 = CA follows
from the following more general results.

Theorem 6.2 (Zheng and Weihrauch [34]). For any n ≥ 1 and x ∈ R

1. x ∈ Σn+1 ⇐⇒ (∃f ∈ Γ ∅(n)

Q ) (x = supi∈N f(i));
2. x ∈ Πn+1 ⇐⇒ (∃f ∈ Γ ∅(n)

Q ) (x = infi∈N f(i));



590 X. Zheng

3. x ∈ Δn+1 ⇐⇒ (∃f ∈ Γ ∅(n)

Q ) (x = limi→∞ f(i) effectively;

4. x ∈ Δn+2 ⇐⇒ (∃f ∈ Γ ∅(n)

Q ) (x = limi∈N f(i));

where ΓA
Q denotes the class of A-computable functions f : N → Q.

Theorem 6.3 (Zheng and Weihrauch [34])

1. For any set A ⊆ N, A ∈ Δ0
n, if and only if xA ∈ Δn.

2. For n ≥ 1, Δn � Σn and Δn � Πn.

7 Ershov’s Hierarchy of Δ2

Let’s go back to the class CA again and try to introduce the hierarchies similar
to Ershov’s hierarchy [6] of Δ0

2-subsets of natural numbers. According to the
representations of reals we used, three such kinds of hierarchies can be defined.

Firstly, we consider the binary expansion. Let h be any function. A real x is
called h-binary computable if x = xA for an h-c.e. set A ([32]). The k-binary
computable for any constant k and ω-binary computable reals are defined ac-
cordingly. Let k-bEC (for k ∈ N), ω-bEC and h-bEC denote the classes of
all k-, ω- and h-binary computable reals, respectively. In addition, the class⋃
k∈N k-bEC is denoted by ∗-bEC. By Ershov’s hierarchy theorem, we have

an infinite hierarchy k-bEC � (k + 1)-bEC � ∗-bEC � ω-bEC � CA for
all constant k. Obviously, 1-bEC is the class of strongly c.e. reals and hence
1-bEC � CE. Furthermore, we have

Theorem 7.1 (Zheng and Rettinger [32])

1. k-bEC � SC for k ≥ 2;
2. CE � ∗-bEC and ∗-bEC � DCE;
3. ω-bEC is incomparable with DCE.

Secondly, for Dedekind cuts, we call a real x h-Dedekind computable if its
Dedekind cut Lx is h-c.e. ([32]). The k- (for k ∈ N), ∗- and ω-Dedekind com-
putability are defined accordingly. Their classes are denote by h-dEC, k-dEC,
∗-dEC and ω-dEC, respectively. By definition, we have 1-dEC = CE and
SC ⊆ 2-dEC. For other levels, we have

Theorem 7.2 (Zheng and Rettinger [32])

1. k-dEC = SC for k ≥ 2;
2. ω-bEC = ω-dEC.

To introduce an Ershov-style hierarchy of reals by means of Cauchy sequence
representation, we consider the number of big jumps of a sequence ([32]). For
any function h : N → N, a real x is called h-Cauchy computable if there is a
computable sequence (xs) of rational numbers which converges to x h-effectively
in the sense that the number of non-overlapping index pairs (i, j) with i, j ≥ n
and 2−n < |xi−xj | ≤ 2−n+1 is bounded by h(n) for all n. Other types of Cauchy
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computability can be defined accordingly and the classes of h-, k- (k ∈ N), ∗- and
ω-Cauchy computable reals are denoted, respectively, by h-cEC, k-cEC, ∗-cEC
and ω-cEC. By definition, we have 0-cEC = EC and ω-cEC = DBC.

For Cauchy computability we have the following hierarchy theorem.

Theorem 7.3 (Zheng and Rettinger [32]). If f, g are total computable
functions such that f(n) < g(n) for infinitely many n, then g-cEC � f -cEC.

Thus, we have an Ershov-type hierarchy that k-cEC � (k+ 1)-cEC � ∗-cEC �
ω-cEC for any k ∈ N. Other properties of Cauchy computability are summarized
in the following theorem.

Theorem 7.4 (Zheng and Rettinger [32])

1. The class k-cEC is incomparable with the classes CE and SC for any k > 0.
2. There are x, y ∈ 1-cEC such that x − y /∈ ∗-cEC. Therefore, k-cEC and
∗-cEC are not closed under addition and subtraction for any k > 0.

3. ω-bEC � ω-cEC and k-bEC � k-cEC for any k ≥ 1 or k = ∗.

8 Hierarchy of DBC Reals

In section 5 we have introduced h-bounded computable reals. More generally,
for any class C of functions, we call a real C-bounded computable (C-bc) if it
is h-bc for an h ∈ C. The classes of h-bc and C-bc reals are denoted by h-BC
and C-BC, respectively. Obviously, if C is the class of all computable functions,
then C-BC = DBC.

On the other hand, if lim inf h(n) < ∞, then only rational numbers can be
h-bc. Therefore, we cannot anticipate an Ershov-type hierarchy in this case.
Moreover, if there is a constant c such that |f(n) − g(n)| ≤ c for all n, then
f -BC = g-BC. This means that a hierarchy theorem like Theorem 7.3 does not
hold neither. Nevertheless, we have another version of hierarchy theorem.

Theorem 8.1 (Zheng [28]). If f, g : N → N are computable and satisfy the
condition (∀c ∈ N)(∃m ∈ N)(c+ f(m) < g(m)), then g-BC � f -BC.

The next theorem shows that a lot of classes C-BC are fields.

Theorem 8.2 (Zheng [28]). Let C be a class of functions f : N → N. If, for
any f, g ∈ C and c ∈ N, there is an h ∈ C such that f(n+ c) + g(n+ c) ≤ h(n)
for all n, then C-BC is a field.

The hierarchy of the class DBC can be extended to the hierarchy of Turing
degrees of dbc-reals as follows.

Theorem 8.3 (Rettinger and Zheng [16]). Let f, g : N → N be monotoni-
cally increasing computable functions such that g(n+ 1) ≥ g(n) + 2 and

(∀c ∈ N)(∀∞n)(f(γn) + n+ c < g(n)) (1)

for some constant γ > 1. Then there exists a g-bc real x which is not Turing
equivalent to any f -bc real.
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9 Monotone Computability Hierarchy

As a generalization of 1-monotonically convergence mentioned in section 3, we
call a sequence (xs) converges to x h-monotonically if (∀n,m ∈ N)(n < m =⇒
h(n)|x − xn| ≥ |x − xm|) for a function h : N → R. A real x is called h-
monotonically computable (h-mc) if there is a computable sequence of rational
numbers which converges to x h-monotonically ([15]). If h = λn.c for a constant
c ∈ R, then any h-mc reals are called c-mc. We call a real monotonically com-
putable (mc) if it is c-mc for some constant c and ω-monotonically computable
(ω-mc) if it is h-mc for a computable function h : N → N. The classes of h-
mc, c-mc, mc and ω-mc reals are denoted by h-MC, c-MC,MC and ω-MC,
respectively.

By definition, we have obviously 0-MC = Q, 1-MC = SC and c-MC = EC
for 0 < c < 1. For c ≥ 1 we have the following dense hierarchy theorem.

Theorem 9.1 (Rettinger and Zheng [15]). For any real constants c2 > c1 ≥
1, c1-MC � c2-MC.

This implies immediately that SC � MC. Furthermore, it is shown in [15] that,
MC is a proper subset of DCE. That is, we have SC � MC � DCE.

Theorem 9.2 (Zheng, Rettinger and Barmpalias [33]).

1. If h : N → (0, 1] is a computable function, then
– If

∑
n∈N(1− h(n)) = ∞, then h-MC = EC;

– If
∑

n∈N(1− h(n)) is computable, then h-MC = SC;
– If

∑
n∈N(1− h(n)) is non-computable, then EC � h-MC � SC.

2. If h is a monotone and unbounded computable function, then h-MC =
ω-MC. Furthermore, the class ω-MC is incomparable with DCE and DBC
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Abstract. We generalise to abstract many-sorted algebras the classi-
cal proof-theoretic result due to Parsons and Mints that an assertion
∀x∃yP (x, y) (where P is Σ0

1), provable in Peano arithmetic with Σ0

1

induction, has a primitive recursive selection function. This involves a
corresponding generalisation to such algebras of the notion of primitive
recursiveness. The main difficulty encountered in carrying out this gen-
eralisation turns out to be the fact that equality over these algebras may
not be computable, and hence atomic formulae in their signatures may
not be decidable. The solution given here is to develop an appropriate
concept of realisability of existential assertions over such algebras, and
to work in an intuitionistic proof system. This investigation gives some
insight into the relationship between verifiable specifications and com-
putability on topological data types such as the reals, where the atomic
formulae, i.e., equations between terms of type real, are not computable.

1 Introduction

We investigate a class of problems concerning the relationship between specifi-
ability and computability for a wide class of abstract data types, modelled as
many-sorted algebras A, of the following form. Given a predicate P of a cer-
tain syntactic class in the specification language L(A) for A, and a proof of the
assertion

∀x ∃yP (x, y) (1.1)

in a suitable formal system F for A, can we construct, from this proof, a com-
putable selection function for P , i.e., a computable function f on A such that

∀xP (x, f(x)) (1.2)

holds in A? (Here the notion of “computable on A” must also be explicated.)
Specifically, we generalise to such algebras a classical proof-theoretic result,

due to Parsons [9,10] and Mints [8], which gives a positive solution to the above
problem in the case that F is Peano arithmetic (PA) with induction restricted to
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Σ0
1 formulae, and P is a Σ0

1 predicate of PA, in which case a primitive recursive
selection function f can then be found. As a corollary, a general recursive function
which is provably total in PA with Σ0

1-induction is (extensionally equivalent to)
a primitive recursive function.

In [14] this result was generalised to predicates over many-sorted signatures
Σ containing the boolean and natural sorts, with their standard operations, and
many-sorted Σ-algebras A. The method used was adapted from Mints’s method,
involving cut-reduction and an analysis of cut-reduced derivations. The result
used a generalisation of primitive recursive schemes to many-sorted signatures
and algebras. The generalisation went quite smoothly, on the assumption that
equality in A was computable, so that the atomic formulae of the first-order
language over Σ were computably decidable in A.

The case that equality in A is not computable provides a serious difficulty for
this generalisation. In such a case, a more delicate analysis of formal derivations
of assertions of the form (1.1) is required. In this paper such an analysis is given,
using an appropriate concept of realisability of existential assertions over Σ.

To clarify these issues with an example, consider the topological total algebra
of reals

R = (R, N, B; 0, 1, +, −, ×, . . . ) (1.3)

(“topological” in the sense that all the carriers have topologies in terms of which
the basic operations are continuous; “total” in the sense that the basic operations
are total [19]). R containing the carrier R of reals with its usual topology and
its ring operations, as well as the carriers N and B of naturals and booleans,
with their discrete topologies and standard operations. Note that there is no
division operation on R, since there is no continuous total extension of that
operation. Similarly, although there is an equality test (i.e., a boolean valued
equality operation) on N, there is none on R, since the (total) equality operation
on R is not continuous.1

However the specification language L(A), in which the predicates P (1.1) are
expressed, has, as atomic formulae, equations between terms of the same sort,
for all sorts of A, including, e.g., the sort of reals in the above example. It follows
that the atomic formulae in L(R) are not computable. In such a case, solving
the problem of finding computable selection functions onR requires a non-trivial
concept of realisability, as we will see. It will also require restricting our attention
to intuitionistic proof systems.

This investigation gives some insight into the relationship between verifiable
specifications and computability on topological data types such as the reals,
where the atomic formulae, i.e., equations between terms of type real, are not
computable.

In particular, it provides an example, in the context of verifiable specifica-
tions on such data types, of the general programme proposed by Kreisel [6] of
discovering “what more we know when we have proved a theorem than if we
only know that it is true”.
1 One can define continuous partial division and equality operations on the reals [18];

however in this paper we only consider total algebras. We return to this in §6.4.
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2 Many-Sorted Algebras; Computation Schemes

We give a brief introduction to many-sorted signatures and algebras. Details
may be found in any of [15,16,18,19]. Given a signature Σ with finitely many
sorts s, . . . and function symbols

F : u→ s, (2.1)

where u is the product type u = s1×· · ·×sm, a Σ-algebra A consists of a carrier
As for each Σ-sort s, and a total function

FA : Au → As

for each Σ-function symbol as in (2.1), where Au = As1 × · · · × Asm . We let
s, . . . range over Σ-sorts, and u, v, . . . over Σ-product types.

We make two assumptions on our signatures Σ and Σ-algebras A.

Assumption 2.1 (N-standardness). The signatures Σ and Σ-algebras A are
N-standard. That is, they contain
(a) the sort bool of booleans and the corresponding carrier Abool = B =

{true, false}, together with the standard boolean and boolean-valued oper-
ations, including equality at certain sorts called equality sorts; and also

(b) the sort nat of natural numbers and the corresponding carrier Anat = N =
{0, 1, 2, . . .}, together with the standard arithmetical operations of zero,
successor, equality and order on N.

Assumption 2.2 (Instantiation). For every sort s of Σ, there is a closed
term of sort s, called the default term δs of that sort.

The instantiation assumption is used in the proof of Lemma 5.6.
We will also consider array signatures Σ∗ and array algebras A∗, which are

formed from N-standard signatures Σ and algebras A by adding, for each sort s,
an array sort s∗, with corresponding carrier A∗

s consisting of all arrays or finite
sequences over As, together with certain standard array operations.

Let NStdAlg(Σ) denote the class of N-standard algebras over Σ. We will
present two systems of computation schemes over Σ: PR and μPR.

2.1 PR(Σ) and PR∗(Σ) Computation Schemes

Given an N-standard signatureΣ, we define PR schemes over Σ which generalise
those given in [5] for primitive recursive functions on N.
(a) Basic schemes: Initial functions

(i) Primitive Σ-functions:
f(x) = F(x)

of type u → s, for all the primitive Σ-function symbols F : u → s,
where x : u, i.e., x is a tuple of variables of product type u.
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(ii) Projection:
f(x) = xi

of type u→ si, where x = (x1, . . . , xm) is of type u = s1×· · ·×sm.
(b) Inductive schemes:

(iii) Composition:
f(x) = h(g1(x), . . . , gm(x))

of type u → s, where gi : u → si (i = 1, . . . ,m) and h : s1 × · · · ×
sm → s.

(iv) Definition by cases:

f(b, x, y) =

{
x if b = true
y if b = false

of type bool× s2 → s.
(v) Simultaneous primitive recursion on N: This defines, on each A ∈

NStdAlg(Σ), for fixed m > 0 (the degree of simultaneity), n ≥ 0
(the number of parameters), and product types u and v = s1× · · · ×
sm, an m-tuple of functions f = (f1, . . . , fm) with fi : nat× u→ si,
such that for all x ∈ Au and i = 1, . . . ,m,

fi(0, x) = gi(x)
fi(z + 1, x) = hi(z, x, f1(z, x), . . . , fm(z, x))

where gi : u→ si and hi : nat× u× v → s1 (i = 1, . . . ,m).
Scheme (v) uses the N-standardness of the algebras, i.e. the carrier N.

A PR(Σ) scheme α : u → s defines, or rather computes, a function fAα :
Au → As on each Σ-algebra A.

Lemma 2.3 (Equational specification for PR functions). For any PR(Σ)
scheme α, we can construct an equational specification Eα for the functions fAα
defined by α on all Σ-algebras A.

It turns out that a broader class of functions provides a better generalisation of
the notion of primitive recursiveness, namely PR∗ computability. A function on
A is PR∗(Σ) computable if it is defined by a PR scheme over Σ∗, interpreted
on A∗, i.e., possibly using starred sorts for the auxiliary functions used in its
definition. Note that in the classical setting (A = N = the naturals with their
standard operations) this generalisation is not necessary, since N ∗ can effectively
be coded in N . In general, however, this is not the case; R∗, for example, cannot
be effectively coded in R.

We write PR(A) for the class of functions PR computable on A, etc.

2.2 μPR(Σ) and μPR∗(Σ) Computation Schemes

The μPR schemes over Σ are formed by adding to the PR schemes:
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(vi) Least number or μ operator:

f(x) 6 μz[g(x, z) = true]

of type u→ nat, where g : u × nat → bool is μPR. The interpretation of
this is that fA(x) ↓ z if gA(x, y) ↓ false for each y < z and gA(x, z) ↓ true,
and fA(x) is undefined if there is no such z.

This scheme, like (v), uses the N-standardness of the algebra.
These schemes generalise those given in [5] for partial recursive functions on

N. Note that μPR computable functions are, in general, partial.
Again, a broader class turns out to be more useful, namely μPR∗ computabil-

ity. This is just PR∗ computability with μ.
There are many other models of computability, due to Moschovakis, Friedman,

Shepherdson and others, which turn out to be equivalent to μPR∗ computabil-
ity [16, §7]. All these equivalences have led to the postulation of a generalised
Church-Turing Thesis for deterministic computation of functions, which can be
formulated as follows:

Computability of functions on many-sorted algebras by deterministic al-
gorithms can be formalised by μPR∗ computability.

2.3 Comparison with Imperative Computational Models

In [16] computation on many-sorted Σ-algebras was investigated, using impera-
tive programming models: While(Σ), based on the ‘while’ loop construct over
Σ; For(Σ), based similarly on the ‘for’ loop; and While∗(Σ) and For∗(Σ),
which use arrays, i.e., auxiliary variables of starred sort over Σ.

Writing While(A) for the class of functions While-computable on A, etc.,
we can list the equivalences between the “schematic” and “imperative” models:

(1) PR(A) = For(A)
(2) PR∗(A) = For∗(A)
(3) μPR(A) = While(A)
(4) μPR∗(A) = While∗(A),

in all cases, uniformly for A ∈NStdAlg(Σ).
These results are all stated in [16], and can be proved by the methods of [13].

3 Σ∗
1 Formulae; The System Σ∗

1-Ind

Let Lang(Σ) be the first order language over Σ, and Lang∗(Σ) = Lang(Σ∗),
the first order language overΣ∗. The atomic formulae of Lang(Σ) are equations
between terms of the same sort, for all Σ-sorts (not just equality sorts).

We use the intuitionistic sequent calculus, with sequents Γ )−→ P , where
the antecedent Γ is a finite sequence of formulae, and the consequent is a single
formula P .

We are interested in a certain sublanguage of Lang(Σ∗), namely the class of
Σ∗

1 formulae over Σ, which we now define.
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Definition 3.1 (BU quantifiers, equations and sequents).
(a) A BU (bounded universal) quantifier is a quantifier of the form ‘∀z < t’,

where z : nat and t : nat. (The most elegant approach is to take this as a
primitive construct, with its own introduction rules.)

(b) A BU equation is formed by prefixing an equation by a string of 0 or more
BU quantifiers.

(c) A conditional BU equation is a formula of the form

Q1 ∧ . . . ∧Qn → Q (3.1)

where n ≥ 0 and Qi and Q are BU equations. A conditional BU equational
theory is a set of such formulae (or their universal closures).

(d) A BU equational sequent is a sequent of the form

Q1, . . . , Qn )−→ Q

where n ≥ 0 and Qi and Q are BU equations. This sequent corresponds to
the conditional BU equation (3.1).

Definition 3.2 (Elementary and Σ∗
1 formulae). A formula of Lang(Σ∗)

is
(a) elementary if it is formed from Σ∗-equations by applying conjunctions ,

disjunctions, and BU (bounded universal) quantification (in any order);
(b) Σ∗

1 if it is formed from Σ∗-equations by applying conjunctions , disjunc-
tions, BU quantification and also existential Σ∗-quantification, i.e., un-
bounded existential quantification over any sort in Σ∗ (in any order)2.

Lemma 3.3. If P is an elementary formula all of whose variables are of equality
sort, then the predicate defined by P is PR∗ computable.

Let T be a set of formulae in Lang∗, which we can think of as axioms for a class
of Σ∗-algebras. We make the following assumption about T .

Assumption 3.4. T consists of conditional BU Σ∗-equations.

Note that this is a stricter condition than conditional Σ∗
1 formulae, since it

excludes disjunctions and existential quantification. However, this assumption is
not unduly restrictive, as it includes axiomatisations by conditional equations,
and (hence) Horn formulae, which are central to the theory of logic programming
and abstract data types [7].

We will define an intuitionistic sequent calculus Σ∗
1-Ind(Σ∗, T ) with the ax-

ioms T as extra initial sequents.

Definition 3.5 (The intuitionistic sequent calculus Σ∗
1-Ind(Σ∗, T )). This

system has the following axioms (initial sequents) and inference rules: rules for
the first order predicate calculus with equality over the signature Σ∗, including
2 The notation may be a bit confusing: Σ∗ refers to a signature with array sorts,

whereas Σ∗
1 refers to a particular syntactic class of formulae over Σ∗.
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rules for the BU quantifier, and cut, as in [3] or [11]; the Σ∗-equality axioms;
the Peano axioms for the sort nat of naturals, including the primitive recursive
equational definitions for the nat operations +, ×, =, <, and the sequents

true = false )−→ t1 = t2 and S n = 0 )−→ t1 = t2

for a variable n : nat and arbitrary terms t1, t2 of the same sort; the equation

(xbool = true) ∨ (xbool = false); (3.2)

a certain set of conditional BU axioms for arrays 3; the axioms T in sequent
form; and the Σ∗

1 induction rule (where the induction formula F (a) is Σ∗
1):

Γ )−→ F (0) F (a), Γ )−→ F (Sa)
Γ )−→ F (t)

.

It follows from Assumption 3.4 that the initial sequents of the calculus
Σ∗

1-Ind(Σ∗, T ) are all Σ∗
1. In fact, they are all BU equational (except for (3.2),

which is a disjunction of equations). This is used in the proof of Theorem 2.
Now let K ⊆NStdAlg(Σ), and let T be a set of formulae in Lang∗(Σ) such

that K |= T . (We could suppose that T is a complete N-standard axiomatisation
of K, i.e., K is the class of all N-standard Σ-models of T , although this is
unnecessary for what follows.) The following soundness result then clearly holds:

Lemma 3.6 (Soundness of Σ∗
1-Ind). Σ∗

1-Ind(Σ∗, T )� P =⇒ K∗ |= P .

4 Provable Totality of Schemes; PR∗ Selection Functions

With each μPR∗(Σ) scheme α : u → s, we can effectively associate a Σ∗
1

formula Pα(x, y), the computation predicate for α, where x : u and y : s, which
represents the graph of the function defined by α, i.e., for all A ∈NStdAlg(Σ),
and for all a ∈ Au and b ∈ As,

A |= Pα[a, b] ⇐⇒ αA(a) ↓ b.
The construction of Pα is defined by structural induction on α. We omit details.

Note that even if the scheme α is defined over Σ only, the definition of Pα
generally involves existential quantification over starred sorts.

Definition 4.1. A scheme α is provably total in Σ∗
1-Ind(Σ∗, T ) iff

Σ∗
1-Ind(Σ∗, T ) � ∀x ∃yPα(x, y).

Lemma 4.2. If α is a PR∗ scheme, then α is provably total in Σ∗
1-Ind.

The central result of this paper is formulated with reference to a class K of
N-standard Σ-algebras and an axiomatisation T of K.
3 listed in [14, §4] and [17, §3.2].
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Theorem 1. Suppose K |= T where K ⊆ NStdAlg(Σ), and T consists of
conditional BU Σ∗-equations. If

Σ∗
1-Ind(Σ∗, T ) � ∃yP (x, y)

where P (x, y) is a Σ∗
1 formula, with free variables x : u and y : s, then there is

a PR∗ scheme β : u→ s such that

for all A ∈ K and all x ∈ Au, A |= P [x, βA(x)]. (4.1)

The function βA is called a selection function, Skolem function, realising function
or witnessing function for y in P .

As a corollary, we have a kind of converse to Lemma 4.2.

Corollary 4.3. Suppose K |= T , where K ⊆ NStdAlg(Σ) and T consists of
conditional BU Σ∗-equations. If a μPR∗ scheme α is provably total in
Σ∗

1-Ind(Σ, T ), then α is extensionally PR∗ on K, i.e., there is a PR∗ scheme β
such that αA = βA for all A ∈ K.

A stronger version of Theorem 1 replaces (4.1) by a provability condition:

Theorem 2. Suppose T consists of conditional BU Σ∗-equations. If

Σ∗
1-Ind(Σ∗, T ) � ∃yP (x, y)

where P (x, y) is a Σ∗
1 formula, with free variables x : u and y : s, then there is

a PR∗ scheme β : u→ s such that

Σ∗
1-Ind(Σ∗

β , T + Eβ) � P (x, fβ(x))

where Σ∗
β is the extension of Σ∗ with symbols for the function fβ : u→ s defined

by the scheme β, together with the auxiliary functions used in its definition, and
Eβ is the equational specification for these functions given by Lemma 2.3.

Theorem 1 is an immediate consequence of Theorem 2, the proof of which uses
the technique of realisability, to which we now turn.

5 Realisability

In preparation for the proof of Theorem 2, we define a realisability relation
between tuples from A and Σ∗

1 formulae. First we define the type of a Σ∗
1 formula.

Definition 5.1 (Type of a Σ∗
1 formula). The type tp(P ) of a Σ∗

1 formula P
is a particular Σ∗-product type. It is defined by structural induction on P .

(i) tp(t1 = t2) = bool
(ii) tp(P1 ∧ P2) = tp(P1)× tp(P2)
(iii) tp(P1 ∨ P2) = bool× tp(P1)× tp(P2)
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(iv) tp(∀k < tP ) = tp(P )∗

where, for any Σ∗-product type u, u∗ is the corresponding component-
wise starred type; thus, if (say) u = s1 × s2 × s∗3 × s∗4 × s5 then u∗ =
s∗1 × s∗2 × s∗∗3 × s∗∗4 × s∗5.

(v) tp(∃ysP ) = s× tp(P ) for any Σ∗-sort s.

Remark 5.2. (a) The base case, tp(t1 = t2), could be defined as any Σ-sort.
(b) The doubly starred sorts s∗∗ appearing in clause (iv) are not actually present
in the signature Σ∗; the doubly indexed (2-dimensional) arrays which they rep-
resent are effectively coded by 1-dimensional arrays in the well-known way.

The central concept of this section is a realisability relation between term tuples
of a particular Σ∗-product type, and Σ∗

1 formulae of the same type.

Definition 5.3 (Realisability of Σ∗
1 formulae). Let t be a Σ∗-term tuple,

and P a Σ∗
1 formula, both of the same product type. We define the expression

‘t� P ’ (“t realises P”) to be a Σ∗
1 formula, by structural induction on P :

(i) t� (t1 = t2) ≡ t1 = t2.
(ii) (t1, t2) � (P1 ∧ P2) ≡ (t1 � P1) ∧ (t2 � P2).
(iii) (b, t1, t2) � (P1 ∨ P2) ≡ (b = true ∧ t1 � P1) ∨ (b = false ∧ t2 � P2).
(iv) t∗ � (∀z < t0 P ) ≡ ∀z < t0(t∗[z] � P ).
(v) (t0, t) � (∃yP ) ≡ t� P 〈y/t0〉

Remark 5.4. (a) If P is a formula built up from equations using conjunction
and BU quantification only, then t� P is identical to P (by a simple induction
on P ). In particular, the realisability of a BU equation P is the same as P .
(b) However, in cases (iii) and (v), the realising tuple contains extra information:
it includes a “witness” to the truth of the disjunction or existential quantification.

The above two remarks together imply that for a Σ∗
1 formula P , realisability of

P implies P . This is stated precisely in the following lemma.

Lemma 5.5. For any Σ∗
1 formula P and term tuple t of the same type, the

sequent
t� P )−→ P

is provable in intuitionistic predicate logic.

In the opposite direction, we can say more: every provable Σ∗
1 formula P has a

realiser which is PR in the free variables of P . To prove this, we must actually
prove a more general statement, i.e., we must show how to construct a realiser
for the succedent formula of a Σ∗

1 sequent, which is PR not just in the free
variables of the sequent, but also in realisers of the antecedent formulae.

The precise formulation is given as Lemma 5.6. This can be viewed as a
strengthening of Theorem 2, which follows easily from it.

Lemma 5.6. Suppose T consists of conditional BU Σ∗-equations, and the Σ∗
1

sequent
Q1, . . . , Qm )−→ P (5.1)
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is provable in Σ∗
1-Ind(Σ∗, T ). Let Q1, . . . , Qm, P have types v1, . . . , vm, v (resp.)

and var(Q1, . . . , Qm, P ) ⊆ x : u. Let z1, . . . , zm be tuples of variables, pairwise
disjoint and disjoint from x, with zi : vi for i = 1, . . . ,m. Then for some tuple
of PR schemes α : u× v1 × · · · × vm → v,

z1 �Q1, . . . , zm �Qm )−→ fα(x, z1, . . . , zm) � P

is provable in Σ∗
1-Ind(Σ∗

α, T +Eα), where Σ∗
α is the extension of Σ∗ with sym-

bols for the function tuple together with their auxiliary functions, and Eα is the
equational specification for these functions.

Theorem 2 follows immediately from Lemma 5.6 by taking m = 0 in (5.1).
Next, in order to prove Lemma 5.6, we need:

Lemma 5.7 (Cut Reduction Lemma). Every derivation D in Σ∗
1-Ind can

be transformed into a derivation D′ of the same end-sequent containing only Σ∗
1

cuts. Moreover, if the end-sequent is Σ∗
1 then every formula in D′ is Σ∗

1.

The proof of Lemma 5.7 proceeds by a technique similar to that in the proof of
Gentzen’s Hauptsatz (see [3, III, §3] or [11, Ch. 1, §5]).

Lemma 5.6 is then proved by induction on the length of a “cut-reduced”
derivation of the sequent.

6 Some Concluding Remarks

6.1 Primitive Recursive Realisability

Realisability, as a technique in proof theory, goes back to [4]. Since then many
variants have been developed. For a thorough treatment of various versions of
realisability applied to Heyting arithmetic and related systems, with extensive
bibliography, see [12, Part III]. Many of these versions are based on (Gödel
numbers of) partial recursive functions on N. We may then ask (ignoring for
now the difference between formalisms over N and over many-sorted algebras)
how it is that only PR∗ and not μPR∗ realisability is needed in the present
study?

The answer lies in our restricted language Σ∗
1, which has no ‘→’ or (un-

bounded) ‘∀’. The only implication and universal quantification present are
global, i.e., (implicit) implication from the antecedent to the succedent of a
sequent, and (implicit) universal quantification over the free variables of a se-
quent. There is, however, no iterated implication, or universal quantification in
the antecedent of an implication. This allows realisation with primitive recursive
functionals only.

6.2 Comparison with the Results in [14]

In the cited paper, the analogue of Theorem 1 was proved by a proof-theoretic
analysis involving constructing (only) PR∗ witnessing functions for existential
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statements, but not the (more general) realisers of Σ∗
1 formulae. That proof

works only for theories with decidable atomic formulae, i.e., computable equal-
ity, since for such theories, elementary formulae are PR∗ computable (Lemma
3.3) and so the only non-trivial logical operation on Σ∗

1 formulae is existential
quantification. This allows for a much simpler proof of (the analogue of) Lemma
5.6, in which we only have to show, by induction on the length of derivations, the
existence of such PR witnessing functions for existential theorems, without the
whole apparatus of realisability (Definition 5.3). Regrettably, this assumption
(i.e., computability of atomic formulae) was not made explicit in [14].

6.3 Necessity for the Intuitionistic Sequent Calculus

In this paper we had to assume the provability of

∀x ∃yP (x, y) (6.1)

in the intuitionistic formal system Σ∗
1-Ind(Σ∗, T ). This provides another contrast

with the development in [14], where the provability of (6.1) was assumed to be
in the corresponding classical system.

To show the necessity for the intuitionistic calculus in the context of the
present paper, consider the algebra R of reals (1.3) and the formula

P (x, y) ≡df (x �= 0 ∧ y = 0) ∨ (x = 0 ∧ y = 1)

where x and y are real variables. Then (6.1), with this predicate for P , is a
truth of classical logic, and can be easily proved in the classical sequent calculus
over R. However the unique selection function for (6.1) is clearly not continuous
on R, and hence not PR∗ computable on R, since for functions on topological
algebras, PR∗ (or μPR∗) computability implies continuity [18].

To summarise: if we drop the assumption of computabile equality, we must
strengthen the assumption of provability of (6.1) from classical to intuitionistic.

Note that in the classical result of Mints and Parsons, provability of (6.1)
can be assumed to be in the classical system PA with Σ0

1 induction. The results
of this paper therefore do not, strictly speaking, by themselves generalise these
classical results. Rather, the present results, together with those of [14], provide
a generalisation of these classical results, to settings where computability of
equality may or may not hold.

6.4 Total vs Partial Algebras

In this paper we have considered only total algebras. This is a real restriction,
since partial basic functions occur quite naturally in topological algebras; con-
sider, for example, the algebraR of reals (1.3) augmented with continuous partial
operators of division, equality and order [18]. To extend the current theory to
such partial algebras would entail adapting the proof theory used here to a logic
of partial terms or definedness (see, e.g., [1, pp. 97–99] and [2]). This is likely to
be a major undertaking, but one worth pursuing.
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